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Abstract  

 
 We present a cycle-based rapid reconfigurable VLIW (Very Long Instruction 
Word) bit-wide co-processor which allows ternary logic emulation.  This approach allows 
the speed up of design process since debugging a hardware design may be costly if the 
designer have to iterate many times in the design and simulation steps.  This VLIW 
processor efficiently emulates the hardware behavior verifying the system’s functionality 
much faster than conventional simulation tools.  
 
1. Introduction 

 

The common steps during a hardware design are project specification, design, 

simulation, prototyping, and production[4].  In Figure 1, these steps are described 

according to a design time line.  During the design of a digital circuit, we may have to 

iterate several times in the Design, Simulation, and Prototyping steps to debug a system.  

Therefore, it is imperative that these steps are executed quickly to speed up the design 

time.  

Hardware emulation makes possible to verify the system's behavior by a 

prototype that is equivalent to the intended design.  Recent advances in Field-

Programmable Gate Array (FPGA)[1][2] made possible an increase in use of hardware 

emulation in order to reduce simulation time in up to six orders of magnitude than 

classical simulation[3].  

One can see that FPGA may reduce the design time of processor designs[12].  

The key for this new approach takes place because new FPGAs can be configured very    

quickly, allowing a whole processor to be mapped to a set of FPGAs emulating the 
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processor’s behavior.  Thus, whenever it is necessary to change some definition in the 

design, the hardware can be reconfigured in milliseconds[2].  However, it may be slow to 

be efficiently used during the debugging cycle presented in Figure 1. 
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Figure 1. Steps of a Hardware Design 
 

There are different levels of reconfiguration, such as coarse or fine-grained. At 

coarse-level (also named as process-level), whenever the application context has to be 

changed, the system is reconfigured, taking an order of milliseconds. On the other hand, 

each phase of a computation may require different hardware, requiring reconfiguration 

times on the order of microseconds. This kind of reconfiguration is called in the literature 

block-level or fine-grained reconfiguration. 

 We propose here a new type of reconfiguration whose reconfiguration time is 

higher than process-level reconfiguration, but with a number of configurations so high 

that we cannot store them or synthesize them each time a new program/process is 

invoked.  In order to speed up simulation time, this technique is used in the following 

way.  We have to separate the reconfiguration into two phases.  The first phase comprises 

the generation of the hardware that can be used for all different configurations.  In the 

second phase, the specific data configuration is generated quickly.  



For the first phase, we synthesize a Rapid Reconfigurable Very Long Instruction 

Word (VLIW) bit-wide co-processor that allows ternary logic emulation.  The VLIW co-

processor emulates a digital design at a cycle level.  This VLIW processor is comprised 

of multiple ALUs performing any two-input/one-output ternary functions.  Ternary logic 

means a third unknown or indeterminate logic value (usually named X) is added to the 

binary logic set {0,1}.  The third value X can be used to reduce the number of cases of 

the system to be tested[5] by encapsulating values that are unknown or indeterminate to 

the co-processor.  For the second phase, on each new iteration, we generate code for this 

VLIW processor that emulates the circuit behavior.  Our approach for design 

development is represented in Figure 2.  We eliminate the hardware synthesis step from 

the Iterations of Figure 1 because it would tremendously increase the iteration time.  In 

this way, we can quickly reconfigure a new design version into the emulation system 

without synthesizing a new chip.  
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Figure 2. Emulation Cycle Using Rapid Reconfigurable VLIW co-Processor 

 

This paper is organized as follows.  In Section 2, we present a briefly description 

of the Development System XC6200 board.  The architecture of the co-processor is 

presented in Section 3.  In Section 4 and 5 we present the software support and the 



system integration, respectively.  Finally, Section 6 concludes the paper and suggests 

some future work.  

 

2.  Xilinx Development System XC6200 
 
 
 This section briefly presents the XC6200 Development System that is used as the 

emulation engine proposed in this paper. For further information, referred to [6]. 

