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ABSTRACT 
In this paper we describe a preliminary investigation in using 
pupil dilation measurements to understand user visualization 
processing, with the long-term goal of building user-adaptive 
visualizations that can tailor the presentation of complex visual 
information to specific user needs and states.  In particular, we 
look at how a selection of pupil dilation measurements are 
affected by adding several highlighting interventions designed to 
aid visualization processing to a bar graph. 
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1 INTRODUCTION 
The primary purpose of information visualizations is to assist 
users in exploring, managing, and understanding data. To date, 
most visualizations follow a one-size-fits all approach and do not 
take into account user differences. Several studies have shown, 
however, that individual differences such as perceptual speed 
and verbal/visual working memory can significantly impact 
performance and preferences during visualization processing [3, 
4, 15, 17]. The long term goal of our research is to design user-
adaptive visualizations that can support users based on their 
individual needs. As a first step toward this goal, Toker et al. [13, 
16] analyzed users' gaze behaviour during visualization
processing using eye tracking and identified several significant
differences in attention patterns. In this paper, we extend this
work by looking at pupil dilation measures. In particular, we
analyze users' pupil dilation collected from a study involving
visualization tasks with a bar graph and several alternative
highlighting interventions designed to aid visualization
processing. Results from this study pertaining to a variety of
study factors on performance (completion time) already reported
in [3]. Our aim is to combine these results with an analysis of
pupil dilation to shed light on how the study factors (e.g., task
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type, interventions, and a variety of cognitive measures) impact 
visualization processing in terms of cognitive workload. Thus in 
this paper we present a preliminary analysis focusing on the 
effect of interventions on two measures of pupil dilation (mean 
and standard deviation of pupil size). We also outline our pupil 
dilation calibration methodology which examines alternative 
calibrating options when measuring baseline pupil size. 

2 RELATED WORK 
The use of eye tracking in information visualization systems has 
already been shown to be a strong candidate for predicting 
characteristics about the user in real-time. Both Steichen et al. 
[12] and Gingerich et al. [6] showed that a large set of aggregate
eye-gaze features are a viable source to predict user differences
(e.g., perceptual speed, visual working memory). In addition,
Lallé et al. [9] and Toker et al. [14] have shown that including
pupil dilation measures along with the set of aggregate eye-gaze
features can lead to significantly better predictions of user
differences (e.g., confusion, skill acquisition).

Eye tracking has also been used to identify and understand 
differences in terms of how the visualization is processed by the 
user. Toker et al. [13, 16] found several differences in 
visualization processing based on users' cognitive traits. For 
instance, users with low perceptual speed generated significantly 
more fixations and transitioned more often to the legend 
component of the visualization when compared to users with 
high perceptual speed. A similar result was found linking a user's 
visual working memory to the task answer input component of 
the visualization (e.g., radio buttons). These findings are 
important instances of how eye tracking can be leveraged for 
designing adaptive support since they identify specific elements 
of where users are having difficulty. Our aim is to extend this 
work with a similar analysis using pupil dilation data because it 
has been reliably shown that pupil dilation relates to changes in 
cognitive load [2, 7].  

Other research has also investigated pupil dilation within the 
context of user-adaptive systems. For instance, Iqbal et al. [8] 
evaluated cognitive workload during route planning and 
document editing tasks in order to identify opportune moments 
for interrupting the user. Prendinger et al. [11] monitor pupil 
dilation in order to predict user preferences when confronted 
with a choice of visually presented objects. Martínez-Gómez & 
Aizawa [10] tracked pupil dilation measures in order to infer 
reading comprehension, which can be used to model individual 
users' topic familiarity. In our paper, we examine pupil dilation 
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Figure 1: Sample bar graph visualization and task administered in the user study.

in the context of information visualizations, to inform the design 
of adaptive interventions based on differences in cognitive 
workload. 

3 USER STUDY 
The dataset used in this paper comes from a study that 
investigated the effectiveness of four highlighting interventions 
designed to help the processing of bar graphs, as well as how 
this effectiveness is impacted by both task complexity and 
different user traits. The long-term goal of this study was to 
understand if/which of these interventions would be suitable for 
providing adaptive support under specific circumstances, 
although in the study they were not presented adaptively. The 
study was a single session, within-subjects design, lasting at 
most 90 minutes. 62 participants performed 80 tasks using bar 
graphs (Figure 1) with a fully automated interface while their 
gaze was tracked via a Tobii T120 eye tracker. Users performed 
two different types of tasks (40 of each), chosen from a standard 
set of primitive data analysis tasks in Amar et al. [1]. The first 
task was Retrieve Value, one of the simplest task types in [1], 
which in the study consisted of retrieving the value for a specific 
individual in the dataset and comparing it against the group 
average (e.g., "Is Michael's grade in Chemistry above the class 
average?"). The second, more complex task type, was Compute 
Derived Value, which in the study required users to perform a 
set of comparisons, and then compute an aggregate of the 
comparison outcomes (e.g., "In how many cities is the movie 
Shark Swamp above the average revenue and the movie Love 
Letter below it?"). All tasks involved visualizations with the same 
number of data points (48) and same number of bar groups (8). 

