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ABSTRACT 

User performance and satisfaction when working with an 

interface is influenced by how quickly the user can acquire 

the skills necessary to work with the interface through 

practice. Learning curves are mathematical models that can 

represent a user’s skill acquisition ability through 

parameters that describe the user’s initial expertise as well 
as her learning rate. This information could be used by an 

interface to provide adaptive support to users who may 

otherwise be slow in learning the necessary skills. In this 

paper, we investigate the feasibility of predicting in real 

time a user’s learning curve when working with 

ValueChart, an interactive visualization for decision 

making. Our models leverage various data sources (a user’s 

gaze behavior, pupil dilation, cognitive abilities), and we 

show that they outperform a baseline that leverages only 

knowledge on user task performance so far. We also show 

that the best performing model achieves good accuracies in 

predicting users’ learning curves even after observing 
users’ performance only on a few tasks. These results are 

promising toward the design of user-adaptive visualizations 

that can dynamically support a user in acquiring the 

necessary skills to complete visual tasks. 
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INTRODUCTION 

Information visualization (Infoviz) is gaining importance as 

a means for analyzing large and complex datasets. There is 

evidence that user performance and satisfaction in working 

with visualizations can be influenced by individual 

differences such as cognitive abilities (e.g., perceptual 

speed, visual working memory, and verbal working 

memory [13,17,41]), or personality traits (e.g., locus of 

control [23]). Thus, researches have started investigating 

how information visualization tools could be made more 

effective and usable by enabling them to adapt in real-time 
to some of these user characteristics. In this paper, we 

extend this line of work by focusing on another user 

characteristic that can influence the user’s experience with a 

new visualization: the user’s ability to acquire through 

practice the skills necessary to work with the visualization 

at best. In particular, we investigate whether a user’s skill 

acquisition ability can be predicted in real-time while the 

user is working with a visualization. If accurate prediction 

is possible early on during interaction, adaptive 

interventions could be devised to support users who appear 

to be slow in learning the necessary skills.  

Learning curves are mathematical models well-studied in 

cognitive psychology to model skill acquisition. They 

represent the relationship between practice and the 

associated changes in behaviour, such as the evolution of 

users’ proficiency over time [e.g., 37]. For instance, in the 

context of Infoviz, a user’s learning curve captures the 

user’s initial level of expertise with a given visualization as 

well as how fast the user will learn the set of skills required 

to perform tasks with it. If we could predict and track these 

characteristics (initial expertise, learning speed) while users 

acquire a new set of visualization skills, individualized 

support could be provided in order to improve user 
performance and engagement. In this paper, we investigate 

the feasibility of predicting a user’s learning curve while 

the user is performing tasks with ValueChart, a relatively 

complex, interactive visualization to support decision 

making.  

In educational systems, modeling and tracking domain skill 

acquisition over time based on users' observed proficiency 

have been used to design real-time adaptive strategies to 

support learning. For instance, Intelligent Tutoring Systems 

(ITS) can provide visual, verbal or textual help, or suggest 

exercises of adapted difficulty depending on user/task 
features and the user’s estimated mastery of domain skills 

[8,31]. To the best of our knowledge, the only work in 

Infoviz done on modeling learning skills is preliminary 

work presented in Toker et al. [42], where users performed 

visualization tasks with simple bar graphs. In that work, 

Toker et al. predict in real time the user’s skill acquisition 

level in a coarse binary way (during learning vs. after 
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learning). In contrast, in this paper, we intend to model the 

user’s learning curve, i.e., a more detailed description of the 

user’s learning experience with a visualization. We 

ultimately aim to design user-adaptive visualizations able to 

predict user’s learning curves in real time and use this 

information to customize the visualization accordingly. For 
instance, we envision supporting users according to their 

predicted individualized learning curve in the following 

manner: 

 If a user is predicted to have low initial expertise and low 

learning rate, support could be provided by simplifying 

the visualization in order to ensure that necessary basic 

skills are learned before the user becomes overwhelmed 

or confused. 

 If a user is predicted to have high initial expertise and 

high learning rate, the system can engage the user with 

more advanced functionalities within the current 

visualization or possibly even offering more complex 

visualizations. 

Predicting learning curves is particularly relevant at the 

beginning of the interaction with a novel visualization, as 
providing early adaptation can reduce disengagement and 

improve learning. In its most basic form, the simplest way 

to model learning curves is to observe past task 

performance. However, various data sources can also be 

leveraged to make these predictions in real-time. For 

example, Steichen et al. [41] highlighted the potential of 

using eye tracking to predict user’s characteristics in 

Infoviz. Pupil dilation is also a data source worth 

investigating since it has been shown to be influenced by 

cognitive workload [27]. Other data sources that are 

plausible candidates for predicting user skill acquisition are 

long-term user characteristics, such as cognitive abilities 
and personality traits.  

The goal of this paper is to compare the performance of 

models that leverage these various data sources, as well as 

basic information on past task performance, to predict users' 

skill acquisition in real-time. As a test-bed for our 

investigation, we use an interactive visualization for 

multiple-criteria decision making called ValueChart. 

