CPSC 322

Introduction to Artificial Intelligence

October 27, 2004




Assignment 3 is due Friday morning

Send me pairings for term project
no later than Sunday, Oct. 31

Midterm exam 2 is Monday

Bring me your first midterms before
the second midterm if you want to be
retested on problem 3

Jessica Hodgins talk, Thursday,
October 28, 1-2pm, MacLeod 214




Back to heuristic search techniques




Heuristic depth-first search algorithm

Given a set of start nodes, a set of goal nodes,
and a graph (i.e., the nodes and arcs):

apply heuristic h(n) to start nodes
make a “list” of the start nodes - let’s call it the “frontier”
sort the frontier by h(n) values

repeat
if no nodes on the frontier then terminate with failure
choose one node from the front of the frontier and remove it
if the chosen node matches the goal node
then terminate with success
else get next nodes (neighbors) and h(n) values
and sort those nodes by h(n) values
and put those sorted nodes on the front of the frontier

end repeat




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place

8 3 _ 813 283 283
2145 2 43 7_4 714
765 765 615 65 _




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place

283 283 123 123
3 7 _45 7147 8 _4 784
6 15 6 5 _ 765 _ 65




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place




Heuristic depth-first search - tiles out of place

AN N

2 8 3 123 123

5 7147 8 _40 7843
6 5 _ 765




Heuristic depth-first search - tiles out of place




Why heuristic depth-first search?




Comparing search strategies

strategy selection halts?

depth-first last node added

breadth-first first node added

lowest-cost minimal g(n)
first

best-first globally minimal

h(n)

heuristic locally minimal

depth-first h(n)

1. assuming all arcs have the same cost

space

linear
exponential
exponential

exponential

linear

optimal
path

no
yes!
yes

no

no




What's missing?

A heuristic search strategy that is guaranteed to
find the optimal (lowest-cost) path from start node
to goal node

What do the strategies that find optimal paths
have in common?




Comparing search strategies

strategy selection halts?

depth-first last node added

breadth-first first node added

lowest-cost minimal g(n)
first

best-first globally minimal

h(n)

heuristic locally minimal

depth-first h(n)

1. assuming all arcs have the same cost

space

linear
exponential
exponential

exponential

linear

optimal
path

no
yes!?
yes

no

no




Would this work?

The search strategies that find optimal paths all take
g(n) -- the cost of the path from start node to frontier node --
iInto consideration...

...and best-first search seems like a reasonably sane
heuristic search (although it's exponential)...

...what would happen if we rewrite best-first search to
include g(n) as well as h(n)?

Oh, by the way, we give the name f(n) to the sum of
g(n) and h(n), as in f(n) = g(n) + h(n)




Refresher:
Heuristic best-first search algorithm

Given a set of start nodes, a set of goal nodes,
and a graph (i.e., the nodes and arcs):

apply heuristic h(n) to start nodes
make a “list” of the start nodes - let’s call it the “frontier”
sort the frontier by h(n) values

repeat
if no nodes on the frontier then terminate with failure
choose one node from the front of the frontier and remove it
if the chosen node matches the goal node
then terminate with success
else put next nodes (neighbors) and h(n) values on frontier
and sort frontier by h(n) values
end repeat




Heuristic best-first search - tiles out of place




Heuristic best-first search - tiles out of place




Heuristic best-first search - tiles out of place




Heuristic best-first search - tiles out of place




Heuristic best-first search - tiles out of place




Heuristic best-first search - tiles out of place




Heuristic best-first search - tiles out of place




Heuristic best-first search - tiles out of place




Heuristic best-first search - tiles out of place




Heuristic best-first search - tiles out of place




Heuristic best-first search - tiles out of place




Best-first with g(n) included

Given a set of start nodes, a set of goal nodes,
and a graph (i.e., the nodes and arcs):

apply heuristic g(n)+h(n) to start nodes
make a “list” of the start nodes - let’s call it the “frontier”
sort the frontier by g(n)+h(n) values

repeat
if no nodes on the frontier then terminate with failure
choose one node from the front of the frontier and remove it
if the chosen node matches the goal node
then terminate with success
else put next nodes (neighbors) and g(n)+h(n) values on frontier
and sort frontier by g(n)+h(n) values
end repeat




Combining g(n) + h(n)




g(n) is actual path length from start node
h(n) is tiles out of place

g(n)
0




g(n) is actual path length from start node
h(n) is tiles out of place

g(n)
0




g(n) is actual path length from start node
h(n) is tiles out of place

g(n)
0




g(n) is actual path length from start node
h(n) is tiles out of place

g(n)
0




g(n) is actual path length from start node
h(n) is tiles out of place

g(n)
0




g(n) is actual path length from start node
h(n) is tiles out of place

g(n)
0




g(n) is actual path length from start node
h(n) is tiles out of place

g(n)
0

283 123 123
714 8 44 7847
65 _ 765 _ 65




g(n) is actual path length from start node
h(n) is tiles out of place

g(n)
0




Best-first with g(n) included is called...