Each intervention evaluated in the study (shown in Figure 2) 
was designed to highlight graph bars that were relevant to 
answer the current question by guiding a user's focus to a 
specific subset of the visualized data while still retaining the 
overall context of the data as a whole [5]. The Bolding 
intervention draws a thickened box around the relevant bars; De-
Emphasis fades all non-relevant bars; Average Reference Lines 
draws a horizontal line from the top of the left-most bar 
(representing the average) to the last relevant bar; Connected 

Arrows involves a series of connected arrows pointing 
downwards to the relevant bars. Each participant performed 
each of the two task types with each of the 4 interventions as 
well as No Intervention as a baseline for comparison, in a fully 
randomized manner. 

 
Figure 2: The four different highlighting interventions 
evaluated in the user study. 

4 PROCESSING PUPIL DATA 
As mentioned in the previous section, user gaze during the study 
was tracked using a Tobii T120 eye tracker. In addition to 
sampling information on gaze fixations and transitions, the eye 
tracker also records users' pupil diameter. In order to avoid 
possible confounds on pupil size due to lighting changes, the 
study was administered in a windowless room with uniform 
lighting. Because there are typically physiological differences in 
pupil size among individual users, it is also customary to collect 
a baseline pupil size from each user that can be used to later 
normalize the pupil measures.  

In most work, the baseline is obtained by measuring a user's 
rest pupil size, obtained at the beginning of a study under relaxed 
conditions where there is little or low cognitive load. In our 
study, we considered two different ways to create these 
conditions. One, following a standard approach found in the 
literature, involves having participants stare at a blank screen for 



 

several seconds. However, we were concerned about potential 
issues with luminosity differences between a blank screen and 
what is shown on the screen during an actual task. Therefore we 
measured an alternative calibration baseline by displaying a 
mock bar graph visualization in order to produce similar lighting 
conditions to a real study task. We also removed the textual 
elements of the mock graph in order to minimize any added 
cognitive load. We distinguish between these two calibration 
measurements as: Blank/Graph1. Additionally, because the study 
was quite long and intensive (on average 90 min.), all 
participants were required to take a break halfway into the 
study. We took this opportunity to calibrate for pupil baselines 
twice in order to account for possible changes over the course of 
the study. Calibration measurements were therefore taken at the 
start of the session and again after the break, which are 
distinguished by: Start/Break.  

In terms of calibration methodology, we are interested in 
knowing how similar/dissimilar the baseline pupil size 
measurements are in terms of luminosity differences between a 
blank screen versus a screen with a mock bar graph 
(Blank/Graph), as well as differences over time during the study 
(Start/Break). A Pearson correlation of the baseline pupil values 
for Blank vs. Graph produced an extremely strong correlation 
that was statistically significant (r = .921, n = 122, p < .001), 
indicating that these measures are almost identical. A Pearson 
correlation of the baseline pupil values for Start vs. Break also 
yielded a strong correlation that was statistically significant       
(r = .902, n = 122, p < .001),  indicating that calibration across 
time intervals is also very consistent. In light of these findings, 
we selected the baseline pupil measurement obtained under the 
Blank/Start calibration condition for adjusting pupil 
measurements during the first half of the study, and the 
Blank/Break baseline for adjusting pupil values in the second 
half of the study. 

5 RESULTS 
Several measures related to pupil dilation have been used in the 
literature which include: mean pupil size, minimum pupil size, 
maximum pupil size, standard deviation of pupil size, as well as 
measures that track the speed and acceleration changes in pupil 
diameter (see [10] for a summary). For this paper’s preliminary 
investigation, we focus on two of these pupil measures for 
analysis. First we select mean_pupilsize since it is a well-
established measurement that appears in almost all work that 
investigates pupil size. Second we select a somewhat less 
common measure std.dev_pupilsize because previous work 
looking at gaze fixation related measures [13, 16] have found 
significant results relating to standard deviations which were 
computed based on gaze fixation angles. We then use the 
relevant baseline calibrations (see previous section) to normalize 
the pupil measures of each user by applying the percentage 
change in pupil size (PCPS) [8], which is defined as: 

                                                                 
1 Relative luminance of the Graph calibration screen was calculated to be 16% 
darker than the Blank calibration screen. 

measured_pupilsize −  baseline_pupilsize

baseline_pupilsize
 (1) 

For both of the pupil measures mean_pupilsize and 
std.dev_pupilsize, we run a 5 (Intervention-Type) x 2 (Task-
Type) ANOVA with Task-Order as a between subjects factor. 
Since we run two models, a Bonferroni correction of 2 is applied 
and p-values are reported post correction at the .05 level. 

