
CPSC 322
Introduction to Artificial Intelligence

December 3, 2004

Things...

Slides for the last couple of weeks
will be up this weekend.

Did I mention that you have a
final exam at noon on Friday,
December 10, in MCML 166?

Check the announcements part of
the web page occasionally between
now and then in case anything
important comes up.

This should be fun
Artificial Intelligence and Interactive Digital Entertainment
First Annual Conference
June 1-3, 2005 in Marina Del Rey, California
www.aiide.org

Reinforcement learning
Learning operator sequences based on reward
or punishment

Let’s say you want your robot to learn how to
vacuum the living room

iRobot Roomba 4210 Discovery Floorvac Robotic Vacuum $249.99
It’s the ideal Christmas gift!

Reinforcement learning
Learning operator sequences based on reward
or punishment

Let’s say you want your robot to learn how to
vacuum the living room

goto livingroom goto trashcan
vacuum floor vacuum floor
goto trashcan goto livingroom
empty bag empty bag

 Good Robot! Bad Robot!

(actually, there are no bad robots, there is only bad
behavior...and Roomba can’t really empty its own bag)

Reinforcement learning
Should the robot learn from success? How does
it figure out which part of the sequence of
actions is right (credit assignment problem)?

goto livingroom goto trashcan
vacuum floor vacuum floor
goto trashcan goto livingroom
empty bag empty bag

 Good Robot! Bad Robot!

Reinforcement learning
Should the robot learn from failure? How does
it figure out which part of the sequence of
actions is wrong (blame assignment problem)?

goto livingroom goto trashcan
vacuum floor vacuum floor
goto trashcan goto livingroom
empty bag empty bag

 Good Robot! Bad Robot!

Reinforcement learning
However you answer those questions,
the learning task again boils down to the
search for the best representation.

Here’s another type of learning that searches
for the best representation, but the representation
is very different from what you’ve seen so far.

Learning in neural networks

The perceptron is one of the earliest neural network
models, dating to the early 1960s.

x1

x2

x3

xn

.

.

.

Σ

w1

w2

w3

wn

inputs

weights

sum threshold

Learning in neural networks

The perceptron can’t compute everything, but what it can
compute it can learn to compute.
Here’s how it works.

Inputs are 1 or 0.
Weights are reals (-n to +n).
Each input is multiplied by
 its corresponding weight.
If the sum of the products
 is greater than the
 threshold, then the
 perceptron outputs 1,
 otherwise the output
 is 0.

x1

x2

x3

xn

.

.

.

Σ

w1

w2

w3

wn

inputs

weights

sum threshold

Learning in neural networks

The perceptron can’t compute everything, but what it can
compute it can learn to compute.
Here’s how it works.

The output, 1 or 0, is a
guess or prediction about
the input: does it fall into
the desired classification
(output = 1) or not
(output = 0)?

x1

x2

x3

xn

.

.

.

Σ

w1

w2

w3

wn

inputs

weights

sum threshold

Learning in neural networks

That’s it? Big deal. No, there’s more to it....

Say you wanted your perceptron
to classify arches.
That is, you present inputs
representing an arch, and
the output should be 1.
You present inputs not
representing an arch,
and the output should
be 0. If your perceptron
does that correctly for
all inputs, it knows the
concept of arch.

x1

x2

x3

xn

.

.

.

Σ

w1

w2

w3

wn

inputs

weights

sum threshold

Learning in neural networks

But what if you present inputs for an arch, and your
perceptron outputs a 0???
What could be done to
make it more likely that
the output will be 1 the
next time the ‘tron sees
those same inputs?

You increase the
weights. Which ones?
How much?

x1

x2

x3

xn

.

.

.

Σ

w1

w2

w3

wn

inputs

weights

sum threshold

Learning in neural networks

But what if you present inputs for not an arch, and your
perceptron outputs a 1?
What could be done to
make it more likely that
the output will be 0 the
next time the ‘tron sees
those same inputs?

You decrease the
weights. Which ones?
How much?

x1

x2

x3

xn

.

.

.

Σ

w1

w2

w3

wn

inputs

weights

sum threshold

Let’s make one...
First we need to come up with a representation language.
We’ll abstract away most everything to make it simple.

