
CPSC 322
Introduction to Artificial Intelligence

November 15, 2004

Things...

Term project is due two weeks from
today

The final exam will be at noon on
Friday, December 10, in MCML 166

Tests and actions
Not limited to troubleshooting -- you could write a
“program” of tests and actions to play tic-tac-toe:
 (this is the improved version)
if you occupy two squares in the same row/column/diagonal and
 the third square in that row/column/diagonal is empty
then put your token in that third square

if opp’t occupies two squares in the same row/column/diagonal and
 the third square in that row/column/diagonal is empty
then put your token in that third square

if the center square is empty
then put your token in the center square

if a corner square is empty
then put your token in that corner square

if any square is empty
then put your token in that empty square

Tests and actions
Test-action pairs go by many other names:

 • if-then rules
 • left-hand-sides and right-hand-sides
 • antecedent-consequent pairs

Systems that employ test-action pairs are called:

 • rule-based systems
 • production systems (rules are called productions)
 • expert systems (when they’re really smart)

Rule-based systems
Typically have three parts:

the rule base

 • knowledge encoded as if-then rules
 • rules are modular and independent
 • each rule has as many tests and actions as necessary
 • rules are written in a high-level “rule language” to be
 interpreted by a “rule interpreter”

Rule-based systems
Typically have three parts:

the working memory or data base

 • knowledge of the current state of the world
 facts
 goals
 partial solutions
 • this knowledge is changed by application of rules from
 the rule base

Rule-based systems
Typically have three parts:

the rule interpreter or inference engine

 • defines a language for writing rules
 • applies rules to working memory so as to change
 or update working memory in the following way....

Rule-based systems
Typically have three parts:

rule base
(procedural or

“how-to” knowledge)

inference engine
(the rule interpreter)

data base
(declarative knowledge -

the current state)

Rule-based systems
The inference engine algorithm is simple:

until (no tests are true) or
 (some goal has been reached)

 repeat
 1. go through the rule base and collect all rules
 whose tests (left-hand sides) are true (these
 rules are said to be “triggered”)
 2. select one rule to execute
 3. perform the actions (right-hand side) of the
 selected rule (this rule is said to have
 “fired”)
 end repeat

Rule-based systems
What if more than one rule is triggered?

until (no tests are true) or
 (some goal has been reached)

 repeat
 1. go through the rule base and collect all rules
 whose tests (left-hand sides) are true (these
 rules are said to be “triggered”)
 2. select one rule to execute
 3. perform the actions (right-hand side) of the
 selected rule (this rule is said to have
 “fired”)
 end repeat

Rule-based systems
Apply conflict resolution strategy. For example:

 • rule ordering - fire the first rule found
 • priority - assign priorities to rules in advance
 • specificity - fire the rule that has the most tests
 • recency - fire the rule that was fired most recently
 • frequency - fire the most often used rule
 • random - just pick one
 • parallel - why settle for one rule? fire them all!

Rule-based systems
Representing knowledge as rules has advantages...

modularity:

Changing one rule may affect overall performance but will
not affect the operation of other rules directly. Rules never
call other rules; they’re independent. So changes to one
rule don’t require rewriting of other rules.

Rule-based systems
Representing knowledge as rules has advantages...

incremental:

Since rules are independent pieces of knowledge, a rule
base can grow incrementally. This enables a system to
change and enhance its own expertise by adding, modifying,
or deleting rules...such systems exhibit a form of learning.

Rule-based systems
Representing knowledge as rules has advantages...

uniformity:

The rule interpreter or inference engine enforces a uniform
representation of knowledge in a particular rule language.

Rule-based systems
Representing knowledge as rules has advantages...

naturalness:

“What to do when...” kinds of knowledge are easily encoded
as rules, and the rules are (usually) easily understood by
people.

Rule-based systems
Representing knowledge as rules has advantages...

psychologically plausible*:

Some people think that rule-based systems are good
models of human problem-solving ability. Analogies are
drawn between the rule base and human long-term memory,
as well as between the data base (working memory) and
human short-term memory.

*The words “psychologically plausible” are often used by people to make their
systems sound more “valid” than they are. Sometimes “psychologically
plausible” means no more than “We’re not aware of anything that says this
model isn’t psychologically plausible, but we haven’t looked very hard.”

Rule-based systems
Representing knowledge as rules has advantages...

spontaneity:

Production systems allow unplanned but useful
interactions which are not possible with control
structures in which all procedure interactions are
determined beforehand. A piece of knowledge can
be applied whenever appropriate, not just whenever
a programmer predicts it can be appropriate.

from Patrick Winston’s “Artificial Intelligence”

Rule-based systems
...but there are some difficulties too...

inefficient -- especially in evaluating tests in left-hand sides
of rules; finding the right rules in a rule base is not unlike
CILOG or Prolog finding the right rules

opaque -- it’s hard to see what the flow of control is (again
like logic programming)

adequacy -- can all knowledge be represented as if-then
rules?

availability -- how can we get the knowledge that we intend
to encode as if-then rules?

Expert systems
As noted in the movie, some people saw rule-based
systems as a means of creating powerful but
narrowly-scoped AI tools.

