CPSC 322

Introduction to Artificial Intelligence

October 25, 2004

Assignment 3 was posted Friday
night

Midterm exam 2 is one week from
today

Bring me your first midterms before
the second midterm if you want to be
retested on problem 3

Jessica Hodgins talk, Thursday,
October 28, 1-2pm, MacLeod 214

Game search

(also known as adversarial search) has
these components:

move (or board) generator
static board evaluation function (this is
the heuristic part - it doesn’t generate

moves or look ahead - it's static)

minimax algorithm to alternately propagate
minima and maxima upward from “bottom”

Minimax algorithm

Start with the following:
a) there are two players, MAX and MIN
b) it's MAX's turn to move
c) MAX has a static board evaluation function that returns
bigger values if a board is favorable to MAX
d) the evaluation function gets better as the game gets

closer to a goal state (else why bother to generate
the game space?)

e) MAX believes that MIN’s evaluation function is no
better than MAX's (if that’s not true, then MAX
should at least avoid betting money on this game)

Minimax algorithm

1.

Generate the game tree to as many levels (plies) that time and space
constraints allow. The top level is called MAX (as in it's now MAX’s
turn to move), the next level is called MIN, the next level is MAX, and
SO on.

Apply the evaluation function to all the terminal (leaf) states/boards
to get “goodness” values

Use those terminal board values to determine the values to be
assigned to the immediate parents:
a) if the parent is at a MIN level, then the value is
the minimum of the values of its children
b) if the parent is at a MAX level, then the value is
the maximum of the values of its children

Keep propagating values upward as in step 3

When the values reach the top of the game tree, MAX chooses the
move indicated by the highest value

Deep Blue

. This 1.4 ton

. B-year-old sure
E plays a mean
. game of chess

Deep Blue

vital statistics:

« 200,000,000 moves per second
e 480 custom chess-playing chips

Garry Rasparov
vital statistics:
3 moves per second
¢ meat

Puzzles, games, and Al

Puzzles and two-player board games have long
served as a laboratory for experiments with
heuristic search

Solving puzzles and playing games suggests

intelligence on the part of a human player, but
humans don't do this stuff the same way
that search procedures do

Electronic Arts probably won't be hiring you
solely on your mastery of minimax search
(but it couldn’t hurt)

Puzzles, games, and Al

Still, heuristic search is a simple but useful
tool, and the minimax game playing approach
Is clearly very powerful

You probably don’t fully understand these
search techniques until you've had to
implement them...especially game search

Let's look at just one more game...

Oska

* two players
» four pieces each

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on
the diagonal over an
opponent’s piece to an
empty space, thus capturing
the opponent’s piece

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on
the diagonal over an
opponent’s piece to an
empty space, thus capturing
the opponent’s piece

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on
the diagonal over an
opponent’s piece to an
empty space, thus capturing
the opponent’s piece

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on
the diagonal over an
opponent’s piece to an
empty space, thus capturing
the opponent’s piece

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on
the diagonal over an
opponent’s piece to an
empty space, thus capturing
the opponent’s piece

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on
the diagonal over an
opponent’s piece to an
empty space, thus capturing
the opponent’s piece
 you don’t have to capture if you don’'t want to

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on
the diagonal over an
opponent’s piece to an
empty space, thus capturing
the opponent’s piece
 you don’t have to capture if you don’'t want to

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on
the diagonal over an
opponent’s piece to an
empty space, thus capturing
the opponent’s piece
 you don’t have to capture if you don’'t want to

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on

the diagonal over an

opponent’s piece to an

empty space, thus capturing

the opponent’s piece
 you don’t have to capture if you don’'t want to
* multiple jumps not permitted

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on

the diagonal over an

opponent’s piece to an

empty space, thus capturing

the opponent’s piece
 you don’t have to capture if you don’'t want to
* multiple jumps not permitted

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on

the diagonal over an

opponent’s piece to an

empty space, thus capturing

the opponent’s piece
 you don’t have to capture if you don’'t want to
* multiple jumps not permitted

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on

the diagonal over an

opponent’s piece to an

empty space, thus capturing

the opponent’s piece
 you don’t have to capture if you don’'t want to
* multiple jumps not permitted

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on

the diagonal over an

opponent’s piece to an

empty space, thus capturing

the opponent’s piece
 you don’t have to capture if you don’'t want to
* multiple jumps not permitted

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on

the diagonal over an

opponent’s piece to an

empty space, thus capturing

the opponent’s piece
 you don’t have to capture if you don’'t want to
* multiple jumps not permitted

