
CPSC 322
Introduction to Artificial Intelligence

November 17, 2004

Things...

Term project is due in less than two
weeks from today

The final exam will be at noon on
Friday, December 10, in MCML 166

Move generation for the peg puzzle
A simple observation: if we represent the state of a peg
puzzle like this:

[b,-,b,-,r,r]

then generating a new state that results from moving a
blue peg one space to the right is nothing more than
replacing a subsequence like this [b,-] with a
subsequence like this [-,b]. So by scooting along
the list above and collecting a new state every time
we find a [b,-] and replace it with [-,b], we get this
collection of new states:

[[-,b,b,-,r,r],[b,-,-,b,r,r]]

Move generation for the peg puzzle
Similarly, a blue peg jumping over a red peg to the
right is just this replacement:

[b,r,-] is replaced by [-,r,b]

Likewise, a red peg moving one space to the left
and a red peg jumping over a blue peg to the left
are these replacements, respectively:

[-,r] is replaced by [r,-]
[-,b,r] is replaced by [r,b,-]

Move generation for the peg puzzle
So if we can construct a procedure to scoot along a list
from left to right and replace one occurrence of a
given subsequence with another desired subsequence,
AND if we can collect all the different lists that result
from making those replacements...

...then we have the basis for a move generator for
our beloved peg puzzle.

Move generation for the peg puzzle
/* pegpuzzle2.ci */

gen_all_moves(X,Movelist) <- gen_all_blue_moves(X,Bluemoves) &
 gen_all_red_moves(X,Redmoves) &
 append(Bluemoves,Redmoves,Movelist).

gen_all_blue_moves(X,Bluemoves) <- gen_all_blue_slides(X,Blueslides) &
 gen_all_blue_jumps(X,Bluejumps) &
 append(Blueslides,Bluejumps,Bluemoves).

gen_all_red_moves(X,Redmoves) <- gen_all_red_slides(X,Redslides) &
 gen_all_red_jumps(X,Redjumps) &
 append(Redslides,Redjumps,Redmoves).

gen_all_blue_slides(Board,Newboards) <-
 all_replacements(Board,[b,-],[-,b],Newboards).

gen_all_blue_jumps(Board,Newboards) <-
 all_replacements(Board,[b,r,-],[-,r,b],Newboards).

gen_all_red_slides(Board,Newboards) <-
 all_replacements(Board,[-,r],[r,-],Newboards).

gen_all_red_jumps(Board,Newboards) <-
 all_replacements(Board,[-,b,r],[r,b,-],Newboards).

Move generation for the peg puzzle
all_replacements(Board,Oldseq,Newseq,[Newhead|Newrest]) <-
 replace_subseq(Board,Oldseq,Newseq,Newhead) &
 all_replacements(Board,Oldseq,Newseq,Newrest) &
 no_duplicates([Newhead|Newrest]).

all_replacements(Board,Oldseq,Newseq,[]).

replace_subseq(Oldseq,Oldsubseq,Newsubseq,Newseq) <- append(L1,L2,Oldseq) &
 append(Oldsubseq,L3,L2) &
 append(Newsubseq,L3,L4) &
 append(L1,L4,Newseq).

Move generation for the peg puzzle
append([],Z,Z).
append([A|X],Y,[A|Z]) <- append(X,Y,Z).

no_duplicates([]).
no_duplicates([H|T]) <- notmember(H,T) &
 no_duplicates(T).

notmember(X,Y) <- ~member(X,Y).

member(H,[H|T]).
member(X,[H|T]) <- member(X,T).

/*
notmember(X,[]).
notmember(X,[H|T]) <- X\=H & notmember(X,T).
*/

Move generation in Prolog
/* pegpuzzle.pl */

gen_all_moves(X,Movelist) :- gen_all_blue_moves(X,Bluemoves) ,
 gen_all_red_moves(X,Redmoves) ,
 append(Bluemoves,Redmoves,Movelist).

gen_all_blue_moves(X,Bluemoves) :- gen_all_blue_slides(X,Blueslides) ,
 gen_all_blue_jumps(X,Bluejumps) ,
 append(Blueslides,Bluejumps,Bluemoves).

gen_all_red_moves(X,Redmoves) :- gen_all_red_slides(X,Redslides) ,
 gen_all_red_jumps(X,Redjumps) ,
 append(Redslides,Redjumps,Redmoves).

gen_all_blue_slides(Board,Newboards) :-
 all_replacements(Board,[b,-],[-,b],Newboards).

gen_all_blue_jumps(Board,Newboards) :-
 all_replacements(Board,[b,r,-],[-,r,b],Newboards).

gen_all_red_slides(Board,Newboards) :-
 all_replacements(Board,[-,r],[r,-],Newboards).

gen_all_red_jumps(Board,Newboards) :-
 all_replacements(Board,[-,b,r],[r,b,-],Newboards).

Move generation in Prolog
all_replacements(Board,Oldseq,Newseq,Y) :-
 bagof(X,replace_subseq(Board,Oldseq,Newseq,X),Y).

all_replacements(Board,Oldseq,Newseq,[]).

replace_subseq(Oldseq,Oldsubseq,Newsubseq,Newseq) :- append(L1,L2,Oldseq) ,
 append(Oldsubseq,L3,L2) ,
 append(Newsubseq,L3,L4) ,
 append(L1,L4,Newseq).

append([],Z,Z).
append([A|X],Y,[A|Z]) :- append(X,Y,Z).

Rule-based systems and search

Rule-based systems and search

database0

database1 database2 database3

database4 database5 database6 database7 database9 database10 database11 database12 database13

 R1 R2 R3

 R1 R2 R3 R1 R2 R3 R1 R2 R3

Rule-based systems and search

database0

database1 database2 database3

database4 database5 database6 database7 database9 database10 database11 database12 database13

 R1 R2 R3

 R1 R2 R3 R1 R2 R3 R1 R2 R3

Rule-based systems and search

database0

database3

database11 database12 database13

 R3

 R1 R2 R3

Rule-based systems and search

database0

database3

database11

 R3

 R1

Rule-based systems and search

database0

database3

database11

 R3

 R1

and so on...

Chapter 6

Chapter 6 in your textbook starts out by talking
about expert systems, but it quickly turns into a
discussion of how to build the CILOG meta-
interpreter

Rule-based systems are similar in some ways to
deductive reasoning systems, but rule-based
systems aren’t restricted to logical inference

Still, we could write simple rule-based systems in
CILOG if CILOG could write to a data base, but
no...

...so we’ll wave goodbye to expert systems and
move ahead to Chapter 8, which is about...

Actions and Planning

There are a number of situations where you’d like
your man-made artifacts to have some ability to
make a plan and then act according to the plan

Actions and Planning

Planners that can do stuff like this....

Actions and Planning

Actions and Planning

...have their beginnings in stuff like this...

Actions and Planning

...have their beginnings in stuff like this...

Actions and Planning

So we’ll start at the beginning, and try to figure out
how to get a computer to generate a plan to get
from here....

BA

Actions and Planning

...to here...

A

B

Actions and Planning

...and finally to here

A

B

Actions and Planning

Start reading chapter 8

A

B

