
The Chip is Ready. Am I done? On-chip Verification using Assertion Processors

Jośe Augusto M. Nacif Fĺavio M. de Paula Claudionor N. Coelho Jr.
CS Dept. - UFMG - Brazil MindSpeed Technologies - USA CS Dept. - UFMG - Brazil

jnacif@dcc.ufmg.br flavio.depaula@mindspeed.com coelho@dcc.ufmg.br

Fernando C. Sica Harry Foster Antônio O. Fernandes Diógenes C. da Silva
CS Dept.-UFMG-Brazil Jasper DA - USA CS Dept.-UFMG-Brazil EE Dept.-UFMG-Brazil

sica@dcc.ufmg.br harry@jasper-da.com otavio@dcc.ufmg.br diogenes@cpdee.ufmg.br

Abstract
White-box verification is a technique that reduces ob-

servability problems by locating a failure during design
simulation without the need to propagate the failure to
the I/O pins. White-box verification in chip level designs
can be implemented using assertion checkers to ensure the
correct behavior of a design. With chip gate counts grow-
ing exponentially, today’s verification techniques, such as
white-box, can not always ensure a bug free design. This
paper proposes an assertion processor to be used with
synthesized assertion checkers in released products to en-
able intelligent debugging of deployed designs. Extend-
ing white-box verification techniques to deployed products
helps locate errors that were not found during simulation
/ emulation phases. We present results of the insertion of
assertion checkers and an assertion processor in an 8-Bit
processor and a communication core.

1. Introduction

There has been a large number of design errors de-
tected after the chip has been released [1–3]. As designs
increase in complexity, it becomes clear that no one can
ensure a bug-free design using conventional validation
tools, including simulation / emulation and formal veri-
fication techniques. Probably the most famous is the Pen-
tium Floating Point Bug [4] that was found just after chip
deployment.

As design validation is moving beyond chip deploy-
ment, we propose in this paper a methodology to detect
errors in released products based on the notion of asser-
tion processor. An assertion processor is a circuit inserted
into the design to monitor synthesized assertions, taking
appropriate action in the case of an assertion failure.

This paper is outlined as follows. Section 2 describes
the basis for this work, i.e. controllability and observ-
ability, and their relation to design validation. Section 3
presents assertion libraries that can be synthesized to fa-
cilitate on-chip debug. Section 4, describes the assertion
processor framework. Finally, we present conclusion and
future work.

2. Controllability and observability

The ability to test a design correlates to the ability of
controlling and observing the behavior of a design. The
increase of design complexity over the past years has
weakened the ability to test a design, and even if a de-
sign error can be controlled, it may be very difficult to ob-
serve the error using the design I/O pins. This is a widely
accepted problem in the integrated circuits industry and
academic community, with numerous paper published in
this subject [5–8].

The recent improvement of synthesis techniques al-
lowed RTL-based designs from hardware description lan-
guages to be adopted by the designers as the design en-
try and methodology. Moreover, the use of RTL-based
designs enabled more aggressive validation techniques
based on White-box verification as opposed to Black-box
verification.

Black-box verification relates to the approach of pro-
viding stimulus to the input pins of a design and checking
the results in its output pins. This approach offers very
poor observability and controllability since a failure inside
the design has to propagate to the output pins to be observ-
able. Further, the failure may be noticed several hundreds
of cycles after it actually happened, making it difficult to
reproduce the failure.

Consider Figure 1 as an example. This figure presents
an excerpt of a larger sequential design, with registers,
represented by the two boxes and gates, represented by
combinational logic cloud. By zooming in we find a com-
binational logic with two AND logic gates, Y and Z and
one OR logic gate, X. In this figure xz and yz represents
the internal interconnection of these logic gates. Table 1
presents the truth table for this excerpt.

By following the Black-box verification approach, in
Figure 2, we would apply a test vector to the input and
compare the output to the expected data. Consider now,
that we have the input b stuck-at zero. We can easily see
that by even testing all possible combinations of the inputs
we would not be able to propagate the failing point to the
output. Therefore, we would not observe the failure.

White-box verification is a technique used to validate a



Combinational Logic

b

a

c

d

X

Y

Z

xz

yz

Figure 1. Sequential circuit and its combi-
national logic.