The rest of the paper is organized as follows: Section 2 

gives an overview of the related work; Section 3 describes 

ValueChart and the study that generated the dataset used in 

our experiments; Section 4 describes how we build the 

learning curves that we aim to predict; Section 5 details the 

models we built to predict the curves; Section 6 discusses 

the performance of these models; and Section 7 concludes. 

RELATED WORK 

A typical method used in cognitive psychology for tracking 

how user performance improves with practice is by using a 

learning curve [40]. Learning curves are also frequently 

used in HCI for off-line comparison and evaluation of 

alternative interfaces, including information visualization 

systems, e.g., [35,39,45]. In contrast, in this paper we use 

the concept of a learning curve for building predictive 

models that can identify in real-time a user’s evolving 

proficiency with an information visualization system. 

Similar work has been extensively conducted in the field of 

Intelligent Tutoring Systems (ITS). In ITS, learning curves 

have been used to track and adapt help policies to a 
student’s evolving skills in the target educational domain 

(e.g., performing one and two digit subtraction for a math 

tutor), based on her past interactions with the ITS tracked 

via action logs (e.g., [7,36,44]). In contrast, we aim to track 

and adapt to a user’s evolving proficiency in using a 

visualization interface, leveraging gaze data as the main 

information source. 

Some work exists in HCI on adapting to a user’s level of 

familiarity with an interface. For example, [12] designed a 

mixed-initiative GUI-customization tool that provides 

suggestions on how to personalize the menus of a word 

processor based, among other factors, on the user’s 
expertise with the word processor. However, the ability to 

track such expertise in real time was not implemented. 

Other work in HCI has focused on predicting user skills in a 

coarse binary way. For instance, Ghazarian et al. [21] built 

models to automatically classify a user’s general skill in 

using different computer applications, based on 

mouse/keyboard logs and interface events such as menu 

selection, in order to adapt the complexity of the interfaces 

to novice/expert users. Hurst et al. [26] proposed a method 

to detect skilled vs. unskilled use of an image editing 

program by investigating menu usage and mouse logs, 
allowing them to design a user-adaptive menu based on the 

prediction of skilled behavior. In contrast in this paper, we 

look at user’s learning with a visualization over time, by 

predicting continuous learning curves, rather than a binary 

categorization of users (i.e., skilled vs. unskilled). 

Gaze data has been extensively used to detect different 

kinds of user states during interaction with an ITS, such as 

boredom, curiosity, disengagement [19,28], mind-

wandering [10], as well as domain learning [11,29]. [9] has 

also used gaze data to predict users’ problem-solving 

strategies as well as user performance while solving a 

visual puzzle. In addition, pupil dilation has been reliably 
shown to vary depending on changes in cognitive load 

[6,24]. In the context of building user-adaptive systems, 

[27] used pupil dilation measures to evaluate cognitive 

workload during route planning and document editing tasks 

in order to identify opportune moments for interrupting the 

user. Similarly, [37] monitored pupil dilation in order to 

predict user preferences when confronted with a choice of 

visually presented objects, and [33] tracked pupil dilation 

features in order to infer skills related to reading 

comprehension.  

Within the Infovis community, eye tracking has been used 
off-line to understand how users with different domain 

expertise process relevant visualizations, e.g., [16,34]. Gaze 

data has also been investigated to predict long-term user 
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traits (e.g., perceptual speed, visual working memory, 

verbal working memory, locus of control), as well as task 

type and task completion time [13,17,41]. Past studies have 

shown that user characteristics themselves (e.g., cognitive 

abilities, personality traits) can predict how well a user will 

perform on, or prefer, a given information visualization 
system [13,17,23,41]. 

The first attempt to predict interface skill acquisition in 

Infoviz is described in [42], where they evaluated users 

performing a series of low-level tasks using bar graphs. 

User performance on these tasks was categorized into two 

general phases of skill acquisition: during and after; 

indicating whether users were still in the process of 

acquiring, or had already acquired, the relevant 

visualization skills. These labels were derived based on 

performance across all users, as opposed to being 

customized to individual user performance. In contrast, in 

this paper, we extend that work not only by predicting 
actual continuous learning curves (as opposed to much 

coarser skill acquisition phases), but also by making 

predictions that are specific to each individual user (as 

opposed to being only based on pooled data). Furthermore, 

we look at skill acquisition within the context of a more 

complex and interactive visualization (ValueChart), as 

opposed to the simpler bar graphs used in [42]. 

