
A Rapid Reconfigurable VLIW co-Processor
for Ternary Emulation of Digital Designs

Flávio Miana*1

miana@cpdee.ufmg.br

Wilton Padrão*2

wpadrao@dcc.ufmg.br
Jones Oliveira*2

joa@dcc.ufmg.br

Antônio O. Fernandes*2

otavio@dcc.ufmg.br
Julio Cezar de Melo*1

demelo@cpdee.ufmg.br
Claudionor N. Coelho Jr*2

coelho@dcc.ufmg.br

Abstract

 We present a cycle-based rapid reconfigurable VLIW (Very Long Instruction
Word) bit-wide co-processor which allows ternary logic emulation. This approach allows
the speed up of design process since debugging a hardware design may be costly if the
designer have to iterate many times in the design and simulation steps. This VLIW
processor efficiently emulates the hardware behavior verifying the system’s functionality
much faster than conventional simulation tools.

1. Introduction

The common steps during a hardware design are project specification, design,

simulation, prototyping, and production[4]. In Figure 1, these steps are described

according to a design time line. During the design of a digital circuit, we may have to

iterate several times in the Design, Simulation, and Prototyping steps to debug a system.

Therefore, it is imperative that these steps are executed quickly to speed up the design

time.

Hardware emulation makes possible to verify the system's behavior by a

prototype that is equivalent to the intended design. Recent advances in Field-

Programmable Gate Array (FPGA)[1][2] made possible an increase in use of hardware

emulation in order to reduce simulation time in up to six orders of magnitude than

classical simulation[3].

One can see that FPGA may reduce the design time of processor designs[12].

The key for this new approach takes place because new FPGAs can be configured very

quickly, allowing a whole processor to be mapped to a set of FPGAs emulating the

*1 Electrical Engineering Department – Universidade Federal de Minas Gerais, Brazil
*2 Computer Science Department – Universidade Federal de Minas Gerais, Brazil

processor’s behavior. Thus, whenever it is necessary to change some definition in the

design, the hardware can be reconfigured in milliseconds[2]. However, it may be slow to

be efficiently used during the debugging cycle presented in Figure 1.

Project
Specification

Design

Simulation

Prototyping

Production

T
i
m
e

I
t
e
r
a
t
i
o
n
s

Figure 1. Steps of a Hardware Design

There are different levels of reconfiguration, such as coarse or fine-grained. At

coarse-level (also named as process-level), whenever the application context has to be

changed, the system is reconfigured, taking an order of milliseconds. On the other hand,

each phase of a computation may require different hardware, requiring reconfiguration

times on the order of microseconds. This kind of reconfiguration is called in the literature

block-level or fine-grained reconfiguration.

 We propose here a new type of reconfiguration whose reconfiguration time is

higher than process-level reconfiguration, but with a number of configurations so high

that we cannot store them or synthesize them each time a new program/process is

invoked. In order to speed up simulation time, this technique is used in the following

way. We have to separate the reconfiguration into two phases. The first phase comprises

the generation of the hardware that can be used for all different configurations. In the

second phase, the specific data configuration is generated quickly.

For the first phase, we synthesize a Rapid Reconfigurable Very Long Instruction

Word (VLIW) bit-wide co-processor that allows ternary logic emulation. The VLIW co-

processor emulates a digital design at a cycle level. This VLIW processor is comprised

of multiple ALUs performing any two-input/one-output ternary functions. Ternary logic

means a third unknown or indeterminate logic value (usually named X) is added to the

binary logic set {0,1}. The third value X can be used to reduce the number of cases of

the system to be tested[5] by encapsulating values that are unknown or indeterminate to

the co-processor. For the second phase, on each new iteration, we generate code for this

VLIW processor that emulates the circuit behavior. Our approach for design

development is represented in Figure 2. We eliminate the hardware synthesis step from

the Iterations of Figure 1 because it would tremendously increase the iteration time. In

this way, we can quickly reconfigure a new design version into the emulation system

without synthesizing a new chip.

Project
Specification

Design

Production

T
i
m
e

I
t
e
r
a
t
i
o
n
s

FPGA
SW Synthesis

 VLIW
Code-Generator

FPGA

HW Synthesis

Figure 2. Emulation Cycle Using Rapid Reconfigurable VLIW co-Processor

This paper is organized as follows. In Section 2, we present a briefly description

of the Development System XC6200 board. The architecture of the co-processor is

presented in Section 3. In Section 4 and 5 we present the software support and the

system integration, respectively. Finally, Section 6 concludes the paper and suggests

some future work.

2. Xilinx Development System XC6200

 This section briefly presents the XC6200 Development System that is used as the

emulation engine proposed in this paper. For further information, referred to [6].