Table 1. Truth table of logic in Figure 1.
a b c d
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

b

a

c

d

X

Y

Z

xz

yz

A
p
p
ly

 T
e
s
t 
V

e
c
to

r

C
o
m

p
a
re

 w
/ 
E

x
p
e
c
te

d
 D

a
ta



Figure 2. Black-Box verification approach.

design by inspecting internal wire connections of the de-
sign, thus improving the overall observability. When used
with monitors, it provides a very powerful tool to aid de-
sign validation. An assertion monitor is a piece of HDL
code that evaluates specific conditions on the designs’ in-
ternal wires. Using White-box verification, a designer can
locate a failure internal to the design because assertions
can trigger immediately after an error occurs.

Assertions are inserted into a design based on the
knowledge about legal and illegal behaviors of internal de-
sign structures [9, 10]. Usually, the assertions are inferred
by a designer according to interface rules or unwanted cor-
ner cases of the design.

Assertions can be built from hardware description lan-

guages [9], from some pragmas of a specific tool such as
in [10], or from a testbench written using a testbench lan-
guage, such as OpenVera [11]. White-box verification has
become a popular design validation technique, improving
the confidence level in a design because assertion moni-
tors, acting like probes inserted into a chip, solve the ob-
servability problem of testing chip designs [12, 13].

Consider applying the White-box verification approach
in the example in Figure 3. First, we add an assertion to
the wire connections of the design that we are concerned
with the property we want to assert. For sake of this ex-
ample, let us assume that the error condition occurs when
f1 + f2 > 1. Although from the inspection of only this
part of the circuit, we could clearly state that f1 and f2
can be true at the same time, making the assertion false, in
general because of enviromental conditionsf1 + f2 > 1

may never occur in a correct design.

b

a

c

d

X

Y

Z

xz

yz

A
p
p
ly

 T
e
s
t 
V

e
c
to

r

C
o
m

p
a
re

 w
/ 
E

x
p
e
c
te

d
 D

a
ta



f1

f2

assert

Figure 3. White-box verification approach.

White-box verification has been widely applied dur-
ing the simulation, formal analysis and emulation [14–17]
phases of a design. The initial goals of White-box verifi-
cation are capturing the design intent and finding bugs as
the design progresses. However, the use of White-box ver-
ification does not guarantee that a design is bug-free be-
cause of the complexity of a design. In the context of chip-
level designs implemented in field-programmable gate ar-
rays (FPGAs), assertion monitors enables reconfigurable
designs to be monitored at run-time after deployment of
the design. If a bug is ever found in the design, an asser-
tion engine stores the error information that will later be
notified to a designer. Because the error information is di-
rectly linked to an RTL design, the designer will be able to
locate the problem faster, thus being able to provide a new
version in a very short time. The previous work on syn-
thesizing assertion checkers [18, 19] didn’t address issues
like wrong design assumptions or proposed an architec-
ture that could inform which assertion had failed.

3. On-chip verification

An architecture for on-chip verification can be found in
Figure 4. This architecture is based on three components:
a sea of synthesizable assertions based on Open Verifica-
tion Library (OVL) [20]; an assertion processor, which is
a circuit designed to process the results of the assertions



and to take proper action, being as simple as a circuit that
raises an error pin or as complex as an embedded pro-
cessor that dispatches an error correction routine; and a
routing mechanism that routes error information from the
assertions to the assertion processor.

Assertion Processor

Figure 4. Diagram of assertion processor
framework.

3.1. Synthesizable assertions with routing mech-
anisms

In [21], it was proposed an architecture for an assertion
engine to be used in a reconfigurable design by extending
the use of the White-box verification beyond the simula-
tion/emulation phases of a design. The main idea was to
modify the, OVL to support on-chip run-time debug. This
modified library was obtained by adding a Boundary-scan
[22] chain to the assertions. This library provided support
to solve the assertion routing problems, although no as-
sertion processor was used to provide the circuit with an
intelligent mechanism to process the error condition.

Figure 5 (a) presents a typical assertion module from
OVL. The modified version with scan-chain architecture
is presented in 5 (b). Table 2 contains a description of each
signal. We refer the reader to a throughout description of
the modified library [21].

assert_moduleA

reset_n

clk

test_expr

assert_moduleA

reset_n

clk

test_expr

ei

esci

esclk

escen_n

eo

esco

(a)

(b)

Figure 5. (a) Typical OVL assertion; (b) OVL
assertion modified for scan-chain architec-
ture.

