CPSC 213

Introduction to Computer Systems

Unit O
Introduction

About the Course

» its all on the web page ...
e http://www.cs.ubc.ca/~feeley/cs213

e [ecture Notes Companion
® Piazza
» marks
*® in-class clicker questions (you will need a clicker)
® labs
® quizzes
e midterm
o final

» work together! but don’t cheat!
e never present anyone else’s work as your own
- it is your responsibility to provide proper attribution
* anything you hand in in this course should follow this rule anything
e but, don’t let this stop you from helping each other learn ...

Overview of the course

» Hardware context of a single executing program
e hardware context is CPU and Main Memory
e develop CPU architecture to implement C and Java
e differentiate compiler (static) and runtime (dynamic) computation

» System context of multiple executing programs with 10
¢ extend context to add 10, concurrency and system software
e thread abstraction to hide IO asynchrony and to express concurrency
® synchronization to manage concurrency
¢ virtual memory to provide multi-program, single-system model
e hardware protection to encapsulate operating system
® message-passing to communicate between processes and machines

GOAL: To develop a model of computation that is
rooted in what really happens when programs execute.

What you will get out of this ...

» Become a better programmer by

¢ deepening your understand of how programs execute

® learning to build concurrent and distributed programs
» Learn to design real systems by

¢ evaluating design trade-offs through examples

e distinguish static and dynamic system components and techniques
» Impress your friends and family by

¢ telling them what a program really is

What do you know now?

What happens what a program runs

» Here’s a program

class SortedList {
static SortedList alist;
int size;
int listl[1;

void insert (int aValue) {

int i = 0;
while (list[i] <= aValue)
i++;

for (int j=size-1; j>=i; j—)
list[j+1] = listl[jl;

list[i] = aValue;

size++;

» What do you understand about the execution of insert?

» Example

elist stores {1,3,5,7,9}
eSortedList.alList.insert(6) is called

» Data structures

e draw a diagram of the data structures
e as they exist just before insert is called ¥

SortList Class

aList/@

pd

size

list

a SortedList Obj

! [SESESESRSRURNNE, NOVN !

class SortedList {

static SortedlList alist;

int
int

size;
list[]1;

int i = 0;

while (list[i] <= aValue)

i++;

for (int j=size-1; j>=i; j—-)
list[j+1] = list[jl;

list[i] = aValue;
size++;

assuming List[] was
initialized to store 1o
elements:

List = new Integer[10];

» Data structures
e lets dig a little deeper

e which of these existed before program started?

- these are the static features of the program

e which were created by execution of program?

- these are the dynamic features of the program

SortList Class

aList}@

pd

e

size

list

a SortedList Obj

! [SESESESES RV NNE, RO N l

class SortedList {

static SortedList alist;

int
int

size;
list[];

int i = 0;

while (list[i] <= aValue)

i++;

for (int j=size-1; j>=i; j—-)
list[j+1] = list[jl;

list[i] = aValue;
size++;

Skakic:

* class and alist variable
(sort of - clearer in C)

Dvho\mic:
* SortedList object
* size and list variables

* value of alList size and List

* List of 10 integers

void insert (int aValue) {

void insert (int aValue) {

class SortedList {

4 EXGCUtIOﬂ Of |nsert static SortedList alList;
int size;
* how would you describe this execution? it Ustll;
id i t (int aval
e carefully, step by step? vola dnsert (int avatue) {
while (list[i] <= aValue)
i++;
. for (int jesize-l; j»=i: j-—)
Sequence of Instructions st = ust1;
list[i] = aValue;
* program order sizers;
¥
* changed by control-flow structures }
save location of SortedlList.alist.insert(6)
aValue = 6
i=0 .
goto end-while if list[il>aValue (1>6) Instruction TvPES.?
i=0+1 (1) . .
goto end-while if list[il>aValue (3>6) * T'EQd/NT‘LEE V&T‘LQbL&
i=1+1 (2) . .
goto end-while if list[i]>aValue (5>6) * QT‘LH‘\MEELC
i=2+1 (3))
goto end-while if list[i]>aValue (7>6) * COV\dL&LQV\QL 30&0

end-while: j = size-1 (4)
goto end-if if j<i (4<3)
list[i+l] = list[i] (list[5]=9)
j =5-1(3)
goto end-if if j<i (3<3)
list[i+1] = list[i] (list[4]=7)
j =4-1(2)
goto end-if if j<i (2<3)
end-if: list[i] = aValue (list[3] = 6)
size = size+l (6)
statement after SortedList.alist.insert(6)

Execution: What you Already Knew

» Data structures
e variables have a storage location and a value
® some variables are created before the program starts
® some variables are created by the program while it runs
e variable values can be set before program runs or by the execution

» Execution of program statements
e execution is a sequence of steps
e sequence-order can be changed by certain program statements
e each step executes an instruction
e instructions access variables, do arithmetic, or change control flow

An Overview of Computation

Phases of Comput

Human
Creation

Source
Code

» Human creation
® design program and describe it in high-level language
» Compilation
e convert high-level, human description into machine-executable text
» Execution

¢ a physical machine executes the text

Execution

Dynamic
State

Compilation

Object
Code

® parameterized by input values that are unknown at compilation
* producing output values that are unknowable at compilation
» Two important initial definitions
® anything that can be determined before execution is called static
® anything that can only be determined during execution is called dynamic

11

12

Examples of Static vs Dynamic State

» Static state in Java

» Dynamic state in Java

A Simple Machine that can Compute

Memory

» Memory
¢ stores programs and data
e everything in memory has a unique name: its memory location (address)
¢ two operations: read or write value at location X
» CPU
e machine that executes programs to transform memory state
¢ |oads program from memory on demand one step at a time
e each step may also read or write memory
» Not in the Simple Machine
¢ |/O Devices such as mouse, keyboard, graphics, disk and network
e we will deal with these other things in the second half of the course

13

14

The Simple Machine Model
A Closer Look

How do we start?