 The XC6200 Development System (XC6200DS) offers some features such as: 

• PCI Based Development System; 
• High speed Data Transfers to board memory; 
• 16K User Programmable Gates with the XC6216; 
• Up to 2 Mb fast SRAM; 
• Flexible clock generation for Xilinx 6200; 
• Debugger software supports validation of XC6200 based design and reduces 

time to market; 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Board Architecture 
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The XC620DS is a high performance PCI based computing and input/output 

coprocessor for Win95 based PC's and consists of a Xilinx 4013E[6] and a compute 

element.  The compute element is a Xilinx 6200 FPGA[7], four 8-bit wide SRAM's and 

six bus controller chips to control data flow.  Figure 3 shows the primary components of 



the architecture.  A Xilinx 4013E FPGA is used as the PCI bus interface.  Approximately 

50% of the chip are used for this function and the remaining area is used for card control 

logic.  The 4013E FPGA is electrically and functionally 100% PCI compliant.  For details 

of the PCI LogiCore see product description which is available separately from Xilinx[8].  

The primary component of the compute element is the Xilinx 6216.  The board 

architecture allows the XC6216 to be reconfigured through the PCI interface during run-

time.  The PCI interface provides direct access from the host PC to logic cells within the 

user circuit.  The output of any cell's function unit can be read and the flip-flop within 

any cell can be written through the PCI interface.  The compute element memory is 

organized into two banks.  Each bank consists of a maximum of two 512K x 8 SRAM's 

(128K x 8 SRAM's are normally supplied).  A bank of RAM can be accessed from either 

the signals to control the RAMs individually. The development system provides a 

flexible architecture in order to implement a wide variety of algorithms.  

 
 
3. Bit-Level Description of the VLIW Reconfigurable co-Processor 
 

The VLIW bit-wide co-processor allowing ternary logic emulation is a hardware 

cycle-based emulator that evaluates one basic block per cycle. We can describe a basic 

block as any sequence of instructions containing only assignments and, without any 

branching conditions.  Each cycle of simulation corresponds to executing all assignments 

of the basic block.  In Figure 4, we exemplify a basic block that simulates the logic 

behavior of a full adder circuit, where A, B and CI (carry-in) are the inputs of the circuit; 

S (Sum) and CO (carry-out) are the output and aux1,...aux5 are the internal wires of the 

circuit. 

 

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
       Basic Block 

aux1 = A∧B; 
S = aux1 ∧ CI; 
 
aux2 = A ⏐ B; 
aux3 = aux2 & CI; 
aux5 =  A & B; 
CO = aux5 ⏐ aux2; 

Figure 4. Example of Basic Block 



 
3.1 VLIW  co-processor 
 

The datapath of the co-processor is represented as in Figure 5.  The block labeled 

ALU shows the four independent ALUs with two registers of two bits each (regALU).  

Although we represented the Instruction Memory and Data Memory in Figure 5, this is 

only one memory unit in the VLIW co-processor. 
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Figure 5 VLIW co-Processor datapath 
  

The VLIW co-processor has a 32-bit bus. There is a 32-bit register, named 

Reserved (regR), which exchanges data with Data Memory. The block Instruction 

Decoding decodes the fetched instruction checking if it is Memory-Register, Register-

Register or an ALU instruction. The instruction set of the co-processor is presented in 

Table 1. 

Type Instruction 
Memory-Register load [Mem] ∏ regR 
 store regR ∏ [Mem]  
Register-Register mov regR ∏ regALU 
 mov regALU ∏ regR  
 zeros regR 
 zeros regALU 
 ones regR 
 ones regALU 
ALU and Rj,Rk : Rj = Rj∧Rk
 or Rj,Rk    :  Rj = Rj∨Rk
 xor Rj,Rk  : Rj = Rj⊗Rk
 Rj → Rk  : Rj = !Rj ∨ Rj

                                     Table 1 VLIW co-Processor Instruction Set 
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The four basic ALU instructions combined with their complementations and 

symmetries can represent all sixteen two-input logic functions.  In Figure 6, we present 

the architecture of the ALU block.  The interconnections and multiplexers/demultiplexers 

allow an easy way to send a data already computed at one ALU to any other ALU with its 

correspondent register.   