VALUECHART AND USER STUDY 

The dataset used in this paper was collected from a user 

study using ValueChart1, an interactive visualization to 

support decision-makers in preferential choice, namely 

selecting the best option out of a set of alternatives 

characterized by a variety of attributes [14,15]. Figure 1 
shows an example of ValueChart for selecting rental 

properties among ten available alternatives (listed in the 

leftmost column), based on a set of relevant attributes (e.g., 

location, bus distance, appliances, etc.). These attributes are 

arranged hierarchically in the top part of the ValueChart, 

forming the columns in the central part of the display. The 

width of each column indicates the relative weight assigned 

to the corresponding attribute (e.g., utilities is less 

important than rent). The available alternatives (i.e., rental 

homes) are represented as the rows in the display. Each cell 

specifies how the alternative in that row fares with respect 

to the attribute in that column, indicated by the amount of 
filled cell color. In the rightmost part of the ValueChart, all 

values for each alternative are accumulated and presented 

as horizontal stacked bars, displaying the overall value of 

each alternative (e.g., home4 is the best home in the 

example). Some of the interactive functionalities available 

to support the decision process include inspecting the 

specific domain value of each attribute (e.g., the rent of 

home1 being equal to $500), sorting the alternatives with 

                                                        

1 Video demo: www.cs.ubc.ca/group/iui/VALUECHARTS 

 

respect to a specific attribute, swapping attribute columns, 

and resizing the width of an attribute's column to see how 

that would impact the decision outcome. 

 

Figure 1: An example of the main elements of the ValueChart 

visualization, here displayed in a horizontal layout [17]. 

For the ValueChart user study (fully described in [17]),    
95 participants were recruited (ages 16 to 40) to perform 5 

different types of visualization tasks, chosen from a set of 

low-level data analysis tasks defined by Amar et al. [2]. 

These five tasks (shown in Table 1) require answering 

questions from different domains for preferential choice 

(i.e., rental homes, universities, cell phones, restaurants, and 

hotels) using functionalities of ValueChart (e.g., sorting, 

reordering, weighting attributes). For each of these tasks, 

Table 1 shows their definition from [2], a sample question 

from the study, and the conceptual operations involved in 

answering the question. These include both lower-level 
mathematical and cognitive actions (e.g. generate 

aggregate value, compare values) [2], as well as instances 

of the five Amar et al. tasks themselves (e.g., compute 

derived value typically requires multiple preceding retrieve 

values). The number of conceptual operations in Table 1 

reflects this additional layer of actions per task type, and 

gives a conceptual measure of complexity (see [17] for 

more information). Thus, the quantities and types of 

conceptual operations in a task, in conjunction with the 

current level of skill a user has with these operations, will 

impact task performance. The specific operations shown in 

Table 1 are based on our study tasks, which always 
involved domains with 10 different alternatives and 10 

attributes. 

Participants repeated each task in Table 1 four times in a 

randomized fashion to account for within-user variability. 

For purposes outside the scope of this paper (described in 

[17]), two ValueChart layouts were evaluated: vertical vs. 

horizontal. The 20 study tasks were first performed with 

one of the two layouts for one domain, and then repeated 

with the second layout and a different domain, with order 

fully counterbalanced across users. Thus each participant 

performed a total of 40 tasks (5 task types x 4 repetitions x 
2 layouts) equally divided in two sessions (one per layout). 

While performing these tasks, the use’s gaze was tracked 

with a Tobii T120, a non-intrusive eye-tracker embedded in 

the study computer monitor. Each user also performed two 

decision making tasks in the study, but we will not consider 
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them in this paper because we don’t have a sufficiently 

precise definition of users’ performance for those tasks.  

PREDICTION TARGET: LEARNING CURVES 

Our goal is to predict a user’s learning curve as they 

perform tasks with ValueChart, i.e., predict the curve 

parameters that model the acquisition of visualization skills 

relevant to work with this particular visualization.  

A learning curve is a mathematical function that models 

changes in performance over time, as the amount of 

practice with a given activity increases. In psychology, a 
common approach to model learning curves is by fitting a 

power law function defined as follows [3,4,5]: 

               

Where X is a variable ranging over the number of tasks 

performed by the user;   is the observed performance of the 

user over X;   is the intercept denoting the initial expertise 

of the user; and   the slope representing the learning speed 

(a slope of zero indicates no apparent learning). 

In Infoviz, two performance measures typically used for   

are: task accuracy (percentage of correctly/incorrectly 
performed tasks), and response time (i.e., time needed to 

complete a task). In this paper, we selected response time 

because there was a ceiling effect of accuracy over the 

study tasks. 

In the next two subsections, we evaluate two alternative 

ways to define our target learning curves. The first assumes 

that the different types of tasks performed by the users are 

unknown when building the curve (task-independent), 

whereas the second requires this information to be 

available, and thus generates what we will call from now on 

task-dependent learning curves. Notice that both task–

independent and task-dependent learning curves are models 
of the same data, i.e., the performance of the user on all the 

trials. The only difference between the two is in how the 

curves are fitted to the data. In the end, we chose the task-

dependent model as our gold standard, because it yields a 

better fit of the data. 

Task-independent learning curves 

In order to get learning curve coefficients (i.e., the intercept 

a and the slope b in (1)), we simply fit a learning curve for 

each user using the power law function. A user’s task-

independent learning curve is fit by pooling together, with 

order maintained, the different types of tasks that were 

performed by that user. Due to the fact that users performed 

the same battery of tasks in each of the two study sessions 
(corresponding to using different ValueChart layouts, cf. 

supra), we average trials from the two sessions that were 

performed in the same order and use the resulting 20 data 

points per user to fit the learning curve for that user. Figure 

2 shows an example of a learning curve for one user, where 

the red dots are the response times (in order of completion) 

for each of the 20 tasks performed by the user, and the 

black curve is the power law function fit over the red dots. 

