
CPSC 213: Assignment 4
Due: Tuesday, October 11, 2011 at 7am.

Late assignments are accepted until Thursday, October 13 at 7am with a 20% penalty per day (or
fraction of a day) past the due date. This rule is strictly applied and there are no exceptions.

Goal
In this assignment you extend the SM213 implementation to support static control flow,
including static procedure calls. You use this expanded machine to examine the compiler
implementation of for-loops, if-then-else statements, procedure calls and return. One goal is to
understand the role of pc-relative addressing, conditional and unconditional branch statements in
support of high-level language constructs such as loops and if, connecting your existing
understanding of these language features to what you now know about the execution of programs
in hardware. Another goal is to understand the role of the PC register in implementing jumps to
see that a jump is really just an assignment of a new value to this register. The final goal is to
contrast the use of static and dynamic jumps in implement procedure call and return and to
understand how the return instruction knows to which instruction it should jump.

Extending the ISA
You will implement these six control-flow instructions.

Instruction Assembly Format Semantics

branch br R 8-oo pc ← (R = pc + oo*2)

branch if equal beq rc, R 9coo pc ← (R = pc + oo*2) if r[c]==0

branch if greater bgt rc, R acoo pc ← (R = pc + oo*2) if r[c]>0

jump j A b--- AAAAAAAA pc ← A

get pc gpc $o, rd 6fpd r[d] ← pc + (o == p*2)

indirect jump j o(rt) ctpp pc ← r[t] + (o == pp*2)

Code Snippets Used this Week
As explained in detail below, you will use the following code snippets in this assignment. There
are C, Java and SM213 Assembly versions of each of these (except the C-loop-unrolled file, for
which there is no Java).

• S5-loop
• S5a-loop-unrolled
• S6-if
• S7-static-call[-regs]

Your Implementation
You are implementing two methods of the CPU class in the arch.sm213.machine.student package
of the SM213 Simulator.

1. fetch () loads instructions from memory into the instruction register, determines their
length and adds this number to the pc register so that it points to the next instruction, and
then loads the various pieces of the instruction into the registers insOpCode, insOp0,
insOp1, insOp2, insOpImm and insOpExt (for 6 byte instructions). The meaning of
each of these registers and a primmer on the Java syntax for accessing them was given in
class and is part of the online lecture slides and Companion notes. No changes are
required to your fetch stage.

2. execute () uses the register values stored by the fetch stage to execute the instructions,
transforming the register file (i.e,. reg) and main memory (i.e., mem) appropriately.

Using the Simulator to Test and Debug Your Code
The simulator displays the current value of the register file, main memory and the internal
registers such as the pc and instruction registers.

You will use the simulator GUI to test and debug your ISA implementation and to analyze the
code snippets. In each case you should single-step through the machine code and carefully
observe the state changes that occur in the process registers, register file and main memory.

Here are a few quick things that you will find helpful.
1. You can edit instructions and data values directly in the simulator (including adding new

lines or deleting them).
2. The simulator allows you to place “labels” on code and data lines. This label can then be

used as a substitute for the address of those lines. For example, the variable’s a and b are
at addresses 0x1000 and 0x2000 respectively, but can just be referred to using the labels a
and b. Keep in mind, however, that this is just an simulator/assembly-code trick, the
machine instructions still have the address hardcoded in them. You can see the machine
code of each instruction to the left of the instructions in the memory image portion of the
instruction pane.

3. You can change the program counter (i.e., pc) value by double-clicking on an instruction.
And so, if you want to execute a particular instruction, double click it and then press the
“Step” button. The instruction pointed to by the pc is coloured green.

4. Memory locations and registers read by the execution of an instruction are coloured blue
and those written are coloured red. With each step of the machine the colours from

previous steps fade so that you can see locations read/written by the past few instructions
while distinguishing the cycle in which they were accessed.

Requirements
Here are the requirements for this week’s assignment.

1. Implement the six control-flow instructions one at a time. Extend your test program to
include tests for each of them. Test one before starting to implement the next.

2. Compare the C versions of snippets S5 and S5a, then compare their assembly code by
running them in the simulator, S5a first. Document the changes you see in memory and
registers for the first few iterations of the loop and the last one.

3. Examine S6 and S7. Step the assembly through the simulator. Document the changes you
see in memory and registers.

4. Using S5, S6 and S7 as models, write, test and document the execution of an assembly
code program that implements the following C program.

int min=1000000;
int i;
int a[] = {2,40,6,80,10,120,14,16,18,20};

void foo () {
 for (i=0; i<10; i++)
 if (min > a[i])
 min = a[i]
}

void bar () {
 foo();
}

Material Provided
An updated version of the simulator is provided with this assignment due to a recent change in
the ISA and a couple of bug fixes. Download this new version and install updated jar into your
Eclipse (or other) project. These small changes will not impact your implementations of
MainMemory and CPU.

This assignment includes snippets 5-7 in the file code.zip.

What to Hand In
Use the handin program. The assignment directory is a4.

1. A single file called “README.txt” that includes your name, student number, four-digit
cs-department undergraduate id (e.g., the one that’s something like a0b1), and all written
material required by the assignment as listed below.

2. Your modified CPU.java

3. Your test program.
4. Your test description. Did all of the tests succeed? Does your implementation work?
5. A written description of the key things you noted about the machine execution while

running snippets (S5, S6, and S7), including observations required by Questions 2 and 3.
Keep it brief, but point out what each instruction read and wrote etc.

6. Your implementation the assembly-code program required by Question 4 along with a
description of its machine execution.