Given a set of start nodes, a set of goal nodes,
and a graph (i.e., the nodes and arcs):

apply heuristic g(n)+h(n) to start nodes
make a “list” of the start nodes - let’s call it the “frontier”
sort the frontier by g(n)+h(n) values

repeat
if no nodes on the frontier then terminate with failure
choose one node from the front of the frontier and remove it
if the chosen node matches the goal node
then terminate with success
else put next nodes (neighbors) and g(n)+h(n) values on frontier
and sort frontier by g(n)+h(n) values
end repeat




Search algorithm A

Given a set of start nodes, a set of goal nodes,
and a graph (i.e., the nodes and arcs):

apply heuristic g(n)+h(n) to start nodes
make a “list” of the start nodes - let’s call it the “frontier”
sort the frontier by g(n)+h(n) values

repeat
if no nodes on the frontier then terminate with failure
choose one node from the front of the frontier and remove it
if the chosen node matches the goal node
then terminate with success
else put next nodes (neighbors) and g(n)+h(n) values on frontier
and sort frontier by g(n)+h(n) values
end repeat




Search algorithm A

If the branching factor in the state space is finite

and

If the arc costs are bounded above O (i.e., there is some e > 0 such
that all arc costs are greater than e)

and

h(n) is a lower bound on the actual minimum cost of the shortest path
from node n to a goal node

then

we call this search algorithm...




Search algorithm A*

If the branching factor in the state space is finite

and

If the arc costs are bounded above O (i.e., there is some e > 0 such
that all arc costs are greater than e)

and

h(n) is a lower bound on the actual minimum cost of the shortest path
from node n to a goal node

then

we call this search algorithm...




Search algorithm A*

More important than the odd name is the fact that
algorithm A* is admissible

That’'s Al shorthand for “the algorithm will find an optimal
path, if one exists, from the start to the goal, and that the
first path found from the start to the goal will be optimal,
even if the search space is infinite”

Admissibility does not, however, guarantee that an
optimal path will be found quickly




Search algorithm A*

Using the “tiles out of place” heuristic for h(n) in the 8-tile
puzzle search is an example of an A* algorithm --
“tiles out of place” is an admissible heuristic

The “Manhattan distance” heuristic is also admissible




Back to the question: Would this work™?
Yes!

The search strategies that find optimal paths all take
g(n) -- the cost of the path from start node to frontier node --
iInto consideration...

...and best-first search seems like a reasonably sane
heuristic search (although it's exponential)...

...what would happen if we rewrite best-first search to
include g(n) as well as h(n)?

We get a heuristic search strategy that's guaranteed to
find an optimal path to the goal if one exists!




Comparing search strategies

strategy selection halts?

depth-first last node added no
breadth-first first node added yes
lowest-cost minimal g(n) yes
first
best-first globally minimal no
h(n)
heuristic locally minimal no
depth-first h(n)
A* minimal g(n)+h(n) yes

assuming all arcs have the same cost

space

linear

exponential
exponential
exponential

linear

exponential

optimal
path

no
yes!
yes

no

no




Refinements to search strategies

Cycle checking

* you don’t want your search algorithm looping through
cycles in the graph

« if your search algorithm puts paths from start node to
frontier on the frontier list, it can compare new neighbor
nodes to the nodes on the path before adding them to
eliminate the possibility of cycles

« A* doesn’t have to “worry” about cycles...why?




Refinements to search strategies

Iterative deepening

* Breadth-first search is optimal but hogs space;
depth-first search conserves space but may not halt

* lterative deepening combines the best of both:
employ depth-first search to some depth bound;
iIf the goal is not found, discard what's been done,
increase the depth bound and do depth-first search again

« Computational overhead will be increased, but it may
not be as bad as it might seem at first (read your book)




Refinements to search strategies

Direction of search

* It's not necessary to begin searching at the start node;
search can begin with a goal node

* In general, if goal nodes are explicitly defined, and
the branching factor (number of arcs) leading into
nodes tends to be smaller than the branching factor
leading away from nodes, the problem might be a
good candidate for backward search (8-tile puzzle)

* However, if goal nodes are determined implicitly by
a predicate (leading to many goal nodes), forward
search is probably better (chess...where would you start?)




Refinements to search strategies

There are other refinements in chapter 4.6
 you should read them

* but you can skip chapter 4.7 for now...we may get
back to it later in the term




