
CPSC 322
Introduction to Artificial Intelligence

September 20, 2004

Five Simple Steps to World Domination
(or how to build the black box)

1. Begin with a task domain that you want to
characterize

2. Distinguish the things you want to talk about in
the domain (the ontology)

3. Use symbols in the computer to represent
objects and relations in the domain. (Symbols
denote objects...they’re not really the objects.)

4. Tell the computer the knowledge about the
domain.

5. Ask the RRS a question which prompts the
RRS to reason with its knowledge to solve a
problem, produce answers, or generate actions

Five Simple Steps to Semantics
(or how to build the black box)

1. Begin with a task domain that you want to characterize.
You must have an intended interpretation of that domain.
Figure out the individuals that go into D.

2. Associate constants in the language with individuals in D.
That mapping is φ.

3. For each relation you want to represent, associate a
predicate symbol from the language. Each n-ary
predicate is a mapping from Dn to TRUE or FALSE. That
mapping is π.

4. Tell the computer the statements that are true in the
intended interpretation. This is called axiomatizing the
domain, where the definite clauses are axioms.

5. Ask questions about the intended interpretation, and
interpret answers using meanings you supplied.

Why do we care about semantics?
Giving serious thought to your intended interpretation of
your chosen domain helps you see whether the conclusions
Generated by your RRS are right or wrong

Your RRS doesn’t know...it’s just manipulating symbols

Formal semantics gives you a defined process for specifying
the intended interpretation and maintaining the integrity
of your RRS

So what exactly happens when we ask?

s3

s1
s2

light(l1).
light(l2).
down(s1).
up(s2).
up(s3).
ok(l1).
ok(l2).
ok(cb1).
ok(cb2).
connected_to(l1, w0).
connected_to(w0, w1) <- up(s2).
connected_to(w0, w2) <- down(s2).
connected_to(w1, w3) <- up(s1).
connected_to(w2, w3) <- down(s1).
connected_to(l2, w4).
connected_to(w4, w3) <- up(s3).
connected_to(p1, w3).
connected_to(w3, w5) <- ok(cb1).
connected_to(p2, w6).
connected_to(w6, w5) <- ok(cb2).
connected_to(w5, outside).

ask connected_to(w3,w5) &
 connected_to(w2,w3).

Top-down ground proof query
procedure

Start with a generalization of modus ponens, the
basic rule of inference:

 if “h <- b1 ^ b2 ^ ... ^ bm” is a clause in the knowledge
 base, and each bi has been derived, then h can be
 derived

Derived means it can be computed from the
knowledge base. We write
 KB g
if g can be derived from KB.

Top-down ground proof query
procedure

When we say to CILOG “ask ...”, we’re really
saying “Here’s a theorem, go prove it.”

So “ask a1 & a2 & ... & am.” in CILOG or
 “?a1 ^ a2 ^ ... ^ am.” in Datalog gets
converted to an answer clause:

 yes <- a1 ^ a2 ^ ... ^ am.

Top-down ground proof query
procedure

Miraculously, the proof procedure selects an atom
or conjunct from the right hand side of:

 yes <- a1 ^ a2 ^ ... ^ am.

Let’s say the procedure selected ai.
Then the proof procedure chooses a clause from
the knowledge base whose head matches ai. For
example:

 ai <- b1 ^ ... ^ bx.

select vs. choose
select indicates “don’t-care nondeterminism”
 if the selection made doesn’t lead to a solution
 (i.e., it’s not ultimately true) then there’s no
 reason to try any alternatives

 so when the proof procedure selects an atom
 from the body of the answer clause, if that
 atom ultimately isn’t true then there’s no point
 in selecting some other atom in the body
 because it’s one big conjunction

select vs. choose
choose indicates “don’t-know nondeterminism”
 if the selection made doesn’t lead to a solution
 (i.e., it’s not ultimately true) then it may be
 worthwhile to try other choices

 so when the proof procedure selects a clause
 from the KB to resolve with the selected atom
 from the body of the answer clause, if that
 resolution doesn’t ultimately lead to a solution
 then the proof procedure should choose
 another clause from the KB...it just might be
 the one that leads to a solution

Top-down ground proof query
procedure

The proof procedure then resolves the answer
clause:

 yes <- a1 ^ ... ^ ai ^ ...^ am.

with the chosen clause from the knowledge base:

 ai <- b1 ^ ... ^ bx.

yielding:

 yes <- a1 ^ ... ^ b1 ^ ... ^ bx ^ ... am.

Top-down ground proof query
procedure

Keep doing this until all the atoms in the body of the
answer clause are true:

 yes <- a1 ^ a2 ^ a3 ^ ... ^ am.
 yes <- a1 ^ true ^ a3 ^ ... ^ am.
 yes <- a1 ^ a3 ^ ... ^ am.
 yes <- a1 ^ true ^ ... ^ am.
 yes <- a1 ^ ... ^ am.
 :
 yes <- .

A sequence of answer clauses that ends with
“yes <- .” is called a derivation. The process is called
definite clause resolution.

Top-down definite clause interpreter
(without variables)

solve or prove: ?a1 ^ ... ^ ak.

 AC := yes <- a1 ^ ... ^ ak.
 repeat
 select a conjunct ai from the body of AC
 choose clause C from KB with ai as head
 replace ai in the body of AC by the body of C
 until AC is an answer (i.e., yes <- .)

So what exactly happens when we ask?

s3

s1
s2

light(l1).
light(l2).
down(s1).
up(s2).
up(s3).
ok(l1).
ok(l2).
ok(cb1).
ok(cb2).
connected_to(l1, w0).
connected_to(w0, w1) <- up(s2).
connected_to(w0, w2) <- down(s2).
connected_to(w1, w3) <- up(s1).
connected_to(w2, w3) <- down(s1).
connected_to(l2, w4).
connected_to(w4, w3) <- up(s3).
connected_to(p1, w3).
connected_to(w3, w5) <- ok(cb1).
connected_to(p2, w6).
connected_to(w6, w5) <- ok(cb2).
connected_to(w5, outside).

ask connected_to(w3,w5) &
 connected_to(w2,w3).