 The XC6200 Development System (XC6200DS) offers some features such as:

• PCI Based Development System;
• High speed Data Transfers to board memory;
• 16K User Programmable Gates with the XC6216;
• Up to 2 Mb fast SRAM;
• Flexible clock generation for Xilinx 6200;
• Debugger software supports validation of XC6200 based design and reduces

time to market;

Figure 3. Board Architecture

 N ED[31:0]

WA[19:0]

 EA[19:0]
W E
 Xilinx 6216

WD[31:0]

Xilinx 4013E

PCI Interface

SRAM

SRAM

SRAM

SRAM

8

8

8

16

21

21
21

32

16

21

32

The XC620DS is a high performance PCI based computing and input/output

coprocessor for Win95 based PC's and consists of a Xilinx 4013E[6] and a compute

element. The compute element is a Xilinx 6200 FPGA[7], four 8-bit wide SRAM's and

six bus controller chips to control data flow. Figure 3 shows the primary components of

the architecture. A Xilinx 4013E FPGA is used as the PCI bus interface. Approximately

50% of the chip are used for this function and the remaining area is used for card control

logic. The 4013E FPGA is electrically and functionally 100% PCI compliant. For details

of the PCI LogiCore see product description which is available separately from Xilinx[8].

The primary component of the compute element is the Xilinx 6216. The board

architecture allows the XC6216 to be reconfigured through the PCI interface during run-

time. The PCI interface provides direct access from the host PC to logic cells within the

user circuit. The output of any cell's function unit can be read and the flip-flop within

any cell can be written through the PCI interface. The compute element memory is

organized into two banks. Each bank consists of a maximum of two 512K x 8 SRAM's

(128K x 8 SRAM's are normally supplied). A bank of RAM can be accessed from either

the signals to control the RAMs individually. The development system provides a

flexible architecture in order to implement a wide variety of algorithms.

3. Bit-Level Description of the VLIW Reconfigurable co-Processor

The VLIW bit-wide co-processor allowing ternary logic emulation is a hardware

cycle-based emulator that evaluates one basic block per cycle. We can describe a basic

block as any sequence of instructions containing only assignments and, without any

branching conditions. Each cycle of simulation corresponds to executing all assignments

of the basic block. In Figure 4, we exemplify a basic block that simulates the logic

behavior of a full adder circuit, where A, B and CI (carry-in) are the inputs of the circuit;

S (Sum) and CO (carry-out) are the output and aux1,...aux5 are the internal wires of the

circuit.

 Basic Block

aux1 = A∧B;
S = aux1 ∧ CI;

aux2 = A ⏐ B;
aux3 = aux2 & CI;
aux5 = A & B;
CO = aux5 ⏐ aux2;

Figure 4. Example of Basic Block

3.1 VLIW co-processor

The datapath of the co-processor is represented as in Figure 5. The block labeled

ALU shows the four independent ALUs with two registers of two bits each (regALU).

Although we represented the Instruction Memory and Data Memory in Figure 5, this is

only one memory unit in the VLIW co-processor.

Instruction.

Memory

Figure 5 VLIW co-Processor datapath

The VLIW co-processor has a 32-bit bus. There is a 32-bit register, named

Reserved (regR), which exchanges data with Data Memory. The block Instruction

Decoding decodes the fetched instruction checking if it is Memory-Register, Register-

Register or an ALU instruction. The instruction set of the co-processor is presented in

Table 1.

Type Instruction
Memory-Register load [Mem] ∏ regR
 store regR ∏ [Mem]
Register-Register mov regR ∏ regALU
 mov regALU ∏ regR
 zeros regR
 zeros regALU
 ones regR
 ones regALU
ALU and Rj,Rk : Rj = Rj∧Rk
 or Rj,Rk : Rj = Rj∨Rk
 xor Rj,Rk : Rj = Rj⊗Rk
 Rj → Rk : Rj = !Rj ∨ Rj

 Table 1 VLIW co-Processor Instruction Set

Data

Memory
Register
Reserved

pc A
L
U

Instruction
Decoding

The four basic ALU instructions combined with their complementations and

symmetries can represent all sixteen two-input logic functions. In Figure 6, we present

the architecture of the ALU block. The interconnections and multiplexers/demultiplexers

allow an easy way to send a data already computed at one ALU to any other ALU with its

correspondent register.

In Figure 6, the gray block represents the demultiplexers and dark gray,

multiplexers. After the instruction is decoded at Instruction Decode, the demultiplexers

send the data to the correct two-bit registers R0-R15. The multiplexers select the input of

the ALUs and, ALUs place the result of its operation in the demultiplexers.

 R0

 R1

 R2 ALU 0

 R3

 R4

 R5

 R6 ALU 1

 R7
 R8

 R9

 R10 ALU 2

 R11

 R12

 R13

 R14 ALU 3

 R15

Figure 6. ALU Block

 Since we are working with ternary logic emulation, each number that is processed

by the ALU can assume the values in the set {0,1,X}. In order to encode these three

values, we use the two bit encoding of Table 2.
Ternary Number Representation

0 00

1 11

X 01

Table 2. Ternary Number Representation

 The complementation of X is X in ternary logic, with all other Boolean operations

being performed bit-wise. Therefore, we define a special NOT operation that can be

described in VHDL according to Figure 7.