 

Figure 2: A sample learning curve for one user based on 

task response time in the ValueChart study. 

The learning curves we obtained for the users in our study 

indicated that 88 users improved over time (negative slope), 

whereas 7 users showed no learning (zero or positive 

slope). The upper rows of Table 2 report the following 

summative statistics of the fitted task-independent learning 

curves: r2 (a measure for how well a learning curve matches 

Task type  Task Definition from [2] Sample task question from study  Conceptual operations 
Mean response 

time (st.dev.) 

Retrieve Value  
Given a set of specific cases, find 
attributes of those cases.  

Is the value of 'skytrain-distance' of 
home3 less than home6?  

2 Retrieve values,             
2 Compare values 15sec. (10) 

Find Extremum  

Find cases possessing an extreme 

valued attribute over its range 
within a data set.  

What factor contributes the most 
towards the overall value of home4?  

10 Retrieve values,         

10 Compare values,          
1 Retrieve labels  

19sec. (14) 

Sort  
Given a set of cases, rank them 

according to some ordinal metric.  

List the top 3 homes (in descending 

order) according to overall value.  

10 Retrieve values,         
10 Compare values,          
1 Retrieve labels  

17sec. (9) 

Compute 
Derived Value 1  

Given a set of data cases, 
compute an aggregate numeric 

representation of those data cases.  

For how many homes is the 'rent' 
less than the 'rent' of home3?  

10 Retrieve values,         
10 Compare values,          
1 Generate aggregate  

20sec. (11) 

Compute 
Derived Value 2  

List the top 3 homes (in descending 
order) according to the aggregated 
value of 'cost' and 'space'.  

20 Retrieve values,         

10 Generate aggregates, 
10 Compare aggregates,   
3 Retrieve labels 

42sec. (27) 

Table 1: Descriptions of the five task types [17]. 
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the underlying performance data); the fitted curve’s 

intercept and slope (i.e., initial expertise and learning rate); 

and final expertise, i.e., the performance (here response 

time) expected to be achieved by the user at the end of the 

trial sequence. As Table 2 shows, for task-independent 

curves the fit is rather low (mean r
2
=.33, std. dev= .25), 

indicating that the power law can only partially model a 

user’s overall acquisition of visualization skills when 

information on user tasks is not taken into account. In our 

study, a plausible explanation for this low fit is that the 

complexity of the different task types varies considerably, 

as discussed in the previous section. Thus, different task 

types may generate different learning behaviors within 

users, which cannot be accurately captured by the task-

independent approach described above. To address this 

problem, in cognitive psychology, learning curves are often 

fit for different activities, for instance based on the 

knowledge required to complete them [3,4], or using an 
additional parameter to model tasks difficulty [18]. In the 

next sub-section, we explore a similar approach by building 

individualized learning curves derived from fitting separate 

learning curves for each of the five different task types 

administered in the study (Table 1) and by then aggregating 

them.  

Task-dependent learning curve  

A task-dependent learning curve for a given user is 

computed by averaging the coefficient of her learning 

curves across all five task types as follows. First, we build 

five learning curves, one for each task type  : 

       
                        

where, in each of the five learning curves,   is a variable 

ranging over the number of times the corresponding task 

type was performed by the user,   is the observed response 

times,    is the intercept for task type  , and    the slope of 

task type  .  

Next we compute:           and            with 

          

Then, the task dependent learning curve can be again 

simply expressed as:         

The lower rows of Table 2 shows summary statistics for the 

learning curves obtained using this task-dependent 

approach. As expected (mean r² = .69, std. dev= .20) shows 

a better fit compared to the task-independent approach. We 
did find that the intercept coefficients for the task-

independent and task-dependent curves are highly 

correlated (r2 = .80), whereas slopes are not (r2 = .45), 

confirming that learning speeds are different among tasks. 

Additionally, the correlation between values of final 

expected expertise (i.e., the predicted response time of the 

last trial) is high (r2 = .75) indicating that the task-

independent curves still provide an acceptable 

approximation for this measure despite the lower accuracy 

in predicting the learning trajectory that a user will follow 

to reach this expertise. 

Given the overall better fit of the task-dependent curves, we 

use them as the target for our predictive models in the rest 

of the paper.2  

  Min Max Mean Std.dev 

 Task-

independent 

r
2
 0.03 0.78 0.33 0.25 

Intercept 15 80 32.6 13.3 

Slope -0.9 0.05 -0.18 0.15 

Final Expertise 3 40 18.6 5.8 

 Task-

dependent 

r
2
 0.01 0.96 0.69 0.2 

Intercept 23 89 41.4 12.3 

Slope -1.7 -0.02 -0.4 0.24 

Final Expertise 5 41 21.8 6.1 

Table 2: Summary statistics of two approaches for defining 

individualized learning curve coefficients. 

MACHINE LEARNING EXPERIMENTS 

Our goal is to ascertain whether we can predict a user's skill 

acquisition process by predicting the intercept and the slope 
of that user’s learning curve by using different data sources 

as predictors. This section describes these data sources, the 

machine learning models we built, and how they are 

evaluated. 

