CPSC 322 Introduction to Artificial Intelligence

September 22, 2004

```
galiano:~> pl
Welcome to SWI-Prolog (Multi-threaded, Version 5.3.16)
Copyright (c) 1990-2003 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).
?- compile('~cs322/cilog/cilog_swi.pl').
CILOG Version 0.13. Copyright 1998-2004, David Poole.
CILOG comes with absolutely no warranty.
All inputs end with a period. Type "help." for help.
cilog:
```

```
Welcome to SWI-Prolog (Multi-threaded, Version 5.2.0)
Copyright (c) 1990-2003 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).
?- [cilog swi].
CILOG Version 0.12. Copyright 1998, David Poole.
CILOG comes with absolutely no warranty.
All inputs end with a period. Type "help." for help.
cilog: load 'brother.ci'.
CILOG theory brother.ci loaded.
cilog: listing.
parent (charles, william).
parent (charles, harry).
male(charles).
male (william).
male(harry).
brother(A, B) <- male(A) &parent(C, A) &parent(C, B) &different(A, B).
different (A, B) \langle -A \rangle = B.
cilog: ask brother(william, harry).
Answer: brother(william, harry).
```

```
Welcome to SWI-Prolog (Multi-threaded, Version 5.2.0)
Copyright (c) 1990-2003 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).
?- [cilog swi].
CILOG Version 0.13. Copyright 1998-2004, David Poole.
CILOG comes with absolutely no warranty.
All inputs end with a period. Type "help." for help.
cilog: load 'brother.ci'.
CILOG theory brother.ci loaded.
cilog: listing.
parent (charles, william).
parent (charles, harry).
male(charles).
male (william).
male(harry).
brother(A, B) <- male(A) &parent(C, A) &parent(C, B) &different(A, B).
different (A, B) \langle -A \rangle = B.
cilog: ask brother(william, harry).
```

Office hours

Qian Huang	Tu	2:00pm - 4:00pm	308A
Navjot Singh	Th	10:30am - 12:30pm	238
Kurt Eiselt	M W	3:30pm - 4:30pm	247

Homework clarification: some basic relation, like "parent", doesn't have to be a rule...sorry for the confusion

Turn in assignments electronically - use handin read man handin our course is cs322 the first assignment is asgn1

Newsgroup: ubc.courses.cpsc.322

We're hoping to have WebCT going real soon now....