The rules in these systems contain lots of highly-
specialized domain-specific knowledge for some
real but very narrow domain. Expert systems
exhibit performance near that of a human expert.

AI’s big commercial success, but now treated by
many AI people as an unwanted guest.

Expert systems
Just some of many successful applications so far:

• finding organic molecular structure from mass
 spectrogram (Dendral)
• locating oil and mineral deposits (Prospector)
• medical diagnosis (Mycin, Internist,...)
• computer system component selection (Xcon)
• automobile diagnosis and repair (SBDS)
• training aircraft maintenance personnel
 (F-16 Maintenance Skills Tutor)

Expert systems
In the big AI boom of the 1980s, “knowledge
engineering” firms would build expert system
applications for you, for a price.

• provide the expert system shell (a rule interpreter
 and a language for writing the rules)
• provide expertise in extracting knowledge from
 selected human experts
• encode the human knowledge as rules

Now, most firms just sell you the shell and you do
the rest (that is, you do the hard part)

Finding organic molecular structure
Given a mass spectrogram of an organic compound,
you can infer a chemical composition. The hard part
is figuring out the molecular structure.

Dendral used several rule-based systems to find
the molecular structure.

Finding organic molecular structure
1) use mass spectrogram data to create lists of
 required and forbidden substructures

2) use chemical composition formulae to generate
 all possible structures, then prune using info
 from step 1

3) generate predicted mass spectrogram data for
 each remaining proposed structure from step 2

4) find best (possibly partial) match between
 predicted spectrograms and actual input data

Finding organic molecular structure
Dendral used “forward chaining”, reasoning from
input data (start state) to find structures (goal states)

mass spec data
chemical formulae

possible structures

forward chaining

Finding organic molecular structure
Dendral could have used “backward chaining” from
all possible structures, but that’s not very efficient

mass spec data
chemical formulae

possible structures

backward chaining

Diagnosing infectious bacterial disease
Mycin was the first successful medical expert
system. It had about 300 rules covering about
100 different infectious bacterial diseases.

Mycin built a “start state” by beginning with lots of
questions...

Diagnosing infectious bacterial disease
- What is the patient’s name?
 John Doe.
- Male or female?
 Male.
- Age?
 55.
- Have you obtained positive cultures indicating general type?
 Yes.
- What type of infection is it?
 Primary bacteremia.
- When did symptoms first appear?
 May 5.
- Let’s call the most recent positive culture C1. From what site was C1
 taken?
 From the blood.
- When?
 May 9.
- Let’s call the first significant organism from this culture U1. Do you
 know the identity of U1?
- No.
 Is U1 a rod or a coccus or something else?
- Rod.

 ...and so on...

Diagnosing infectious bacterial disease

Mycin then used “backward chaining”, working
backward from the different diseases, trying to...

...confirm a disease from known data or by asking
more questions to obtain more data.

symptoms
test results
vital statistics
medical history

~100 possible diseases

backward chaining

Diagnosing infectious bacterial disease
Mycin could have used forward chaining, but...

• the same symptoms can be caused by lots of
 different bacteria, so forward chaining would
 “hop around” in its question-asking...it wouldn’t
 appear to be focused, and doctors would become
 confused and untrusting.

• because backward chaining in this case allows
 more focused questions, the natural language
 component is easier to implement

Diagnosing infectious bacterial disease
Mycin could explain its rules and conclusions in
English -- important for trust in expert domains

sample rule:

if the stain of the organism is gram-positive
 and the morphology of the organism is coccus
 and the growth conformation of the organism is clumps
then (0.7) the identity of the organism is staphylococcus

Diagnosing infectious bacterial disease
Mycin could explain its rules and conclusions in
English -- important for trust in expert domains

sample conclusion:

My recommendation will be based on the opinion that the
identity of U1 may be
1. Pseudomonas-aeruginosa
2. Klebsiella-pneumoniae
3. E. coli
4. Bacteroides-fragilis
5. Enterobacter
6. Proteus-nonmirabilis

...to cover for items 1, 2, 3, 5, and 6, give gentomycin
using a dose of 119 mg (1.7 mg/kg) q8h IV (or IM) for 10
days. Modify dose in case of renal failure. Also, to
cover for item 4, give clindamycin using a dose of...

Expert systems can be deceptively smart

They can solve complex problems

They can explain, to some degree, how they arrived at
a conclusion or why they asked a question

But despite all the expert knowledge they contain, they
don’t really understand their domain all that well...

A real expert has a causal model of their domain -- Mycin
 can’t explain how bacteria disrupt the normal function of
 a living organism

A real expert can look at a problem in different ways -- an
 expert system has no analogical reasoning

Other expert system issues

Domain-specific knowledge doesn’t transfer to other
domains

Expert systems lack good old common sense

They can’t reason easily about their own operation (they
lack meta-knowledge)

The interface between human expert and program is a
bottleneck -- how do you know what to ask the expert if
you don’t already have lots of expertise already?

Social issues

Ease of use

Trust

Who gets blamed if system gives wrong answer?

Why would experts want to reveal their expertise?

