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Problem 1a
1a.  (10 points)  Let's see how well you really understand this interpretation stuff.  You know of course from your reading 
and from lecture that once you've completely and thoroughly specified your intended interpretation for your chosen 
domain, you then write, as definite clauses, those statements that are true in your intended interpretation.  Those clauses 
are called axioms.  It seems reasonable then that given only a set of axioms (i.e., definite clauses) that make up the facts of a 
knowledge base, you should be able to work backwards from that information and completely and thoroughly specify the 
intended interpretation.  Well actually, you'll need a little more information that what's contained in the 
axioms.  Read on.

Here's a set of axioms in definite clause form:

cries(stanley).
crushes_hat(ollie,stanley).
crushes_hat(stanley,ollie).

Assume that stanley and ollie are the only constants, and that Stanley' and Ollie' are the only individuals worth 
worrying about in the chosen domain.  Assume that stanley maps onto Stanley' and ollie maps onto Ollie'.  Assume 
also that cries and crushes_hat are the only predicates.  (And of course assume that the axioms are correct, no mistakes 
were made, and the axioms represent the only true statements in the interpretation.)  In the space below, give the complete 
specification for the intended interpretation that gives rise to the axioms above.  You can use the words pi and phi or their 
symbolic equivalents, φ and π.



Problem 1a
D = {Stanley’, Ollie’}

φ(stanley) = Stanley’
φ(ollie) = Ollie’

π(cries)(Stanley’) = True
π(crushes_hat)(Stanley’,Ollie’) = True
π(crushes_hat)(Ollie’,Stanley’) = True

π(cries)(Ollie’) = False
π(crushes_hat)(Stanley’,Stanley’) = False
π(crushes_hat)(Ollie’,Ollie’) = False



Problem 1b
1b.  (10 points):  Given the facts and assumptions of Problem 1a, how many different interpretations are possible?  Show 
enough math to convince me that you didn't just pull a number out of the air.  (Hint:  the number of interpretations
possible is not nearly as large as the number of interpretations for the similar problem in homework assignment 1.)



Problem 1b
D = {Stanley’, Ollie’}

φ(stanley) = Stanley’ or Ollie’ 2
φ(ollie) = Ollie’ or Stanley’ 2

π(cries)(Stanley’) = True or False 2
π(crushes_hat)(Stanley’,Ollie’) = True or False 2
π(crushes_hat)(Ollie’,Stanley’) = True or False 2

π(cries)(Ollie’) = False or True 2
π(crushes_hat)(Stanley’,Stanley’) = False or True 2
π(crushes_hat)(Ollie’,Ollie’) = False or True 2

28 = 256



Problem 2
2.  (20 points):  Let's say for the sake of argument that we all believe that, someday, a reasoning and representation 
system like the ones we've been working with in class could be intelligent.  (Well, it would be a lot more complex than 
the ones we've been working with, but it would employ the same principles.)  This belief is based on a handful of 
assumptions.  In the space below, explain just two of those assumptions.  (Note:  this isn't about the textbook's simplifying 
assumptions like "The environment is static" that are relaxed or eliminated completely later in the book.)  Once you've 
given those two assumptions, discuss the implications for artificial intelligence efforts if those assumptions ultimately turn 
out to be false.



AI assumes that what the brain does may be thought of at
some level as some form of computation

The assumption above is probably valid

A physical symbol system has the necessary and
sufficient means for intelligent behavior
(The Physical Symbol System Hypothesis)

These assumptions may not be valid
Any symbol manipulation can be carried out on a Turing
machine.
(The Church-Turing Thesis)



Alternatives to symbols

Number crunching (e.g., language processing
entirely by statistical analysis)

Distributed intelligence
Lots of tiny “computers” of limited ability
working in concert (e.g., ants in a colony,
neurons in a brain)



Problem 3
3.  (20 points):  Here's a graphical representation of a really small maze:

   < the drawing would be here >

And here are the corresponding facts in CILOG:

nowall(r11,r12).
nowall(r12,r13).
nowall(r11,r21).
nowall(r12,r22).
nowall(r21,r31).
nowall(r13,r23).
nowall(r31,r32).
nowall(r23,r33).

Now let's add a couple of rules:

path(X,Y) <- path(X,Z) & path(Z,Y).
path(X,Y) <- nowall(X,Y).

Prove the following theorem is true (i.e., show that the theorem can be derived from the given knowledge base):

path(r11,r32).



Problem 3
nowall(r11,r12).
nowall(r12,r13).
nowall(r11,r21).
nowall(r12,r22).
nowall(r21,r31).
nowall(r13,r23).
nowall(r31,r32).
nowall(r23,r33).

path(X,Y) <- path(X,Z) & path(Z,Y).
path(X,Y) <- nowall(X,Y).

Prove the following theorem is true (i.e., show that the theorem can be derived from the given knowledge base):

yes <- path(r11,r32).
<- path(r11,Z) & path(Z,r32).
<- nowall(r11,Z) & path(Z,r32).
<- nowall(r11,r21) & path(r21,r32).

     <- path(r21,r32).
<- path(r21,Z) & path(Z,r32).
<- nowall(r21,Z) & path(Z,r32).
<- nowall(r21,r31) & path(r31,r32).
<- path(r31,r32).
<- nowall(r31,r32).
<- .



Problem 4
4.  (20 points):  Using CILOG, write a relation

  list_equal(L1,L2)

that is true if the list L1 is identical to list L2.  The relation is false otherwise.  Sample behavior follows:

cilog: ask list_equal([],[]).
Answer: list_equal([], []).
  [ok,more,how,help]: ok.
cilog: ask list_equal(a,a).
No. list_equal(a, a) doesn't follow from the knowledge base.
cilog: ask list_equal([a,b,c],[a,b,c]).
Answer: list_equal([a, b, c], [a, b, c]).
  [ok,more,how,help]: ok.
cilog: ask list_equal([a,b,c,d],X).
Answer: list_equal([a, b, c, d], [a, b, c, d]).
  [ok,more,how,help]: more.
No more answers.
cilog: ask list_equal([a,b],[a,b,c]).
No. list_equal([a, b], [a, b, c]) doesn't follow from the knowledge base.
cilog: 



Problem 4
The most frequent correct answer:

    list_equal([H|T1],[H|T2]) <- list_equal(T1,T2).
    list_equal([],[]).
    
Other possibilities:

    list_equal([H|T],[H|T]).
    list_equal([],[]).

    list_equal(L1,L2) <- append(L1,[],L2).
    append([], A, A).
    append([A|B], C, [A|D]) <- append(B, C, D).



Problem 5
5.  (20 points).  Assume the following relation written in CILOG:

  glork([H1|[H2|T2]],[H1|T3]) <- glork(T2,T3).
  glork([],[]).

Show what happens when CILOG is presented with the following query:

  ask glork([a,b,c,d,e,f],X).

Give the result, and explain how glork works.

  glork([a,b,c,d,e,f],[a,c,e]).

glork proves that the second list is the list composed of the first, third, fifth, etc., elements of the first list
(assuming that the first list has an even number of elements).  It does this by comparing the first element of the 
first list to the first element of the second list.  If they’re the same, the proof procedure recursively calls 
itself with new arguments:  the new first list is the original first list without its first two elements, and the new
second list is the original second list without its first element.  Thus, the second, fourth, sixth, etc. elements
of the first list are ignored or discarded.  The base case is when the two lists are empty.