Data Sources 

Here we outline three feature sets that will be used as 

predictors for inferring learning curve parameters. One 

feature set consists of measures that summarize a user’s 

gaze patterns, as tracked by the Tobii T-120 eye tracker 

during the study (Gaze feature set). A second set consists of 

measures that describe changes in a user’s pupil size during 

tasks, also based on raw data provided by the eye-tracker 

(Pupil feature set). A third feature set models a variety of 

user’s long-term characteristics that have been shown to 
impact visualization processing (User Characteristics 

feature set). 

Gaze feature set. Gaze data is captured by the Tobii eye-

tracker in terms of fixations (gaze maintained at one point 

on the screen), and saccades (quick movement of gaze from 

one fixation point to another). We then processed this raw 

data using EMDAT, a gaze data analysis toolkit3 to 

generate a battery of gaze-based features summarized in 

Table 3. Some of these features capture overall gaze 

activity on the screen (Overall features, top half of the 

table), while others do so for specific Areas of Interest 

(AOI) in the visualization (AOI features, middle part of 

Table 3). The seven AOIs defined for ValueChart in this 

study are shown in Figure 3. In total, we have 135 Gaze 

features. 

 

                                                        

2 It should be noted, however, that we obtained results similar to 
those reported in the later sections of this paper when predicting 
task-independent learning curves. 

3 EMDAT: http://www.cs.ubc.ca/~skardan/EMDAT 
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Overall Gaze Features 

Fixation rate 

Mean & Std. deviation of fixation durations 

Mean & Std. deviation of saccade length 

Mean & Std. deviation of relative saccade angles 

Mean & Std. deviation of absolute saccade angles 

AOI Gaze Features (for each AOI) 

Fixation rate in AOI 

Longest fixation in AOI 

Proportion of time, Proportion of fixations in AOI 

Number & Prop. of transitions from this AOI to every AOI  

Pupil Features 

Mean, Std. deviation, Maximum, Minimum pupil width 

Pupil width at the first and last fixation in a given trial 

Table 3: List of Gaze, AOI, and pupil features. 

 

Figure 3: Areas of Interest (AOI) defined over the complete 
visualization interface for horizontal ValueChart.  

Pupil feature set. The Tobii eye-tracker records the user’s 

pupil diameter (the horizontal width of each pupil) at each 

sample. We once more used EMDAT to compute a variety 

of features that describe the pupil diameter over the span of 

a task (bottom part of Table 3) for a total of 6 features. In 

order to avoid possible confounds on pupil size due to 

lighting changes, the study was administered in a 

windowless room with uniform lighting. To compensate for 

physiological differences in pupil size among individual 

users, we also collected pupil diameter baselines for each 

user by having them stare at a blank screen for ten seconds 

at the beginning of each session. Measured pupil dilation is 

adjusted using the percentage change in pupil size (PCPS), 

which is defined in [27] as: 

                                       

                  
       

User characteristics feature set. Several long-term user 

traits were measured via standard tests administered to 

participants at the beginning of the study. We measured 

three cognitive abilities: perceptual speed (a measure of 

speed when performing simple perceptual tasks), verbal 

working memory (a measure of storage and manipulation 

capacity of verbal information), visual working memory (a 

measure of storage and manipulation capacity of visual and 

spatial information). We also measured the personality trait 

known as locus of control (a measure of the extent to which 

a person believes they are able to control events affecting 

them)
4
. We chose these particular user characteristics 

because other studies have shown that they impact the 

effectiveness of visualization processing [13,17,41], and 

thus they may likely also affect skills acquisition related to 

this processing.  

Prediction models 

In this subsection, we first present the method used to 

produce a baseline for predicting individualized learning 

curve coefficients (intercept and slope) based solely on task 

performance from previous tasks. Next, we describe the 

predictive models that leverage gaze data, pupil dilation 

data, and user characteristics as input data sources. It should 

be noted that all models in this section are built without 

considering information on which task type a user is 

performing, as this information may not always be available 
to a visualization system when a user is working with it. 

Response-Time Baseline Model 

A simple way to infer a user’s learning curve is to track 

their task response times so far. To achieve this, as each 

task in our dataset is completed, we re-fit the learning curve 

function based on all the trials seen so far for that user. The 

result are two temporary learning curve coefficients which 

can be used as predictions of the actual final learning curve 

coefficients for that user. For instance at the end of trial 6, 

we fit a learning curve per user using only their 6 first 

completed trials. We use this approach as our baseline 

model since it requires only basic information regarding 

user task performance. At least two trials are required to fit 

a temporary learning curve this way.  