Let’s make one...
First we need to come up with a representation language.
We’ll abstract away most everything to make it simple.

All training examples have three blocks.
A and B are upright blocks. A is always left of B.
C is a sideways block. Our language will assume those
things always to be true. The only things our language
will represent are the answers to these five questions...

Let’s make one...
yes = 1, no = 0

Does A support C? 1

Does B support C? 1

Does A touch C? 1

Does B touch C? 1

Does A touch B? 0

A B

C

arch

Let’s make one...
yes = 1, no = 0

Does A support C? 1

Does B support C? 1

Does A touch C? 1

Does B touch C? 1

Does A touch B? 1

A B

C

not arch

Let’s make one...
yes = 1, no = 0

Does A support C? 0

Does B support C? 0

Does A touch C? 1

Does B touch C? 1

Does A touch B? 0

A B

C

not arch

and so on.....

Our very simple arch learner

x1

x2

x3

x5

Σ

x4

Our very simple arch learner

x1

x2

x3

x5

Σ

x4

- 0.5

0

0.5

0

-0.5

0.5

Our very simple arch learner

1

1

1

0

Σ

1

- 0.5

0

0.5

0

-0.5

0.5

A B

C

arch

Our very simple arch learner

1

1

1

0

Σ

1

- 0.5

0

0.5

0

-0.5

0.5

A B

C

arch

sum = 1*-0.5 + 1*0 + 1*0.5 + 1*0 + 0*0.5

Our very simple arch learner

1

1

1

0

Σ

1

- 0.5

0

0.5

0

-0.5

0.5

A B

C

arch

sum = -0.5 + 0 + 0.5 + 0 + 0 = 0 which is not > threshold so output is 0

0

Our very simple arch learner

1

1

1

0

Σ

1

- 0.5

0

0.5

0

-0.5

0.5

A B

C

arch

sum = -0.5 + 0 + 0.5 + 0 + 0 = 0 which is not > threshold so output is 0
‘tron said no when it should say yes so increase weights where input = 1

0

Our very simple arch learner

1

1

1

0

Σ

1

- 0.4

0.1

0.6

0.1

-0.5

0.5

A B

C

arch

sum = -0.5 + 0 + 0.5 + 0 + 0 = 0 which is not > threshold so output is 0
so we increase the weights where the input is 1

0

Our very simple arch learner

1

1

1

1

Σ

1

- 0.4

0.1

0.6

0.1

-0.5

0.5

A B

C

not arch

now we look at the next example

Our very simple arch learner

1

1

1

1

Σ

1

- 0.4

0.1

0.6

0.1

-0.5

0.5

A B

C

not arch

sum = -0.4 + 0.1 + 0.6 + 0.1 - 0.5 = -0.1 which is not > 0.5 so output is 0

0

Our very simple arch learner

1

1

1

1

Σ

1

- 0.4

0.1

0.6

0.1

-0.5

0.5

A B

C

not arch

sum = -0.4 + 0.1 + 0.6 + 0.1 - 0.5 = -0.1 which is not > 0.5 so output is 0
that’s the right output for this input, so we don’t touch the weights

0

Our very simple arch learner

0

0

1

0

Σ

1

- 0.4

0.1

0.6

0.1

-0.5

0.5

A B
C

not arch

now we look at the next example

Our very simple arch learner

0

0

1

0

Σ

1

- 0.4

0.1

0.6

0.1

-0.5

0.5

A B
C

not arch

sum = 0 + 0 + 0.6 + 0.1 + 0 = 0.7 which is > 0.5 so output = 1

1

Our very simple arch learner

0

0

1

0

Σ

1

- 0.4

0.1

0.6

0.1

-0.5

0.5

A B
C

not arch

the ‘tron said yes when it should have said no, so we decrease
the weights where the inputs = 1

1

Our very simple arch learner

0

0

1

0

Σ

1

- 0.4

0.1

0.5

0

-0.5

0.5

A B
C

not arch

the ‘tron said yes when it should have said no, so we decrease
the weights where the inputs = 1

1

We could do this for days...
...but let’s have the computer do it all for us.

First, take a look at the training examples we’ve
constructed...