.....
architecture BEHAVIORAL of alu_emul is
begin

 constant O : BIT_VECTOR (1 downto 0) := B"11";
 constant Z : BIT_VECTOR (1 downto 0) := B"00";
 constant X : BIT_VECTOR (1 downto 0) := B"01";
 constant NOT : array (BIT_VECTOR (1 downto 0))
 of BIT_VECTOR (1 downto 0) := (O => Z; Z => O; others => X);
....

Figure 7. Ternary Numbers in VHDL Representation

In the next sections, we are going to show the system's software support and how

the co-processor operates and its interaction with an external environment.

4. Software Support

 Our VLIW co-processor is a cycle-based emulator that manipulates a single basic-

block per cycle. As mentioned before, the VLIW co-processor manipulates any logic

function of two-input/one-output. Therefore, we start with the circuit we want to emulate

described in some hardware description language, such as Verilog HDL[10] or VHDL[9].

A synthesis process generates a logic description of the circuit that is mapped into gates

specified in a technology library[11] compatible with the VLIW instructions. Finally, the

VLIW Compiler translates and schedules this circuit description to the co-processor

Language, and the user can begin the testing phase. These steps are shown in Figure 8.

Verilog HDL,
VHDL
Description

Logic
Description

VLIW
Compiler

Emulation

Synthesis Technology
Mapping

Figure 8. Diagram of pre-Processing a Circuit Description

5. The System : Interaction between Hardware Emulator and a Host
Computer

 An IBM-PC is used as a host computer that controls our cycle-based VLIW co-

processor through sending data and control signals using PCI facilities as described in

Section 2. The data signals are pre-processed basic blocks while control signals initialize

and reset the system. In Figure 9, we detail the system.

IBM-PC
RAM

instructions/

data

FPGA

XC6200

2.Computing

5. Reset

1.Data Download

4. Data Upload

3. Halt BasicBlock

Board

Figure 9. The System Integration

 Once the pre-processed basic block is downloaded, VLIW co-processor in FPGA

XC6200 starts its computation. When a Halt Basic Block Instruction is reached, the co-

processor signals the host computer. The data available in RAM is uploaded, processed,

and the computer resets the co-processor initiating a new basic block computing or the

next emulation cycle.

 As we only download instructions and data to the RAM instead of configuring the

FPGA in debugging phase, we reach the system requirement of fast reconfiguration.

6. Conclusions

During a hardware design, there are some critical steps such as designing,

simulation and prototyping that affects its design time since the designer may iterate

many times in these steps. Due to recent advances in FPGAs, hardware emulation made

possible to reduce this design time because FPGAs can be reconfigured very quickly, and

simulating the system’s behavior much faster than conventional event driven or compiled

code simulators.

We proposed a cycle-based rapid reconfigurable VLIW co-processor that allows

ternary logic emulation. This co-processor is being currently developed at LECOM

(Computer Engineering Laboratory - Computer Science Department - UFMG) and we

expect to complete its implementation by the end of 1997.

For future work we intend to integrate this ternary logic VLIW co-processor to a

ternary logic simulator for a HW/SW co-design development. Also, we intend to

introduce a remote interaction with this reconfigurable co-processor through the Web by

a WebScope software[13].

7. References

[1] Brown, S., Rose, J., FPGA and CPLD Architectures: A Tutorial, IEEE Design & Test of Computers,
Vol. 12, No. 2, pp. 42-57, Summer 1996.
[2] Villasenor, J., Mangione-Smith, W. H., Configurable Computing, Scientific American, pp 54-59, June
1997.
[3] Kumar, J., et al, Emulation Verification of the Motorola 68060, Proc. Int’l Conference Computer
Design: VLSI in Computer and Processors, IEEE CS Press, 1995, pp. 150-158.
[4] Gajski, D., Vahid, F., Narayan, S., Gong, J., Specification and Design of Embedded Systems, Prentice-
Hall, 1994.
[5] C. H. Seger and R. E. Bryant. Formal Verification by Symbolic Evaluation of Partially-Ordered
Trajectories. Technical Report 93-08, Department of Computer Science, University of British Columbia,
July 1993.
[6] Xilinx - The Programmable Logic Data Book, 1996.
[7] Xilinx – XC6200 Field Programmable Gate Array DataSheet
[8] Xilinx – LogiCore PCI Master and Slave Interface User’s Guide
[9] R. Lipsett, C. Schaefer and C. Ussery. VHDL : Hardware Description and Design. Kluwer Academic
Publishers, 1989.
[10] D. E. Thomas and P. R. Moorby. The Verilog hardware description language. Kluwer Academic
Publishers, 1991.
[11] Sentovich, E. M., et al, SIS: A System for Sequential circuit Synthesis, Technical Report, Berkley
University,1992
[12]Quickturn Design Systems, Inc. – HomePage : http://www.quickturn.com
[13]Xilinx – HomePage: http://www.xilinx.com

	Figure 6. ALU Block

