CPSC 322

Introduction to Artificial Intelligence

October 20, 2004

No office hours today...will hold them
Friday from 3:30 to 4:30 pm

Bring me your first midterms before

the second midterm if you want to be
retested on problem 3

Two obstacles to overcome

For really interesting (i.e., big) problems, we
need to find ways to...

1. reduce the amount of time spent searching
heuristic search

2. reduce the amount of time spent pre-building the
graph
generate the graph as you need it

By the way, those reductions have to be

significant (i.e., big)

Move generation

move([0,X,Cl,C2,C3,C4,C5,C6,C7],[X,0,C1,C2,C3,C4,C5,C6,C7]).
move([0,Cl,C2,X,C3,C4,C5,C6,C7],[X,C1,C2,0,C3,C4,C5,C6,C7]).

/* ... and soon ... */

/* might be more useful as... */

move([0,X,Cl,Y,C2,C3,C4,C5,C6],[[X,0,Cl,Y,C2,C3,C4,C5,C6],
[Y,X,C1,0,C2,C3,C4,C5,C6]1]).

More to come Wednesday...

add path collection

add the ability to beat the world’s best chess
players

Why return paths?

Knowing that we can get from point A to
point B is nice, but it doesn't tell us how

to get from point A to point B.

The search algorithm does most of the
work already, but it needs to keep track
of the paths to the frontier nodes, not
just the frontier nodes themselves.

Returning a path

frontier:[[a]]
path being considered:

frontier:[]
path being considered:[a]

frontier:[[b,a],[c,a]]
path being considered:

frontier:[[c,a]l]
path being considered:[b,a]

frontier:[[c,a],[d,b,a],[e,b,a]]
path being considered:

frontier:[[d,b,a],[e,b,a]]
path being considered:[c,a]

frontier:[[d,b,a]l,[e,b,a],[f,c,al,[g,c,a]]
path being considered:

goal: j

frontier:[[e,b,a],[f,c,a]l,[g9,c,a]l]
path being considered:[d,b,a]

frontier:[[e,b,a],[f,c,al,[9,c,a],[h,d,b,a],[1,d,b,a]]
path being considered:

goal: j

frontier:[[£f,c,al,[9,c,a],[h,d,b,a],[1,d,b,a]]
path being considered:[e,b,a]

goal: j

frontier:[[f,c,a],[9,c,a],[h,d,b,a],[1,d,b,a],[],e,b,a
l1,[k,e,b,al]
path being considered:

frontier:[[g9,c,a],[h,d,b,a],[i,d,b,a],[],e,b,a]l,[k,e,b

ral]l
path being considered:[f,c,a]

frontier:[[g,c,a]l,[h,d,b,a],[1,d,b,a],[],e,b,al,[k,e,b
la]l[llflcla]’[mlflcla]]
path being considered:

frontier:[[h,d,b,a],[1,d,b,a]l,[],e,b,a],[k,e,b,a],[1,£
rc,a],[m,£,c,a]]
path being considered:[g,c,a]

frontier:[[h,d,b,a],[1,d,b,a]l,[],e,b,a],[k,e,b,a],[1,£
c,al,[m,f,c,a],[n,g,c,al,[0,9,c,a]]
path being considered:

frontier:[[i,d,b,a],[j,e,b,a]l,[k,e,b,a],[1,f,c,a],[m, £

lcla]l[nlglcla]l[olglcla]]
path being considered:[h,d,b,a]

frontier:[[i,d,b,a],[j,e,b,a]l,[k,e,b,a],[1,f,c,a],[m, £

lcla]l[nlglcla]l[olglcla]]
path being considered:

frontier:[[],e,b,a],[k,e,b,a],[1,f,c,a],[m,f,c,a]l,[n,qg

rCra],[0,9,Cc,a]]
path being considered:[i,d,b,a]

frontier:[[],e,b,a],[k,e,b,a],[1,f,c,a],[m,f,c,a]l,[n,qg

rC,a],[0,9,Cc,a]]
path being considered:

frontier:[[k,e,b,a],[1,f,c,a],[m,f,c,a],[n,g,c,a]l,[0,9
rCrall
path being considered:[]j,e,b,a]

Path search algorithm

psearch(F,[N|P]) <- choose([N|P],F,) &
Is_goal(N).

psearch(F,S) <- choose([N|P],F,F1) &
neighbors(N,NN) &

add_paths(NN,[N|P],NN2) &
add _to frontier(NN2,F1,F2) &
psearch(F2,S).

