
CPSC 322
Introduction to Artificial Intelligence

November 10, 2004

Things...

Midterm 2 marks this week

The final exam will be at noon on
Friday, December 10, in MCML 166

One more thing your book wants
you to know...
AI is a software engineering enterprise...there are lots of
questions that you need answers to before you start hacking

Many of these questions have to do with how to represent the knowledge
in your system

Some representations are qualitatively better than others depending on
the problem you’re trying to solve

Semantic (relational) networks and slot-filler representations
are useful and flexible approaches to knowledge representation

You should read chapter 5, where you’ll find different questions to be
answered, including...

What kind of solution is acceptable?
optimal solution - the “best” best solution by some measure
 of quality - can you afford the cost of computing the
 optimal solution?

satisficing solution - a solution that’s “good enough” but not
 necessarily optimal

approximately optimal solution - close to the best, but not
 the best - the cost of finding the approximately optimal
 solution is often much less than the cost of finding the
 optimal solution

probable solution - would it be ok if the computer gets it right
 some percentage of the time, but not always? (robot
 vacuum cleaner vs. robot aircraft pilot)

More movie
Today we finished watching the last ten minutes
of the documentary on artificial intelligence.

Observations about the movie
There are more than 10 million neurons in your
brain...more like 100 to 150 billion neurons

The CYC project is still progressing

Semantic or relational networks usually aren’t just
nice clean hierarchies

Observations about the movie

Observations about the movie

Observations about the movie

Observations about the movie
Systems like Eliza actually have some utility

Philosophers have a vested interest in promoting
the “specialness” of being human

AI people have historically been overly optimistic

What we’ve seen so far...
Search-based intelligence can:

 • prove theorems
 • solve puzzles
 • play games
 • parse sentences into syntactic components

What we’ve seen so far...
This approach can be summarized like this:

 All the “intelligence” is placed in a single complex
 function which is then used to evaluate the
 “goodness” of some state of a problem being
 solved

 The function is based on converting attributes
 of the problem in to numerical values, performing
 computations on those values, and returning
 some number corresponding to goodness

...isn’t necessarily good enough
Consider Deep Blue

It plays better chess than the best human ever, but

 • its knowledge doesn’t resemble what we think
 we know about chess (you won’t find a lot of
 number crunching in a book about chess)
 • it’s not obvious what needs to be fixed if Deep
 Blue isn’t working right
 • its knowledge doesn’t help us see what to add
 if there’s a need for improvement

...isn’t necessarily good enough
Consider Deep Blue

It plays better chess than the best human ever, but

 • in short, its heuristic knowledge is obscured,
 cryptic, not easily accessible

Another approach
Historically, people have made “how to” knowledge
available to others as a (possibly large) set of
tests and associated actions.

For example, look at the owner’s manual that
comes with just about anything you buy, and
you’ll find a troubleshooting guide - a “how to
make it work” guide with tests and actions...

Troubleshooting

cable tv box

Troubleshooting

television

Troubleshooting

G4 PowerBook

Troubleshooting

people

there are manuals for
us too - this is from the
DSM-IV: The Diagnostic
and Statistical Manual of
Mental Disorders

Tests and actions
Not limited to troubleshooting -- you could write a
“program” of tests and actions to play tic-tac-toe:

if you occupy two squares in the same row or column and
 the third square in that row or column is empty
then put your token in that third square

if opponent occupies two squares in the same row or column and
 the third square in that row or column is empty
then put your token in that third square

if the center square is empty
then put your token in the center square

if a corner square is empty
then put your token in that corner square

if any square is empty
then put your token in that empty square

Tests and actions
You could create a language understanding system
with test and actions for each word in the language

had:

if the word precedes me is a noun and it’s of type animal and
 the word that follows me is a noun and it’s of type edible
then my meaning is ate or ingested

 :
 :
 and so on

Tests and actions
Test-action pairs go by many other names:

 • if-then rules
 • left-hand-sides and right-hand-sides
 • antecedent-consequent pairs

Systems that employ test-action pairs are called:

 • rule-based systems
 • production systems (rules are called productions)
 • expert systems (when they’re really smart)

Rule-based systems
Typically have three parts:

the rule base

 • knowledge encoded as if-then rules
 • rules are modular and independent
 • each rule has as many tests and actions as necessary
 • rules are written in a high-level “rule language” to be
 interpreted by a “rule interpreter”

Rule-based systems
Typically have three parts:

the working memory or data base

 • knowledge of the current state of the world
 facts
 goals
 partial solutions
 • this knowledge is changed by application of rules from
 the rule base

Rule-based systems
Typically have three parts:

the rule interpreter or inference engine

 • defines a language for writing rules
 • applies rules to working memory so as to change
 or update working memory in the following way....

Rule-based systems
The inference engine algorithm is simple:

until (no tests are true) or
 (some goal has been reached)

 repeat
 1. go through the rule base and collect all rules
 whose tests (left-hand sides) are true (these
 rules are said to be “triggered”)
 2. select one rule to execute
 3. perform the actions (right-hand side) of the
 selected rule (this rule is said to have
 “fired”)
 end repeat

Rule-based systems
What if more than one rule is triggered?

until (no tests are true) or
 (some goal has been reached)

 repeat
 1. go through the rule base and collect all rules
 whose tests (left-hand sides) are true (these
 rules are said to be “triggered”)
 2. select one rule to execute
 3. perform the actions (right-hand side) of the
 selected rule (this rule is said to have
 “fired”)
 end repeat