Oska

* two players
» four pieces each
* piece movement:
* piece may be moved one

* piece may jump forward on
the diagonal over an
opponent’s piece to an
empty space, thus capturing
the opponent’s piece
 you don’t have to capture if you don’'t want to
* multiple jumps not permitted
« if a player can’'t make a legal move on a turn,
the player loses turn and opponent moves again

Oska

* how to win
* capture all your
opponent’s pieces
* move all your remaining
pieces to your opponent’'s

starting row

Oska

* how to win
* capture all your
opponent’s pieces
* move all your remaining
pieces to your opponent’'s

starting row

Oska

* how to win
* capture all your
opponent’s pieces
* move all your remaining
pieces to your opponent’'s

starting row

Oska

* how to win
* capture all your
opponent’s pieces
* move all your remaining
pieces to your opponent’'s

starting row

Oska

* how to win
* capture all your
opponent’s pieces
* move all your remaining
pieces to your opponent’'s

starting row

Oska

* how to win
* capture all your
opponent’s pieces
* move all your remaining
pieces to your opponent’'s

starting row

white wins

What does this have to do with you?
Consider this predicate:

oska([[ww w w][O O O0][0 O0][0 O O][b b b b]],
W,
3,
[[Wwww 0][0 O w][O 0][0 O O][b b b b]]).

This predicate is true if

* the first argument is a legal board in an Oska game

* the second argument indicates the colour of the pieces
being “moved” by the oska predicate

* the third argument indicates how deep (number of
moves/plies/levels) the game search goes

* the fourth argument is the best move that the oska
predicate can find using its move generator, board
evaluation function, and minimax algorithm

Welcome to your term project

oska([[ww w w][O O O0][0 O0][0 O O][b b b b]],
W,
3,
[[Wwww 0][0 O w][O 0][0 O O][b b b b]]).

* due 6:00am Monday, November 29, 2004

 you can work individually or in pairs
but | need to know who the pairs no later than this
Sunday, October 31

* more details will be posted this week, including
documentation requirements

One other thing....

oska([[w w w w][0O O 0][0 0][0 O O][b b b b]],
W,
3,
[[Wwww 0][0 0 w][O O0][0 O O][b b b b]]).

could look like this instead:

oska([[ww w w w][O O O O0]J[O0 O O][0 O]
[0 O 0][0 O O O][b b b b b]],
w,
3,
[[WwwWw 0][0O O O w][O O O][O0 O]
[0 O 0]J[0 O O O][b b b b b]]).

Your program vs. Deep Blue

game search
move generator
static board evaluator
minimax algorithm
pruning (maybe)

one processor

CILOG

grit and determination

game search
move generator
static board evaluator
minimax algorithm
pruning
480 custom-fabricated
chess-playing chips
algorithms and representations
hardwired on chips
selective deepening by
reallocating chips on the fly
giant libraries of openings,
endgames, and championship
matches

Back to heuristic search techniques

Heuristic depth-first search algorithm

Given a set of start nodes, a set of goal nodes,
and a graph (i.e., the nodes and arcs):

apply heuristic h(n) to start nodes
make a “list” of the start nodes - let’s call it the “frontier”
sort the frontier by h(n) values

repeat
if no nodes on the frontier then terminate with failure
choose one node from the front of the frontier and remove it
if the chosen node matches the goal node
then terminate with success
else get next nodes (neighbors) and h(n) values
and sort those nodes by h(n) values
and put those sorted nodes on the front of the frontier

end repeat

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

8 3 _ 813 283 283
2145 2 43 7_4 714
765 765 615 -

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

283 283 123 123
3 7 _45 7147 8 _4 784
6 15 6 5 _ 765 _ 65

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

Heuristic depth-first search - tiles out of place

AN N

2 8 3 123 123

5 7147 8 _40 7843
6 5 _ 765

Heuristic depth-first search - tiles out of place

Why heuristic depth-first search?

Comparing search strategies

strategy selection halts?

depth-first last node added

breadth-first first node added

lowest-cost minimal g(n)
first

best-first globally minimal

h(n)

heuristic locally minimal

depth-first h(n)

* assuming all arcs have the same cost

space

linear
exponential
exponential

exponential

linear

optimal
path

no
yes*
yes

no

no

What's missing?

A heuristic search strategy that is guaranteed to
find the optimal (lowest-cost) path from start node
to goal node

What do the strategies that find optimal paths
have in common?

Questions?