Path search algorithm

psearch(F,[N|P]) <- choose([N|P],F,) &
Is_goal(N).

psearch(F,S) <- choose([N|P],F,F1) &
neighbors(N,NN) &
add_paths(NN,[N|P],NN2) &
add _to frontier(NN2,F1,F2) &
psearch(F2,S).

psearch(F,S) is true if the search from the end of a path on
the frontier F results in a path S to the goal. Remember
that elements of the frontier F are paths in reverse order,

not individual nodes.

Path search algorithm

psearch(F,[N|P]) <- choose([N|P],F,) &
Is_goal(N).

psearch(F,S) <- choose([N|P],F,F1) &
neighbors(N,NN) &
add_paths(NN,[N|P],NN2) &
add _to frontier(NN2,F1,F2) &
psearch(F2,S).

is_goal(N) is true if N is a goal node

Path search algorithm

psearch(F,[N|P]) <- choose([N|P],F,) &
Is_goal(N).

psearch(F,S) <- choose([N|P],F,F1) &
neighbors(N,NN) &
add_paths(NN,[N|P],NN2) &
add _to frontier(NN2,F1,F2) &
psearch(F2,S).

choose([N|P],F,F1) means [N|P] is some path chosen from
F - the frontier - and F1 is the set of paths remaining
when [N|P] is removed. This fails if F is empty.

Path search algorithm

psearch(F,[N|P]) <- choose([N|P],F,) &
Is_goal(N).

psearch(F,S) <- choose([N|P],F,F1) &
neighbors(N,NN) &
add_paths(NN,[N|P],NN2) &
add _to frontier(NN2,F1,F2) &
psearch(F2,S).

neighbors(N,NN) is true if NN is the list of neighbors of
node N

Path search algorithm

psearch(F,[N|P]) <- choose([N|P],F,) &
Is_goal(N).

psearch(F,S) <- choose([N|P],F,F1) &
neighbors(N,NN) &
add_paths(NN,[N|P],NN2) &
add _to frontier(NN2,F1,F2) &
psearch(F2,S).

add_paths(NN,[N|P],NN2) means that NN2 is the
list of paths obtained by adding one element of NN
to the front of the path [N|P]. (If NN has m elements,
and the length of [N|P] is g, then NN2 has n paths of
length q+1.)

Path search algorithm

psearch(F,[N|P]) <- choose([N|P],F,) &
Is_goal(N).

psearch(F,S) <- choose([N|P],F,F1) &
neighbors(N,NN) &

add_paths(NN,[N|P],NN2) &
add _to frontier(NN2,F1,F2) &
psearch(F2,S).

cilog: ask add paths([a,b,c],[x,¥,2],X).
Answer: add paths([a, b, c], [x, v, 2], [[a, %X, ¥, 2],
[bl Xr Yy z]l, [c, X, Y Z]])‘

Path search algorithm

psearch(F,[N|P]) <- choose([N|P],F,) &
Is_goal(N).

psearch(F,S) <- choose([N|P],F,F1) &
neighbors(N,NN) &
add_paths(NN,[N|P],NN2) &
add _to frontier(NN2,F1,F2) &
psearch(F2,S).

add _to frontier(NN2,F1,F2) means that F2 is the new
frontier made by adding the list of paths NN2 to the old

frontier F1

CILOG path search

neighbors(a,[b,c]).
neighbors(b,[d,e]).
neighbors(c,[f,g]).
neighbors(d,[h,1i]1).
neighbors(e,[j, k1) .
neighbors(f,[1,m]).
neighbors(g,[n,o01]).
neighbors(h,[]).
neighbors(i,[]).
neighbors(j,[])-
neighbors(k,[]).
neighbors(1l,[]).
neighbors(m,[]).
neighbors(n,[]).
neighbors(o,[]).

is goal(Jj).

append([],Z2,2).
append([A|X],Y,[A|Z]) <- append(X,Y,Z).