Machine Learning Models 

We want to ascertain whether we can achieve a better 
prediction of a user’s learning curve than that afforded by 

the basic response-time baseline by using as predictors data 

sources not linked to task response time: gaze, pupil, and 

user characteristics. In particular, we evaluate each of the 

three feature sets (gaze, pupil, user char.) individually, 

along with a feature set with all three combined. Predictive 

models based on gaze and pupil features are built over 

increasing numbers of consecutive trials, from 1 trial to    

20(all) in order to ascertain how model performance 

depends on the amount of evidence seen. This does not 

apply for the model based only on user-characteristics, 

because these features are static and do not change over 
trials. Thus, we built a total of 3 (feature sets) x 20 (trials) x 

2 (learning curve coefficients) = 120 models utilizing gaze 

                                                        

4 The standard tests are, for PS: Kit of Factor-Referenced 
Cognitive Tests-P3 [20]; for verbalWM: OSPAN test [43]; for 
visualWM: Luck & Vogel’s test [32]; for Locus of Control: 
Rotter’s test [38]. 
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and pupil features, plus one model for user characteristics 

per coefficient, yielding a total of 122 models. 

We used backward stepwise linear regression to build our 

models using Akaike information criterion (AIC) 

optimization [1] to fine-tune our models as well as handle 

the high number of gaze features. Models were trained and 
tested via 10-fold cross validation over users, namely for 

any given fold 90% of the users in the study are in the 

training set and 10% are in the test set. The model that 

generates predictions for learning curve coefficients after 

seeing n trails in the study trial sequence (where n varies 

from 1 to 20) is trained over features of these n trials pooled 

over all users in the training set. This model is then used to 

predict the coefficients of the individualized learning curve 

of each user in the test set. We used the R software 

environment for statistical computing to evaluate and 

compare models. 

Model performance is measured via the root-mean-square 
error (RMSE) of the difference between the predicted 

learning curve coefficients and the actual ones. That is, the 

RMSE for each of our 122 models is computed as follows: 

       
          

   
   

   
       

 

where   is the set of users in the study,     represents the 

predicted coefficient for a given user  , and    represents 
the actual target coefficient for that user.  

RESULTS 

In this section, we report and discuss the performance of 

our models in predicting individualized learning curve 

coefficients (intercept and slope), compared to the baseline 

derived solely from tracking users' response-times. We then 

discuss the ten features with highest predictive power for 

the best performing model. Finally, we report accuracy of 

this model in performing binary classification over the 
target coefficients (i.e., low/high intercept and slope) in 

order to give a more practical measure of model’s reliability 

when used to guide adaptive interventions. 

Predicting learning curves’ coefficients 

Figure 4 shows the RMSE for predicting learning curve 

intercept when the models described in the previous section 

are trained over different number of trials. Figure 5 shows 

the analogous results for slope. 

To formally compare the effectiveness of the different 

models, we use each model over-time performance, i.e., 

RMSE averaged across the twenty trails. We then run 

pairwise comparisons between models using Bonferroni-

adjusted t-tests with over-time performance as the 
dependent measure. Table 4 summarizes the results of these 

comparisons by ordering models according to their 

overtime RMSE, bold underlining indicates models for 

which there are no statistically significant differences (here 

statistical significance is reported at p < .05). For example, 

the comparisons for predicting  Intercept coefficients shown 

in Table 4 indicate that All-features is better than Gaze 

which is better than UserChar. UserChar is better than Pupil 

but this difference is not significant, and Pupil is also not 

significantly better than the baseline model. 

 

Figure 4: RMSE at each trial count for predicting learning 

curve intercept (lower values are better). 

 

Figure 5: RMSE at each trial count for predicting learning 

curve slope. 

Learning 
Curve 

Comparison of models' performance 

Intercept All-features > Gaze > UserChar > Pupil > Baseline 

Slope All-features > Pupil > UserChar > Gaze > Baseline 

Table 4: Effect of feature set on overall model performance 

across all trials. 

The results for intercept and slope in Table 4 show that the 

All-features model has the best performance in both cases 

and is significantly better than the other models which 

consist of only one type of feature, including the baseline. 
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In fact all models statistically beat the baseline except for 

Pupil features for predicting intercept. These results 

indicate that eye tracking (gaze and pupil) as well as user 

characteristics are all valuable sources for the prediction of 

a user's learning curve and should all be considered together 

for optimal predictive performance. In terms of how early 
the prediction can be performed, the performance plots of 

the All-features model in Figure 4 and Figure 5 show that 

although the best performance (lowest RMSE) is achieved 

after 6 trials for intercept and 8 for slope, RMSE already 

drops considerably for both coefficients after seeing only 3 

trials. These results indicate that eye tracking and user 

characteristics are valuable sources for early prediction of a 

user's learning curve. In practice early prediction of the 

slope can be used, for example, to support users who appear 

to be learning slowly in speeding up their learning process. 

Similarly, early prediction of the intercept can be used to 

support users with low initial expertise by, for instance, 
disabling advanced functionalities or recommending 

additional training examples.    

If we look only at models built on one type of feature set, 

we can see that Gaze is better than both UserChar and Pupil 

for predicting intercept (i.e., initial expertise), whereas 

Pupil and UserChar are better than Gaze at predicting slope 

(i.e., learning rate). In other words, it seems that learning 
rate in visual tasks is better predicted by long-term 

cognitive abilities and pupil dilation features, whereas the 

initial expertise (intercept) can be captured best by gaze 

behavior. It is well established that pupil dilation is 

correlated to the level of a user’s cognitive load [22], thus 

learning rate seems to be impacted by both long-term 

cognitive abilities (such as working memory or perceptual 

speed) as well as short-term cognitive load. In terms of 

adaptation, it means that customizing a visualization to 

reduce cognitive load could help slow learners.  