Table 2. Signal descriptions for Figure 5(b).
Signal Description I/O
resetn Reset Active Low Input
clk System Clock Input
testexpr Any HDL test expression Input
ei Error Input Input
esci Error Scan Input Input
eo Error Output Output
esco Error Scan Output Output
esclk Error Clock Input
escenn Error Scan Enable Active Low Input

3.2. Generating chained assertions actual design

One of the major problems in modifying assertion in-
stantiation into chained assertions stems from the fact that
the circuit interface must be changed.

Figure 6 depicts an example of an 8051 ALU (Arith-
metic Logic Unit) [23] hierarchical structure with chained
assertions. White circles represent the original design hi-
erarchy and dark ones the inserted assertions. Table 3
shows the assertion sequence that must be scanned from
the pinescoin case an error is signaled by theeopin. A
typical timing diagram presenting the behavior ofeo, es-
cenn, esco, andesclkpins are depicted in Figure 7.

alu_top

assert

always1

alu_

divide

assert

always2

assert

frame

assert

u_flow

ei,esci

ei,esci

ei,esci

eo_t1,

esco_t1

eo_t1,

esco_t1

eo,esco

eo,esco

eo,esco

eo_t2,

esco_t2

eo_t1,

esco_t1
eo_t2,

esco_t2

eo_t1,

esco_t1

Figure 6. 8051’s ALU hierarchy with asser-
tion chaining.

Table 3. Assertion sequence list for Fig. 6.
Sequence Number Assertion name

1 assertuflow
2 assertframe
3 assertalways2
4 assertalways1



eo

escen_n

1 2 3 4 5 6
esco

esclk

... n

Figure 7. Behavior of the eo, escen n, esco,
and esclk pins.

4. Assertion processor architecture

Figure 8 present the proposed assertion processor with
chained assertions. As it can be seen in the figure, an as-
sertion processor minimally needs to perform three tasks:

• Scan the assertion chain to detect which assertion has
caused the failure;

• Encode the possible tasks that must be performed for
each assertion in the circuit;

• Perform specific tasks to overcome the error condi-
tion.

Assertion Processor

Figure 8. Assertion processor with chained
structure.

Figure 9 presents a skeleton for a minimal Assertion
Processor. This assertion processor contains three error
processing tasks: halting the processor for more serious
errors, resetting the entire chip, or performing a software
interrupt to enable a processor core to perform a specific
action. The reader should note that the priority for each
assertion determining which action must be taken can be
obtained directly from the OVL severity level.

Although this figure presents the minimum circuit for
an assertion processor, more complex assertion processors
can be implemented in the tasks execution part of the as-
sertion processor. For example, if an assertion processor
may interact with a network coprocessor if the error must
be reported over an ethernet port.

module AssertionProcessor (...);
reg [‘LOGNOFASSERTIONS:0] count;
// SCAN DETECTION
always @(posedge clk) begin
...
if (error detection)
begin

count = count + 1;
if (esci == 1)
ErrorNo = count;

...
end

end
// PRIORITY ENCODING OF ERROR CONDITION
assign ErrorNo = ErrorEncoding(ErrorNo);
// ERROR CORRECTION
always @(posedge clk) begin
if (error detected)
begin

casex (ErrorPriority)
3’bxx1: // HALT INTEGRATED CIRCUIT
3’bx1x: // HW RESET
3’b1xx: // SW INTERRUPT
endcase

end
end endmodule

Figure 9. Assertion processor verilog HDL
skeleton.

5. Results

This section presents the results of synthesizing asser-
tion processors for an 8051 core [23] and for an I2C (In-
ter Integrated Circuit) bus [24]. Although the proposed
methodology focus in early design stages, the assertions
were instantiated based on public domain specifications
and the cores’ documentation. The synthesis was per-
formed using Xilinx Free Web Pack 5.2i environment.
Xilinx Free Web Pack uses Xilinx Synthesis Technology
(XST). Better results could be achieved using third party
synthesis tools. The designs were synthesized and routed
for a Virtex XCV300 FPGA using high area optimization
effort.