Read Chapter 3

```
light(11).
light(12).
down(s1).
up(s2).
up(s3).
ok(11).
ok(12).
ok(cb1).
ok (cb2).
connected to (11, w0).
connected to (w0, w1) \leftarrow up(s2).
connected to (w0, w2) < - down(s2).
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
outside power

s_1
w_2
w_3
cb_2
w_4
s_3
l_2
l_2
p_2
p_1
p_2
p_2
p_1
p_2
p_2
p_2
p_2
p_2
p_2
p_3
p_4
p_2
p_2
p_3
p_4
p_2
p_4
p_5
p_5
p_6
p_7
p_8
```

```
light(11).
light(12).
                                         prove: a_1 \wedge \dots \wedge a_k.
down(s1).
up(s2).
                                           AC := yes <- a_1 ^ ... ^ a_k
up(s3).
ok(11).
ok(12).
                                           repeat
ok(cb1).
                                                select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                                choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                                replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                           until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
     connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- a_1 ^ ... ^ a_k
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                               select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3,w5)^{\wedge}
up(s3).
                                                       connected to(w2,w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3,w5) ^
up(s3).
                                                       connected to(w2,w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3,w5) ^
up(s3).
                                                       connected to(w2,w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3,w5) ^
up(s3).
                                                       connected to(w2,w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3,w5) ^
up(s3).
                                                       connected to(w2,w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3,w5) ^
up(s3).
                                                       connected to(w2,w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- ok(cb1)^
up(s3).
                                                       connected to(w2,w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < -ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- ok(cb1) ^{\land} connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                               select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- ok(cb1) ^{\land} connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                               select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- ok(cb1) ^ connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                         AC := yes <- ok(cb1) ^ connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                             select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                             choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                             replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                         AC := yes <- ok(cb1) ^ connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                             select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                             choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                             replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- ok(cb1) ^ connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                         AC := yes <- ok(cb1) ^ connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
                                         Note: if the clause C that was chosen is a
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
                                         fact in the knowledge base (no body, just a
connected to (p1, w3).
                                         head) then you know a; is true
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                         AC := yes <- TRUE ^ connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                             select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                             choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                             replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
                                         Note: if the clause C that was chosen is a
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
                                         fact in the knowledge base (no body, just a
connected to (p1, w3).
                                         head) then you know a; is true
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                         AC := yes <- connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                             select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                             replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
                                         Note: if the clause C that was chosen is a
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
                                         fact in the knowledge base (no body, just a
connected to (p1, w3).
                                         head) then you know a; is true
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                       prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(w2,w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- down(s1).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- down(s1).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- down(s1).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- down(s1).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- down(s1).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- down(s1).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- down(s1).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- TRUE.
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- .
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- .
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: ?connected to(w3,w5) ^ connected to(w2,w3).
down(s1).
up(s2).
                                          AC := yes <- .
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok(cb2).
connected to (11, w0).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
ask connected to (w3, w5) &
    connected to (w2, w3).
```

```
light(11).
light(12).
                                        prove: a_1 \wedge \dots \wedge a_k.
down(s1).
up(s2).
                                           AC := yes <- a_1 ^ ... ^ a_k.
up(s3).
ok(11).
ok(12).
                                           repeat
ok(cb1).
                                               select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                           until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                        prove: a_1 \wedge \dots \wedge a_k.
down(s1).
up(s2).
                                          AC := yes <- a_1 ^ ... ^ a_k.
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                               select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
ask continuous(12, w3).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                          AC := yes <- a_1 ^ ... ^ a_k.
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                          until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                         AC := yes <- continuous(I2, w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                         AC := yes <- continuous(I2, w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                         AC := yes <- continuous(I2, w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                         AC := yes <- continuous(I2, w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                         AC := yes <- continuous(I2, w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                         AC := yes <- continuous(I2, w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                         until AC is an answer (i.e., yes <- .)
connected to (w1, w3) \leftarrow up(s1).
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                          AC := yes <- continuous(I2, w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                         AC := yes <- continuous(I2, w3).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                               after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                         until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (12, w3) <- connected to (12, Z) & connected to (Z, w3).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                         AC := yes <- connected to(I2, Z) ^
up(s3).
                                                      connected to (Z, w3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                               after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                         until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (12, w3) <- connected to (12, Z) & connected to (Z, w3).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, Z) ^
up(s3).
                                                       connected to (Z, w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, Z) ^
up(s3).
                                                       connected to (Z, w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, Z) ^
up(s3).
                                                       connected to (Z, w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, Z) ^
up(s3).
                                                       connected to (Z, w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, Z) ^
up(s3).
                                                       connected to (Z, w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, Z) ^
up(s3).
                                                       connected to (Z, w3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                         AC := yes <- connected to(I2, w4) ^
up(s3).
                                                       connected to(w4, w3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                         until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                         AC := yes <- TRUE ^
up(s3).
                                                       connected to(w4, w3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                         until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, w3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                          AC := yes \leftarrow up(s3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes \leftarrow up(s3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                               select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes \leftarrow up(s3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes \leftarrow up(s3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes \leftarrow up(s3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w3).
light(12).
down(s1).
up(s2).
                                          AC := yes \leftarrow up(s3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                          AC := yes \leftarrow up(s3).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                         AC := yes <- TRUE.
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                         until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                          AC := yes < -.
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                          AC := yes < -.
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w3).
down(s1).
up(s2).
                                          AC := yes <- .
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

Can we make "continuous" arbitrarily long?