Feature Selection: Exploring the Relative importance of 
features 

As described in the previous section, we found that multiple 

data sources together can better infer a user’s learning curve 

(i.e., All-Features), as opposed to any single source. In this 

section, we report the top selected features for this model in 

order to get a better sense of which features best predict the 
intercept and the slope of a user’s learning curve, as well as 

the directionality of the relationships. To investigate the top 

10 features, we averaged over all trials the relative 

importance of features at each individual trial. We applied 

the method described by Kruskal in [30] to get the relative 

importance of each feature, which consists in computing the 

R² contribution averaged over orderings among features for 

a regression model. Table 5 and Table 6 show the top ten 

selected features for intercept and slope respectively, where 

the relative importance is normalized so that the most 

important feature has a score of 100 and other scores 
express the relative importance proportionally to the top 

one. Additionally, a positive direction of the effect (D) 

indicates that initial expertise or learning rate is higher 

when the value of the feature increases. For the layout of 

the AOIs, refer to Figure 3. 

Features predicting intercept Set D Score 

Fixation rate on 'data attributes' Gaze/AOI - 100 

Perceptual speed UserChar + 71 

Mean fixation duration Gaze - 68 

Proportion of fixations on 'questions' Gaze/AOI - 41 

Std.dev pupil size Pupil + 39 

Proportion of time on 'questions' Gaze/AOI - 38 

Fixations on 'items' Gaze/AOI - 32 

Mean pupil size Pupil - 31 

Std.dev saccade distance Gaze - 30 

Transitions from 'data attributes' to 
'data visualization' 

Gaze/AOI + 
27 

Table 5: Top 10 features for predicting intercept. 

Features predicting slope Set D Score 

Perceptual Speed UserChar + 100 

Std.dev pupil size Pupil + 84 

Visual Working Memory  UserChar + 74 

Mean pupil size Pupil + 72 

Std.dev fixation duration Gaze + 59 

Transitions from the 'input' to the 
'question' 

Gaze/ AOI - 
49 

Fixation rate Gaze + 29 

Verbal Working Memory UserChar + 28 

Proportion of fixations on the 'input' Gaze/AOI - 25 

End pupil size  Pupil - 18 

Table 6: Top 10 features for predicting slope. 

The preponderant features for predicting intercept are gaze 

related (7 out of 10) with five of these relating to AOIs, 

meaning that tracking gaze behavior on different parts of 

the interface is important to detect initial expertise. This 

result makes sense as users with different levels of initial 

expertise with ValueChart likely process the visual display 

differently up front. There are then two pupil-based 

features, mean and standard deviation of pupil size, both 

with positive directionality meaning that higher values for 

them correspond to higher initial expertise. Generally, 

increase in pupil size is correlated with higher cognitive 

load [22]. Thus the fact that higher mean pupil size relates 
to higher initial expertise may indicate that more advanced 

users are able to maintain an overall higher level of 

cognitive load, and higher std.dev pupil size indicates that 

more advanced users can more readily increase or reduce 

their mental processing depending on the tasks. Lastly, only 

one user characteristic, perceptual speed, appears in the top 

ten for intercept, although it has a prominent second place 

in the ranking.  

In contrast, for slope three of the four user characteristics 

appear in the top 10 most predictive features: perceptual 

speed, visual working memory and verbal working 
memory. Since these are all cognitive abilities, it is not 

surprising that they are predictive of learning rate, and that 

they have positive directionality, namely that higher values 

of these abilities correspond to faster learning rate. These 
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results suggest that measuring these user cognitive abilities 

prior to the interaction with a visualization is worthwhile if 

an adaptive system aims to predict learning rate. In 

particular, both perceptual speed and visual working 

memory are among the top three predictive features for 

learning rate, indicating that a big part of how quickly a 
user will learn depends on cognitive abilities relating to the 

capacity to process visual information. Given that these 

traits are typically considered fixed (i.e., a user has no 

control over them), we ought to design adaptive support 

which may 'ease' the visual load for users with low 

perceptual speed or visual working memory.  

In general, the distribution of feature types in the top ten 

features for predicting learning rate is more balanced than 

for initial expertise: in addition to the 3 cognitive measures, 

there are 3 pupil-related features and 4 gaze-based features. 

Interestingly, only two of the four gaze features are AOI-

related, suggesting that attention to specific areas of the 
visualization is not as predictive of learning rate as it is of 

initial expertise.  

As far as pupil-related features are concerned, the two that 

appeared as top predictors for initial expertise also appear, 

with the same directionality, for learning rate suggesting 

that being able to maintain a high cognitive load, but have it 

vary with the demand of the task at hand, is predictive of 

faster learning rate. Interestingly, the third pupil-related 

feature in the top ten is one with a negative directionality 

with learning rate, namely end pupil size (i.e., size of pupil 

at the end of each trial). This finding suggests that this pupil 
measure provides an indication of excessive cognitive load 

that interferes with learning.  