CILOG path search

/* this is David Poole’s code...I just stole it. */
/* to make it go, don’t ask psearch(a,X). You need to say
ask psearch([[a]],X).

psearch(F,[N|P]) <- choose([N|P],F,) &
is _goal(N).

psearch(F,S) <- choose([N|P],F,Fl) &
neighbors(N,NN) &
add paths (NN, [N|P],NN2) &
add_to frontier(NN2,F1l,F2) &
psearch(F2,S).

add_paths([1,_,[]).
add paths([M|R],P,[[M|P]|PR]) <- add paths(R,P,PR).

choose (N, [N|Flist],Flist).

/* this is breadth-first search */
add to frontier(Nodelist,Flistl,Flist2) <- append(Flistl,Nodelist,Flist2).

/* this is depth-first search
add to frontier(Nodelist,Flistl,Flist2) <- append(Nodelist,Flistl,Flist2).
*/

Search Recap

We know basic principles of search

We know how to search an existing graph and how to
generate the graph as we need it

We know how to use heuristic knowledge to help us choose
what to do next

Search Recap

We know basic principles of search

We know how to search an existing graph and how to
generate the graph as we need it

We know how to use heuristic knowledge to help us choose
what to do next

This helps us find a goal in a non-hostile world.
But can we use this stuff to find a goal in the more realistic

scenario where other agents are trying to prevent us
from reaching our goal?

The Joy of Hex

The game of hexapawn

The Joy of Hex

The game of hexapawn

* 3 X 3 board
* 3 pawns on each side

The Joy of Hex

The game of hexapawn

* 3 X 3 board
* 3 pawns on each side
* movement of pawns:

The Joy of Hex

The game of hexapawn

* 3 X 3 board
* 3 pawns on each side
* movement of pawns:

» white moves first

The Joy of Hex

The game of hexapawn

* 3 X 3 board
* 3 pawns on each side
* movement of pawns:
» white moves first
« pawn can move straight ahead one space if
that space is empty

The Joy of Hex

The game of hexapawn

* 3 X 3 board
* 3 pawns on each side
* movement of pawns:
» white moves first
« pawn can move straight ahead one space if
that space is empty

The Joy of Hex

The game of hexapawn

* 3 X 3 board
* 3 pawns on each side
* movement of pawns:
» white moves first
« pawn can move straight ahead one space if
that space is empty
« pawn can move diagonally one space forward to
capture opponent’s pawn occupying that space

The Joy of Hex

The game of hexapawn

* 3 X 3 board
* 3 pawns on each side
* movement of pawns:
» white moves first
« pawn can move straight ahead one space if
that space is empty
« pawn can move diagonally one space forward to
capture opponent’s pawn occupying that space

The Joy of Hex

The game of hexapawn

« 3 ways to win:

The Joy of Hex

The game of hexapawn

(JIRC R

« 3 ways to win:
» capture all your opponent’s pawns

The Joy of Hex

The game of hexapawn ®

(JIRC R

« 3 ways to win:
» capture all your opponent’s pawns

The Joy of Hex

The game of hexapawn ®

(I

« 3 ways to win:
» capture all your opponent’s pawns

The Joy of Hex

The game of hexapawn ®

(I

« 3 ways to win:
» capture all your opponent’s pawns

The Joy of Hex

The game of hexapawn ®

o

« 3 ways to win:
» capture all your opponent’s pawns

The Joy of Hex

The game of hexapawn ® ()
()

« 3 ways to win:
» capture all your opponent’s pawns

The Joy of Hex

The game of hexapawn C V)