Figure 10 shows the area in equivalent gate count for
an assertion processor monitoring a number of assertions,
supposing a priority encoding of five possible actions.

5.1. I2C

I2C is a two-wire, bi-directional serial bus that provides
a simple and efficient method of data exchange between
devices. I2C standard was developed by Philips semicon-
ductors [25]. Its applications include LCD drivers, remote
I/O ports, RAM, EEPROM, data converters, digital tuning
and signal processing circuits for radio and video systems,
and DTMF generators.

In Table 4 some examples of assertions inserted in the
I2C core are shown. The total number of inserted asser-



0

500

1000

1500

2000

2500

3000

3500

4000

8 32 64 128 256 512

E
qu

iv
al

en
t g

at
e 

co
un

t

Number of assertions

Figure 10. Assertion processor area in-
crease supposing 5 priorities.

tions in the original design is 5. These assertions where
inserted based on carefully reading and understanding of
core’s documentation.

Table 4. Assertions inserted in I 2C core.
Assertion
type

Functionality

always Ensures the correct interrupt request
operation

never Ensures that concurrent read and right
signals will not occur

onehot Ensures the correct operation of control
state machines

Table 5 presents the synthesis results for I2C original
design and using the proposed assertion processor archi-
tecture. Using total equivalence gate count as an example,
we have an overhead of 37.27%. Considering that I2C
core complexity is relatively low, this results are accept-
able. Although the circuit speed has dropped 100% from
the original design speed, the normal operation of the de-
sign could still be maintained, as the chained structure is
only active whenescenn = 0. As a result, we could run
the time analyzer with the constrainescenn = 0.

The reader should note also that the synthesizable OVL
has been specified in RTL code. A handcrafted library, or
a library with flip-flops with scan chain structures embed-
ded could improve results considerably.

5.2. 8051 processor core

8051 is an 8-bit processor widely used in many embed-
ded applications. There are several 8051 chip manufac-
tories with different peripherals and memories configura-
tions. The synthesized core has two 16-bit timer/counters,
four 8-bit I/O ports, 4K bytes of on-chip program mem-
ory, and 128 bytes of on-chip data program (registers).
Program memory and registers are inferred by synthesis
tool using Virtex Flip-Flops. This memory structure con-
sumes a significative part of design area. Table 6 show

Table 5. Synthesis results for I 2C communi-
cation core

Parameter Original
Structure

Chained
Structure
+ AP

Overhead

Slice Flip Flops 122 129 5.74%
4 Input LUTs 221 357 61.54%
Slices 125 203 62.40%
Eq. gate count 2,557 3,510 37.27%
Maximum
Frequency

89.17
MHz

45.17
MHz

97.41%

some assertions added to 8051 core. The total number of
inserted assertions is 11.

Table 6. Assertions inserted in 8051 proces-
sor core.

Assertion
type

Functionality

window Verifies the division operation completion
before a new enable signal

time A four-clock-cycle ACK signal must be
produced after an interrupt trigger

overflow Ensures no stack overflow
always Ensures that ALU always receives a valid

opcode

Table 7 shows synthesis results for original 8051 pro-
cessor core and using the proposed assertion processor ar-
chitecture. Because of considerable complexity increase
compared with I2C the assertion overhead is significantly
lower. Taking as a parameter the equivalent gate count,
we have a 3.19% increase.

Table 7. Synthesis results for 8051 proces-
sor.

Parameter Original
Structure

Chained
Structure

Overhead

Slice Flip Flops 838 943 12.53%
4 Input LUTs 4,487 4,698 4.70%
Slices 2,515 2,647 5.25%
Eq. gate count 68,141 70,313 3.19%
Maximum
Frequency

12.99
MHz

12.86
MHz

1.01%

6. Conclusions and future work

White-box verification has been used as a better choice
than Black-box verification for validating designs. This
paper presented an assertion processor architecture to ex-
tend the use of White-box verification to the released



product. Synthesis results for two cores were presented.
The use of assertion checkers added minimal overhead to
presented designs. As future work, we are currently de-
signing a self-reliant sensor network node using the archi-
tecture outlined in this paper.

7. Acknowledgments

This paper is supported under grants CNPq PNM
#830107/2002-9, CNPq SensorNet #552111/2002-3, and
CNPq/Pronex/SIAM #466079/2001-0.