```
light(11).
light(12).
down(s1).
up(s2).
                                                                       outside power
up(s3).
ok(11).
                                                                              circuit
                                                                              breaker
ok(12).
ok(cb1).
ok (cb2).
connected to (11, w0).
connected to (w0, w1) \leftarrow up(s2).
connected to (w0, w2) < - down(s2).
connected to (w1, w3) \leftarrow up(s1).
                                                                              light
connected to (w2, w3) < - down(s1).
connected to (12, w4).
                                                                              power
outlet
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
```

Can we make "continuous" arbitrarily long?

```
light(11).
light(12).
down(s1).
up(s2).
                                                                        outside power
up(s3).
ok(11).
                                                                               circuit
                                                                               breaker
ok(12).
ok(cb1).
ok (cb2).
connected to (11, w0).
connected to (w0, w1) \leftarrow up(s2).
connected to (w0, w2) < - down(s2).
connected to (w1, w3) \leftarrow up(s1).
                                                                               light
connected to (w2, w3) < - down(s1).
connected to (12, w4).
                                                                               power
outlet
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
continuous (X, Y) \leftarrow C connected to (X, Z) \in C connected to (Z, A) \in C connected to (A, Y).
```

Can we make "continuous" arbitrarily long?

```
light(11).
light(12).
down(s1).
up(s2).
                                                                      outside power
up(s3).
ok(11).
                                                                             circuit
                                                                             breaker
ok(12).
ok(cb1).
ok (cb2).
connected to (11, w0).
connected to (w0, w1) \leftarrow up(s2).
connected to (w0, w2) < - down(s2).
connected to (w1, w3) \leftarrow up(s1).
                                                                             light
connected to (w2, w3) < - down(s1).
connected to (12, w4).
                                                                             power
outlet
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Z) & connected to (Z, A) & connected to (A, Y).
    ... and so on ...
```