Binary classification 

In this section we report the performance of the All-

Features model in terms of binary classification accuracies 

for learning curves coefficients, to give a more practical 

measure of this model’s predictive ability compared to 

RMSE. More specifically, we simulate the real-time 

classification of users into groups of fast/slow learners 

(slope) and high/low initial expertise (intercept).  

Users are divided into two balanced groups for each 

coefficient using a median split: high/low intercept, and 

high/low slope. We compared different classifiers 

implemented in Weka [25] and selected the most promising 
one: Random forests tuned to 50 random trees. As we did 

for the prediction of the actual coefficients in a previous 

section, classification is carried out over incremental 

sequences of trials, from 1 to 20, using 10-fold cross 

validation. We report class accuracies and do not include a 

baseline accuracy since we have already shown in the 

previous section that the All-features model was always 

significantly better or equal to the baseline. Results for 

classification of intercepts are shown in Figure 6, those for 

slopes are shown in Figure 7. 

T-tests between class accuracies across all trials shows no 

significant difference (p > .05) for either the intercept or the 

slope, indicating that both classifiers are well balanced (i.e., 

the random forest classifier can predict equally well 

high/low intercepts and high/low slopes). From a practical 

point of view, it means that adaptive strategies can be 
designed for each group of users. 

 

Figure 6: Class accuracies of binary predictions of intercepts 

using the All-features model. 

 

Figure 7: Class accuracies of binary predictions of slopes using 

the All-features model. 

For the intercept, class accuracies range from 57% (after 

trial 1) to 83%, with an overtime accuracy of 77%. 

Regarding the slope, accuracies are slightly lower at the 

beginning (55% at trial 1) and reach as high as 82%, with 

overtime accuracy of 75%. We can notice that, for both 

coefficients, accuracies as high as 70% are reached after 

seeing only 4 trials. Very early predictions (i.e., trials 1-3) 

yield moderate accuracies ranging from 57% to 69% for the 

intercept, and from 55% to 67% for the slopes. 

In terms of designing adaptive support for a visualization 
system, achieving accuracies of 70% after only 4 observed 

trials of data (which is on average 90 seconds of data) is 

promising in terms of inferring which users can benefit 

from tailored support. 
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CONCLUSION, DISCUSSION, AND FUTURE WORK 

In this paper, we have studied the feasibility of predicting a 

user's learning curve while they perform a series of visual 

tasks using ValueChart, an interactive visualization for 

multiple-criteria decision making. Learning curves model a 

user’s ability to learn new skills through practice, and in 

this paper we use them to model a user's initial expertise 

with a visualization, as well as their expected learning rate 

for the related skills. Our long-term goal is to leverage these 
predictions in user-adaptive visualizations that can tailor the 

interaction to a user’s learning trajectory.  

Whereas learning curves have been leveraged in the field of 

Intelligent Tutoring Systems to provide real-time adaptive 

support to learning a target educational domain, their usage 

in other areas of Intelligent User Interfaces has so far been 

limited. Toker et al. [42] have done preliminary work on 

using learning curves fit to population data to coarsely 

classify users as being either in the skill acquisition phase 

or having acquired necessary skills. We extended that work 

by predicting learning curves fit to individual users, thus 
achieving a finer-grained ability to track the user’s skill 

acquisition process. 

We showed that we can predict users' learning curve 

coefficients, i.e., the intercept (initial expertise) and the 

slope (learning rate) with substantial accuracy early on 

during the user's interaction with ValueChart. Our 

predictive models, which leverage different combinations 

of features including gaze behavior, pupil dilation, and 

cognitive abilities, significantly outperformed a simple but 

strong baseline model built on observed past performance. 

The best performing model overall leverages all of user 
gaze behavior, pupil dilation, and cognitive abilities to 

make its predictions. We described its performance both in 

terms of RMSE in predicting learning curve coefficients, as 

well as in terms of classifying users into binary groups 

(fast/slow learners; high/low initial expertise). On the latter 

measure, this model reached an accuracy of 70% after 

observing only 4 user tasks. 

These results provide encouraging evidence that early 

prediction of user’s skill acquisition is possible in 

information visualization, although it will of course be 

necessary to show the generality of these findings by 

replicating them with visualizations other than the 
ValueChart used in this study. Early prediction of skill 

acquisition, in turn, is important for our general goal of 

devising user-adaptive visualizations that can tailor 

information presentation to each user’s individual needs. 

For instance, we plan to design and evaluate adaptation 

strategies for users predicted to have low initial expertise 

and low learning rate by either providing interventions that 

help these users identify and process the relevant elements 

of the visualization (for instance by highlighting relevant 

parts of the visualization), or by simplifying the 

visualization in order to ensure that necessary basic skills 

are learned before more advanced functionalities are 

available.  

Another thread of future work relates to further improving 

our predictive models of skill acquisition. First, we expect 

that adding a measure of task performance to gaze, pupil, 

and user characteristics features can improve model 
accuracy. Second, we will  study if stochastic models can 

reinforce predictions overtime. Lastly, we plan to 

investigate the addition of features based on interface 

actions, as ValueChart is an interactive visualization, and 

past work on combining gaze and action information has 

showed promising results [29]. 
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