References

[1] D. Beatty,A Methodology for Formal Hardware Ver-
ification with Application to Microprocessors. PhD
thesis, Carnegie Mellon University, School of Com-
puter Science, 1993.

[2] M. Kantrowitz and L. Noack, “I’m done simulating;
now what? verification coverage analysis and cor-
rectness checking of the decchip 21164 alpha micro-
processor,” inProceedings of 33rd Design Automa-
tion Conference, pp. 325–330, 1996.

[3] S. Taylor, M. Q. D. Brown, N. Dohm, N. Hilde-
brandt, J. Huggins, and C. Ramey, “Functional veri-
fication of a multiple-issue out-of-order, superscalar
alpha processor - the dec alpha 21264 micropro-
cessor,” inProceedings of 35th Design Automation
Conference, pp. 638–643, 1998.

[4] M. Lowry and M. Subramaniam, “Abstraction for
analytic verification of concurrent software sys-
tems,” in In Symp. on Abstraction, Reformulation,
and Approx., 1998.

[5] S. Devadas and K. Keutzer, “A unified approach
to the synthesis of fully testable sequential ma-
chines,”IEEE Transactions on Computer-Aided De-
sign, vol. 10, no. 4, pp. 39–51, 1991.

[6] H. Fujiwara, “Computational complexity of con-
trollability/observability problems for combinational
circuits,” IEEE Transactions on Computers, vol. 39,
no. 6, pp. 762–767, 1990.

[7] H. Fujiwara,Logic Testing and Design for Testabil-
ity. The MIT Press, 1985.

[8] T. H. Chen and M. A. Breuer, “Automatic design
for testability via testability measures,”IEEE Tran-
sctions on Computer-Aided Design, vol. 4, no. 1,
pp. 3–11, 1985.

[9] J. Bergeron,Writing Testbenches Functional Verifi-
cation of HDL Models. Kluwer Academic Publish-
ers, 2000.

[10] 0-In Design Automation, Inc., “Assertion-based ver-
ification for complex designs.” The Verification
Monitor, January 2002.

[11] Synopsys, Inc., “Assertion-based verification,” May
2002.

[12] A. Gupta, “Assertion-based verification turns the
corner,” IEEE Design & Test of Computers, vol. 19,
no. 4, pp. 131–132, 2002.

[13] M. Kazmierczak, “White-box verification tech-
niques in a networking asic design,” tech. rep., Lund
Institute of Technology, 2001.

[14] Axis Systems, “Assertion processor,” August 2002.

[15] K. L. McMillan, Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[16] K. Shimizu, D. L. Dill, and A. J. Hu, “Monitor-based
formal specification of PCI,” inFormal Methods in
Computer-Aided Design, pp. 335–353, 2000.

[17] S. Switzer, D. Landoll, and T. Anderson, “Functional
verification with embedded checkers,” in9 th Annual
International HDL Conference Proceedings, 2000.

[18] M. Oliveira and A. Hu, “High-level specification and
automatic generation of ip interface monitors,” in
Proceedings of 39th Design Automation Conference,
pp. 129–134, 2002.

[19] R. Drechsler, “Synthesizing checkers for on-line ver-
ification of system-on-chip designs,,” inProceedings
of IEEE International Symposium on Circuits and
Systems, pp. IV748–IV751, 2003.

[20] H. Foster and C. Coelho, “Assertions targeting a di-
verse set of tools,” in10 th Annual International
HDL Conference Proceedings, 2001.

[21] J. A. Nacif, F. M. de Paula, H. Foster, C. Coelho,
F. C. Sica, D. C. da Silva, and A. O. Fernandes, “An
assertion library for on-chip white-box verification
at run-time,” inProceedings of Latin American Test
WorkShop, 2003.

[22] IEEE,Standard 1149.1-2001. IEEE Press, 2001.

[23] S. Teran and J. Simsic, “8051 core.” Available at
http://www.opencores.org/projects/8051, November
2002.

[24] R. Herveille, “I2C Controller Core.” Available
at http://www.opencores.org/projects/i2c, December
2002.

[25] Philips Semiconductors, “The I2C-Bus Specifica-
tion,” 2000.


