
CPSC 322
Introduction to Artificial Intelligence

October 29, 2004

Things...

Send me pairings for term project
no later than Sunday, Oct. 31

Midterm exam 2 is Monday

Bring me your first midterms before
the second midterm if you want to be
retested on problem 3

Midterm 2

Some people have suggested that
midterm 1 wasn’t difficult enough

Midterm 2

Be careful what you wish for...
you might get it

Midterm 2 All about search
 (for example)

Intelligence = search?
Blind search vs. heuristic search
Different types of each
 Algorithms
 Behaviour
 Time/space requirements
What happens when we tweak
 algorithms in new ways?
Apply search strategies to problems
 you haven’t seen before
Collecting paths
Generating states
Explain when one type of search is
 better than another
Game search
Read/write search-related CILOG code

Search is seductive
Search is an important part of AI, but don’t be seduced
into believing it’s everything...intelligence requires
knowledge

Without knowledge, search is pointless, so the real
issue here is figuring out what knowledge goes into the
AI system and how it’s represented

If the knowledge isn’t right, any search strategy will fail
to find useful answers, no matter how fast the processors
are or how many of them are being used

Tuning search heuristics won’t help either

Knowledge poses problems
It’s indispensable, but...

it’s voluminous

it’s hard to characterize accurately

it’s constantly changing

it’s organized in different ways depending on
how it’s used

Those challenges make it really hard to do AI...
how can we be sure we’re doing it right?

How to do the knowledge thing right
AI approaches to problems are best when they exploit
knowledge that’s represented in such a way that...

 • the knowledge captures generalizations

 • the knowledge can be understood by people who
 must provide it, work with it, update it

 • the knowledge can be modified easily for error correction
 or changes in the world

 • the knowledge can be used in many situations even if
 it’s not totally accurate or complete

 • the knowledge itself can be used to help constrain the search
 for the knowledge most appropriate to the task at hand

Representing Knowledge
Here are some general software engineering questions
you may want to ask before building AI systems:

• What exactly is the activity that you want from this system you’re
 going to create to solve some complex problem?
• What does your system need to know in order to perform that
 activity?
• How are you going to encode or represent that knowledge inside
 your system? (e.g., What will the language of the symbols be?
 What will the symbols map to?)
• How will your system know which piece(s) of knowledge to use at
 a given time, and how will it get at that knowledge without looking
 at all the knowledge?
• Once the system finds the appropriate knowledge, how will it use
 the knowledge?

Representing Knowledge
Here are some general software engineering questions
you may want to ask before building AI systems:

• What exactly is the activity that you want from this system you’re
 going to create to solve some complex problem?
• What does your system need to know in order to perform that
 activity?
• How are you going to encode or represent that knowledge inside
 your system? (e.g., What will the language of the symbols be?
 What will the symbols map to?)
• How will your system know which piece(s) of knowledge to use at
 a given time, and how will it get at that knowledge without looking
 at all the knowledge?
• Once the system finds the appropriate knowledge, how will it use
 the knowledge?

Defining the task: what the system does

Representing Knowledge
Here are some general software engineering questions
you may want to ask before building AI systems:

• What exactly is the activity that you want from this system you’re
 going to create to solve some complex problem?
• What does your system need to know in order to perform that
 activity?
• How are you going to encode or represent that knowledge inside
 your system? (e.g., What will the language of the symbols be?
 What will the symbols map to?)
• How will your system know which piece(s) of knowledge to use at
 a given time, and how will it get at that knowledge without looking
 at all the knowledge?
• Once the system finds the appropriate knowledge, how will it use
 the knowledge?

Defining the knowledge representation: what the system needs to know

Representing Knowledge
Here are some general software engineering questions
you may want to ask before building AI systems:

• What exactly is the activity that you want from this system you’re
 going to create to solve some complex problem?
• What does your system need to know in order to perform that
 activity?
• How are you going to encode or represent that knowledge inside
 your system? (e.g., What will the language of the symbols be?
 What will the symbols map to?)
• How will your system know which piece(s) of knowledge to use at
 a given time, and how will it get at that knowledge without looking
 at all the knowledge?
• Once the system finds the appropriate knowledge, how will it use
 the knowledge?

Defining the process: how the system performs the task

Representing Knowledge
Here are some general software engineering questions
you may want to ask before building AI systems:

• What exactly is the activity that you want from this system you’re
 going to create to solve some complex problem?
• What does your system need to know in order to perform that
 activity?
• How are you going to encode or represent that knowledge inside
 your system? (e.g., What will the language of the symbols be?
 What will the symbols map to?)
• How will your system know which piece(s) of knowledge to use at
 a given time, and how will it get at that knowledge without looking
 at all the knowledge?
• Once the system finds the appropriate knowledge, how will it use
 the knowledge?

Most of the questions have something to do with knowledge

As an example...
Let’s say you’re asked to build a system to understand
simple stories

 John and Mary went to McDonald’s.
 John ordered a Big Mac and fries.
 Mary had a Quarter Pounder.
 John put the trash in the wastebasket.
 They went home.

• What exactly is the activity that you want from this system you’re
 going to create to solve some complex problem?

As an example...
Let’s say you’re asked to build a system to understand
simple stories

 John and Mary went to McDonald’s.
 John ordered a Big Mac and fries.
 Mary had a Quarter Pounder.
 John put the trash in the wastebasket.
 They went home.

• What does your system need to know in order to perform that
 activity?

As an example...
Let’s say you’re asked to build a system to understand
simple stories

 John and Mary went to McDonald’s.
 John ordered a Big Mac and fries.
 Mary had a Quarter Pounder.
 John put the trash in the wastebasket.
 They went home.

• How are you going to encode or represent that knowledge inside
 your system? (e.g., What will the language of the symbols be?
 What will the symbols map to?)

As an example...
Let’s say you’re asked to build a system to understand
simple stories

 John and Mary went to McDonald’s.
 John ordered a Big Mac and fries.
 Mary had a Quarter Pounder.
 John put the trash in the wastebasket.
 They went home.

• How will your system know which piece(s) of knowledge to use at
 a given time, and how will it get at that knowledge without looking
 at all the knowledge?

As an example...
Let’s say you’re asked to build a system to understand
simple stories

 John and Mary went to McDonald’s.
 John ordered a Big Mac and fries.
 Mary had a Quarter Pounder.
 John put the trash in the wastebasket.
 They went home.

• Once the system finds the appropriate knowledge, how will it use
 the knowledge?