« 3 ways to win:
» capture all your opponent’s pawns

The Joy of Hex

The game of hexapawn

(JIRC R

« 3 ways to win:
» capture all your opponent’s pawns
 one of your pawns reaches the opposite end of
the board

The Joy of Hex

The game of hexapawn ®

(JIRC R

« 3 ways to win:
» capture all your opponent’s pawns
 one of your pawns reaches the opposite end of
the board

The Joy of Hex

The game of hexapawn ®

(I

« 3 ways to win:
» capture all your opponent’s pawns
 one of your pawns reaches the opposite end of
the board

The Joy of Hex

The game of hexapawn

@

« 3 ways to win:
» capture all your opponent’s pawns
 one of your pawns reaches the opposite end of
the board

The Joy of Hex

The game of hexapawn

(JIRC R

« 3 ways to win:
» capture all your opponent’s pawns
 one of your pawns reaches the opposite end of
the board
* it's your opponent’s turn but your opponent
can’'t move

The Joy of Hex

The game of hexapawn ®

(JIRC R

« 3 ways to win:
» capture all your opponent’s pawns
 one of your pawns reaches the opposite end of
the board
* it's your opponent’s turn but your opponent
can’'t move

The Joy of Hex

@
The game of hexapawn ® ()

® ©

« 3 ways to win:
» capture all your opponent’s pawns
 one of your pawns reaches the opposite end of
the board
* it's your opponent’s turn but your opponent
can’'t move

The Joy of Hex

@
The game of hexapawn ® ()
()

@
o

« 3 ways to win:
» capture all your opponent’s pawns
 one of your pawns reaches the opposite end of
the board
* it's your opponent’s turn but your opponent
can’'t move

The Joy of Hex

@
The game of hexapawn ® ()
()

@
o

« 3 ways to win:
» capture all your opponent’s pawns
 one of your pawns reaches the opposite end of
the board
* it's your opponent’s turn but your opponent
can’'t move

Now it's time to look at a game in Kurt-o-vision...
(we're pushing the black pawns)

Two Questions

Two Questions

First, how deep do you search?

Two Questions

First, how deep do you search?

As deep as you can within computational constraints:
* time
* memory
e Space on powerpoint slide

The deeper the search, the more informed is your answer
to the next question...

Two Questions

Second, how do you know which move to make?

Two Questions

Second, how do you know which move to make?

Use heuristic knowledge, of course. In this case, we
apply this very crude board evaluation function:

if you have won then board value = +10
else if opponent has won then board value = -10
else board value = number of your pawns -
number of opponent’s pawns

Two Questions

Second, how do you know which move to make?

Use heuristic knowledge, of course! In this case, we
apply this very crude board evaluation function:

if you have won then board value = +10
else if opponent has won then board value = -10
else board value = number of your pawns -
number of opponent’s pawns

The board evaluation function is applied like this....

opponent’s

move -->

your -->

responses

opponent’s

move -->

your -->

responses

opponent’s

move -->

your -->

responses

opponent’s

move -->

your -->

responses

opponent’s

move -->

your -->

responses

opponent’s

move -->

your -->

response

opponent’s

move -->

your -->

response

What happens next?

opponent’s

move -->

opponent’s

move -->

your

responses -->

opponent’s

move -->

your

responses -->

opponent’s

moves --> none (we win! woohoo!)

What if white makes a different move?

not this...

opponent’s

move -->

your -->

response

...but this

opponent’s

move -->

your -->

response

What if the white makes a different move?

Apply this search technique again to white’'s move and
make your next move accordingly

opponent’s

move -->

opponent’s

move -->

your

responses ->

opponent’s

moves -->

opponent’s

move -->

your

responses ->

opponent’s

moves -->

opponent’s

move -->

your B - W
responses -> - W -
B - B

10

opponent’s

moves -->

opponent’s

move -->

your B - W
responses -> - W -
B - B

10

opponent’s

moves -->

opponent’s

move -->

your

response ->