Effects of Intervention-Type 
There was a main effect of Intervention-Type on both 
mean_pupilsize (p < .001, R² = .942) and std.dev_pupilsize (p < 
.001, R² = .022). Refer to Figure 3 and Figure 4 for the 
directionality of these findings. 

 
Figure 3: Main effect of Intervention-Type on users’ mean 
pupil size. 

Bonferroni-adjusted pairwise comparisons on 
mean_pupilsize (Figure 3) indicate that pupil size was 
significantly larger with the Average Reference Lines intervention 
than with all the other interventions. This is interesting because 
[3] reported, for the same study, that Average Reference Lines 
was the only intervention that did not significantly improve 
completion time when compared to tasks where No Intervention 
was provided. This suggests that the lack of performance 
improvement from Average Reference Lines could be explained in 
terms of increased cognitive load due to possible intrusiveness of 
this graphical object. It is also interesting to note that, whereas 
in [3] conditions with no interventions had similar performance 
as conditions with Average Reference Lines, No intervention has a 
significantly lower mean_pupilsize than Average Reference Lines. 
This suggests that slower completion time with no intervention 
is not the result of increased cognitive load, but rather it may be 
due to the lack of guidance provided by the more successful 
interventions. 

As for std.dev_pupilsize (see Figure 4), pairwise comparisons 
indicate that std.dev_pupilsize during Average Reference Lines is 
significantly lower than with all other interventions except for 
Bolding. Given that Average Reference Lines also has the highest 
mean_pupilsize, the low std.dev_pupilsize tells us that users are 
likely maintaining a consistently high cognitive load throughout 
the whole task when they receive this intervention. In contrast, 
with other interventions there are only selected points with 
higher values of std.dev_pupilsize. Because in [3] these 
interventions were associated with improved performance, these 
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higher values may be associated with some notion of productive 
cognitive load (i.e., greater variability in pupil size is possibly an 
indicator of useful cognitive activity). 

 
Figure 4: Main effect of Intervention-Type on standard 
deviation of users’ pupil size. 

6 CONCLUSIONS & FUTURE WORK 
The long-term goal of our work is to build user-adaptive 
visualizations that can support the user based on their individual 
needs and states. In this paper, we examined how pupil dilation 
measurements can be leveraged to better understand information 
visualization processing.  

We started by providing methodology towards controlling 
for possible confounds that can interfere with measuring rest 
pupil size in a user study, which is needed to correct for 
physiological differences between users. We evaluated our 
methodology by comparing two different calibration methods for 
obtaining a user’s rest pupil size. First, we compared rest pupil 
sizes obtained on a blank screen versus a screen displaying a 
mock visualization since the screen brightness of our study tasks 
did not match the brightness of a blank calibration screen. We 
found a very strong significant correlation between both 
measurements, indicating that differences in rest pupil size 
between the two screens of differing brightness was consistent 
across users. Next, we compared rest pupil sizes obtained at the 
beginning of the study and during the middle of the study 
because the duration of the study was over an hour long. We 
also found a very strong significant correlation between both 
measurements, indicating that little difference exists between the 
two calibration times. Thus for our study, taking only one 
measurement of rest pupil size at the beginning of the study 
would have likely been adequate. Still, other researchers 
thinking of using pupil measurements in their studies ought to 
consider using the full set of calibration methods we presented 
here, in order to see if our findings will hold under other study 
conditions. 

Next, we examined the effect that several highlighting 
interventions had on pupil dilation. In particular, we found that 
Average Reference Lines was the only intervention for which 
mean pupil size was significantly larger. Average Reference Lines 
was also the only intervention that did not improve user 
performance, suggesting that the lack of improvement in 
performance is due to the high cognitive load induced by this 
intervention. We offer two possible implications for user-

adaptive visualizations based on this finding. First, monitoring 
pupil size could be beneficial towards designing, testing, or 
validating interventions, since instances of high cognitive load 
alone could be used to filter out unsuitable interventions (as 
opposed to relying on task performance). Second, pupil size 
could be leveraged as a real-time indicator of cognitive load to 
detect if users are having difficulty. Adaptations could then be 
triggered to support instances of high cognitive load during 
visualization processing. In fact, similar approaches have already 
been used in other areas of HCI, where cognitive load is tracked 
to determine suitable times to interrupt the user (e.g., [8]). 

Lastly, more work will be needed to see if our findings will 
transfer to other visualizations, tasks, or interventions. Our hope 
is that members of the user modeling community interested in 
using pupil dilation methods in their research can help further 
corroborate our results. 
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