» One thing we need to do is add integers
e you already know how to do this from 121 (hopefully :))

» A 32-bit Adder

* implemented using logic gates implemented by transistors
it adds bits one at a time, with carry-out, just like in grade 2.

INPUT register INPUT register

\/ \4
+

OUTPUT register

15

16

Generalizing the Adder

» What other things do we want to do with Integers

» What do we do with the value in the output register

Register File and ALU

» Arithmetic and Logic Unit (ALU)
¢ generalizes ADDER to perform many operations on integers
e three inputs: two source operands (valA, valB) and a operation code (opCode)
® output value (valE) = operation-code (operando, operands)
» Register File
e generalizes input and output registers of ADDER
¢ a single bank of registers that can be used for input or output
¢ registers named by numbers: two source (srcA, srcB) and one destination (dst)

Register File ALU

0:

1: srcA valA
dst 2 valE
— 3 |]

4 valB

5:

& srcB

' opCode
7 P >

17

18

Register File ALU

srcA vaIA’

0:
1:
dst 2:
- 3:
4 valB
5:
6:
- sreB - 5pCode i

valE
)

» Functional View
¢ input for one step: opCode, srcA, srcB, and dst
e a program is a sequence of these steps (and others)

dst
srcA =y R€gister File
SICB and
ALU
opCode mmm

Putting Initial Values into Registers

» Current model is too restrictive
¢ to add two numbers the numbers must be in registers

® programs must specify values explicitly
» Extend model to include immediates

* an immediate value is a constant specified by a program instruction

e extend model to allow some instructions to specify an immediate (valC)

Register File ALU
0:
1: SrcA valA

dst 2
3:

- 4 valB
5:
& srcB
' opCode

7 P >

vaIC)

valE
)

19

20

Register File ALU

0:
1 srcA valA
dst 2 valE
- & [)
4 valB
5:
& srcB
: opCode
7 P! >

vaIC)

» Functional View
e we now have an additional input, the immediate value, valC

valC

dst === Register File

SICA and
SICB ALU
opCode

Memory Access

» Memory is
¢ an array of bytes, indexed by byte address
» Memory access is
e restricted to a transfer between registers and memory
¢ the ALU is thus unchanged, it still takes operands from registers
e this is approach taken by Reduced Instruction Set Computers (RISC)
» Extending model to include RISC-like memory access
® opcode selects from set of memory-access and ALU operations

* memory address and value are in registers

—] _)i ALU s
> ¢) Memory = —

21

22

The Simple Machine CPU/core

> Memory == —

Ll

NoasrN IR

» Central Processing Unit or Core (CPU)
® a register file
¢ logic for ALU, memory access and control flow
¢ a clock to sequence instructions
e memory cache of some active parts of memory (e.g., instructions)

» Memory
e is too big to fit on the CPU chip, so its stored off chip
e much slower than registers or cache (200 x slower than registers)

CPU/core
L —_ —
: — A
> E ; Memory) —
» A Program

e sequence of instructions stored in memory

» An Instruction

WN R

¢ does one thing: math, memory-register transfer, or flow control
e specifies a value for each of the functional inputs

valC m
A Program g
: valC=?, dst=?, srcA=?, srcB=?, opCode=? —» St =
: valC=?, dst=?, srcA=?, srcB=?, opCode=? —» SICA mmm CPU

’ ’
: valC=?, dst=?, srcA=?, srcB=?, opCode=? —»
: valC=?, dst=?, srcA=?, srcB=?, opCode=? —» SICB

opCode

23

24

Instruction Set Architecture (ISA)

» The ISA is the “interface” to a processor implementation
e defines the instructions the processor implements
e defines the format of each instruction
» Instruction format
e is a set of bits (a number)
® an opcode and set of operand values
» Types of instruction
* math
* memory access
e control transfer (gotos and conditional gotos)
» Design alternatives
¢ simplify compiler design (CISC such as Intel Architecture 32)
e simplify processor implementation (RISC
» Assembly language
e symbolic representation of machine code

Example Instruction: ADD

» Description
e opCode = 61
® two source operands in registers: srcA = rA, srcB = rB
¢ put destination in register: dst = rB
» Assembly language
egeneral form: add rA, rB
ee.g.,add ro, ril
» Instruction format add rA, rB
* 16 bit number, divided into 4-bit chunks: 61sd |0110||00@1||ssss||dddd|
¢ high-order 8 bits are opCode (61)

e next 4 bits are srcA (s) add ro, rl
e next 4 bits are srcB/dst (d) |0110] 0001]0000] 0001

25

26

Simulating a Processor Implementation

el jork/Courses

/213 2000W T2/Snippets/S6-if.s
Sten

» Java simulator
¢ edit/execute assembly-language

e see register file, memory, etc.

Current nstruction
add r0, r2
L 21+ o

» You will implement _— R

e the fetch + execute logic
e for every instruction in SM213 ISA

|—>£ Febch Instruction from Mamorj}*{EXQCuEQ it HTLCR Clock)—l

»SM213 ISA

¢ developed as we progress through key language features
e patterned after MIPS ISA, one of the 2 first RISC architectures

27