In Figure 6, the gray block represents the demultiplexers and dark gray, 

multiplexers. After the instruction is decoded at Instruction Decode, the demultiplexers 

send the data to the correct two-bit registers R0-R15.  The multiplexers select the input of 

the ALUs and, ALUs place the result of its operation in the demultiplexers.  
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Figure 6. ALU Block 
 



 Since we are working with ternary logic emulation, each number that is processed 

by the ALU can assume the values in the set {0,1,X}.  In order to encode these three 

values, we use the two bit encoding of Table 2. 
Ternary Number Representation 

0 00 

1 11 

X 01 

Table 2. Ternary Number Representation 

  
 The complementation of X is X in ternary logic, with all other Boolean operations 

being performed bit-wise.  Therefore, we define a special NOT operation that can be 

described in VHDL according to Figure 7. 

 
 
 
 
 
 
 
  

 

..... 
architecture BEHAVIORAL of alu_emul is 
begin 
    .... 
    constant O : BIT_VECTOR ( 1 downto 0) := B"11"; 
    constant Z : BIT_VECTOR ( 1 downto 0) := B"00"; 
    constant X : BIT_VECTOR ( 1 downto 0) := B"01"; 
    constant NOT : array (BIT_VECTOR ( 1 downto 0)) 
             of BIT_VECTOR ( 1 downto 0) :=  ( O => Z; Z => O; others => X); 
.... 

Figure 7. Ternary Numbers in VHDL Representation  

 
In the next sections, we are going to show the system's software support and how 

the co-processor operates and its interaction with an external environment. 

 
4. Software Support 
 
 Our VLIW co-processor is a cycle-based emulator that manipulates a single basic-

block per cycle.  As mentioned before, the VLIW co-processor manipulates any logic 

function of two-input/one-output. Therefore, we start with the circuit we want to emulate 

described in some hardware description language, such as Verilog HDL[10] or VHDL[9]. 

A synthesis process generates a logic description of the circuit that is mapped into gates 

specified in a technology library[11] compatible with the VLIW instructions. Finally, the 

VLIW Compiler translates and schedules this circuit description to the co-processor 

Language, and the user can begin the testing phase.  These steps are shown in Figure 8. 
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Figure 8. Diagram of pre-Processing a Circuit Description 

 
5. The System : Interaction between Hardware Emulator and a Host 
Computer 
 
 An IBM-PC is used as a host computer that controls our cycle-based VLIW co-

processor through sending data and control signals using PCI facilities as described in 

Section 2. The data signals are pre-processed basic blocks while control signals initialize 

and reset the system.  In Figure 9, we detail the system. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

IBM-PC 
RAM 

 
instructions/ 

data

 
FPGA 

XC6200 

2.Computing 

5. Reset 

1.Data Download

4. Data Upload

3. Halt BasicBlock

Board 

Figure 9. The System Integration 
 
    Once the pre-processed basic block is downloaded, VLIW co-processor in FPGA 

XC6200 starts its computation. When a Halt Basic Block Instruction is reached, the co-

processor signals the host computer. The data available in RAM is uploaded, processed, 

and the computer resets the co-processor initiating a new basic block computing or the 

next emulation cycle.  

 As we only download instructions and data to the RAM instead of configuring the 

FPGA in debugging phase, we reach the system requirement of fast reconfiguration.  



6. Conclusions 
 

During a hardware design, there are some critical steps such as designing, 

simulation and prototyping that affects its design time since the designer may iterate 

many times in these steps.  Due to recent advances in FPGAs, hardware emulation made 

possible to reduce this design time because FPGAs can be reconfigured very quickly, and 

simulating the system’s behavior much faster than conventional event driven or compiled 

code simulators.  

We proposed a cycle-based rapid reconfigurable VLIW co-processor that allows 

ternary logic emulation.   This co-processor is being currently developed at LECOM 

(Computer Engineering Laboratory - Computer Science Department - UFMG) and we 

expect to complete its implementation by the end of 1997. 

For future work we intend to integrate this ternary logic VLIW co-processor to a 

ternary logic simulator for a HW/SW co-design development.  Also, we intend to 

introduce a remote interaction with this reconfigurable co-processor through the Web by 

a WebScope software[13]. 
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