Training Set
 a b a b a
in class? supports supports touches touches touches
 c c c c b

 yes 1 1 1 1 0

 no 1 1 1 1 1

 no 0 0 0 0 0

 no 0 0 1 1 0

 no 1 0 1 0 1

Training Set
 a b a b a
in class? supports supports touches touches touches
 c c c c b

 no 1 0 1 0 0

 no 0 1 0 1 1

 no 0 1 0 1 0

 no 0 0 1 0 0

 no 0 0 0 1 0

Now let’s look at the program

“By the almighty powers of
Scheme, I command thee to
learn the concept of an arch!”

What’s going on?

The perceptron goes through the training set,
making a guess for each example and comparing
it to the actual answer.

Based on that comparison, the perceptron adjusts
weights up, down, or not at all.

For some concepts, the process converges on
a set of weights such that the perceptron guesses
correctly for every example in the training set --
that’s when the weights stop changing.

What’s going on?

Another way of looking at it:
Each of the possible inputs (25 in our case)
maps onto a 1 or a 0. The perceptron
is trying to find a set of weights such that it
can draw a line through the set of all inputs
and say “these inputs belong on one side of
the line (output = 1) and those belong on
the other side (output = 0)”.

What’s going on?
one set of weights

What’s going on?
another set of weights

What’s going on?
still another set of weights

What’s going on?
still another set of weights

The perceptron looks for linear separability.
That is, in the n-space defined by the inputs, it’s
looking for a line or plane that divides the inputs.

Observations

This perceptron can learn concepts involving “and”
and “or”

This perceptron can’t learn “exclusive or” (try ex3
in the Scheme code). Not linearly separble...
it won’t converge

Even a network of perceptrons arranged in a single
layer can’t compute XOR (as well as other things)

Observations

The representation for the learned concept
(e.g., the arch concept) is just five numbers.
What does that say about the physical symbol
system hypothesis?

However, if you know which questions or relations
each individual weight is associated with, you
still have a sense of what the numbers/weights
mean.

Observations

This is another example of intelligence as search
for the best representation.

The final set of weights that was the solution to
the arch-learning problem is not the only solution.
In fact, there are infinitely many solutions,
corresponding to the infinitely many ways to draw
the line or plane.

Beyond perceptrons

Perceptrons were popular in the 1960s, and some
folks thought they were the key to intelligent
machines.

But you needed multiple-layer perceptron networks
to compute some things, and to make those work
you had to build them by hand. Multiple-layer
perceptron nets don’t necessarily converge, and
when they don’t converge, they don’t learn.
Building big nets by hand was too time consuming,
so interest in perceptrons died off in the 1970s.

The return of the perceptron

In the 1980s, people figured out that with some
changes, multiple layers of perceptron-like units
could compute anything.

First, you get rid of the threshold -- replace the
step function that generated output with a
continuous function.

Then you put hidden layers between the inputs
and the output(s).

The return of the perceptron

input layer

hidden layer

output layer

The return of the perceptron

Then for each input example you let the activation
feed forward to the outputs, compare outputs
to desired outputs, and then backpropagate the
information about the differences to inform
decisions about how to adjust the weights in the
multiple layers of network. Changes to weights
give rise to immediate changes in output, because
there’s no threshold.

The return of the perceptron

This generation of networks is called neural
networks, or backpropagation nets, or
connectionist networks (don’t use perceptron now)

They’re capable of computing anything computable
They learn well
They degrade gracefully
They handle noisy input well
They’re really good at modelling low-level
 perceptual processing and simple learning

but...

The return of the perceptron

This generation of networks is called neural
networks, or backpropagation nets, or
connectionist networks (don’t use perceptron now)

They can’t explain their reasoning
Neither can we, easily...what the pattern of
 weights in the hidden layers correspond to is
 opaque
Not a lot of success yet in modelling higher levels
 of cognitive behavior (planning, story
 understanding, etc.)

The return of the perceptron

But this discussion of perceptrons should put
you in a position to read Chapter 11.2 and
see how those backprop networks came about.

Which leads us to the end of this term...

Things...

Good bye!

Thanks for being nice to the new guy.

We’ll see you at noon on Friday,
December 10, in MCML 166 for the
final exam

Have a great holiday break, and
come visit next term.