```
light(11).
light(12).
                                        prove: a_1 \wedge \dots \wedge a_k.
down(s1).
up(s2).
                                           AC := yes <- a_1 ^ ... ^ a_k.
up(s3).
ok(11).
ok(12).
                                           repeat
ok(cb1).
                                               select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                 after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                           until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                        prove: a_1 \wedge \dots \wedge a_k.
down(s1).
up(s2).
                                           AC := yes <- a_1 ^ ... ^ a_k.
up(s3).
ok(11).
ok(12).
                                           repeat
ok(cb1).
                                               select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                 after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                           until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
ask continuous(12, w5).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                           AC := yes <- a_1 \wedge ... \wedge a_k.
up(s3).
ok(11).
ok(12).
                                           repeat
ok(cb1).
                                               select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                               choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                 after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                           until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(I2, w5).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(I2, w5).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(I2, w5).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(I2, w5).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                         AC := yes <- continuous(I2, w5).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                         until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (12, w5) <- connected to (12, Z) & continuous (Z, w5).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                         AC := yes <- connected to(I2, Z) ^
up(s3).
                                                      continuous(Z, w5).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                         until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (12, w5) <- connected to (12, Z) & continuous (Z, w5).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, Z) ^
up(s3).
                                                       continuous(Z, w5).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, Z) ^
up(s3).
                                                       continuous(Z, w5).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, Z) ^
up(s3).
                                                       continuous(Z, w5).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, Z) ^
up(s3).
                                                       continuous(Z, w5).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- connected to(I2, w4) ^
up(s3).
                                                       continuous(w4, w5).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- TRUE ^
up(s3).
                                                       continuous(w4, w5).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                       prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- continuous(w4, w5).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- continuous(w4, w5).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(w4, w5).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(w4, w5).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(w4, w5).
up(s3).
ok(11).
ok(12).
                                          repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                       prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                         AC := yes <- continuous(w4, w5).
up(s3).
ok(11).
ok(12).
                                         repeat
ok(cb1).
                                              select a conjunct a, from the body of AC
ok (cb2).
connected to (11, w0).
                                              choose clause C from KB with a as head
connected to (w0, w1) \leftarrow up(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w0, w2) < - down(s2).
                                                after making appropriate substitutions
connected to (w1, w3) \leftarrow up(s1).
                                         until AC is an answer (i.e., yes <- .)
connected to (w2, w3) < - down(s1).
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (w4, w5) < - connected to (w4, Z) \& continuous (Z, w5).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, Z) ^
up(s3).
                                                       continuous(Z, w5).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (w4, w5) < - connected to (w4, Z) \& continuous (Z, w5).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, Z) ^
up(s3).
                                                        continuous(Z, w5).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, Z) ^
up(s3).
                                                        continuous(Z, w5).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, Z) ^
up(s3).
                                                        continuous(Z, w5).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, Z) ^
up(s3).
                                                        continuous(Z, w5).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w4, w3) ^
up(s3).
                                                        continuous(w3, w5).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                         prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                           AC := yes \leftarrow up(s3)^{\land}
up(s3).
                                                         continuous(w3, w5).
ok(11).
ok(12).
ok(cb1).
                                           repeat
ok (cb2).
connected to (11, w0).
                                                select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                                choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                                replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                  after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                           until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                         prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                           AC := yes \leftarrow up(s3)^{\land}
up(s3).
                                                         continuous(w3, w5).
ok(11).
ok(12).
ok(cb1).
                                           repeat
ok (cb2).
connected to (11, w0).
                                                select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                                choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                                replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                  after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                           until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                         prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                           AC := yes \leftarrow up(s3)^{\land}
up(s3).
                                                         continuous(w3, w5).
ok(11).
ok(12).
ok(cb1).
                                           repeat
ok (cb2).
connected to (11, w0).
                                                select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                                choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                                replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                  after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                           until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                         prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                           AC := yes \leftarrow up(s3)^{\land}
up(s3).
                                                         continuous(w3, w5).
ok(11).
ok(12).
ok(cb1).
                                           repeat
ok (cb2).
connected to (11, w0).
                                                select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                                choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                                replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                  after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                           until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                         prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                           AC := yes \leftarrow up(s3)^{\land}
up(s3).
                                                         continuous(w3, w5).
ok(11).
ok(12).
ok(cb1).
                                           repeat
ok (cb2).
connected to (11, w0).
                                                select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                                choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                                replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                  after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                           until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- TRUE ^
up(s3).
                                                        continuous(w3, w5).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- continuous(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- continuous(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (X, Y) \leftarrow connected to (X, Y).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- continuous(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- connected to(w3, w5).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- ok(cb1).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- ok(cb1).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- ok(cb1).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- ok(cb1).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                              choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- ok(cb1).
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- TRUE.
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- .
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
light(12).
                                        prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- .
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

```
light(11).
                                        prove: ?continuous(I2, w5).
light(12).
down(s1).
up(s2).
                                          AC := yes <- .
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                              select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                              replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

That's what happens when we ask.

```
light(11).
light(12).
                                        prove: ?continuous(I2, w5).
down(s1).
up(s2).
                                          AC := yes <- .
up(s3).
ok(11).
ok(12).
ok(cb1).
                                          repeat
ok (cb2).
connected to (11, w0).
                                               select a conjunct a, from the body of AC
connected to (w0, w1) \leftarrow up(s2).
                                               choose clause C from KB with a<sub>i</sub> as head
connected to (w0, w2) < - down(s2).
                                               replace a<sub>i</sub> in the body of AC by the body of C
connected to (w1, w3) \leftarrow up(s1).
                                                 after making appropriate substitutions
connected to (w2, w3) < - down(s1).
                                          until AC is an answer (i.e., yes <- .)
connected to (12, w4).
connected to (w4, w3) \leftarrow up(s3).
connected to (p1, w3).
connected to (w3, w5) < - ok(cb1).
connected to (p2, w6).
connected to (w6, w5) < - ok(cb2).
connected to (w5, outside).
continuous (X, Y) \leftarrow connected to (X, Z) & continuous (Z, Y).
continuous (w3, w5) < - connected to (w3, w5).
```

The Awesome Power of Recursion

or how getting the representation right makes everything else so easy....

The Maze

