
BackSpace: Formal Analysis for

Post-Silicon Debug

by

Flavio Miana de Paula

M.Sc. in Computer Science, University of British Columbia, 2007
M.Sc. in Electrical Engineering, Universidade Federal de Minas Gerais, 1999
B.Sc. in Electrical Engineering, Universidade Federal de Minas Gerais, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

May, 2012

c© Flavio Miana de Paula 2012

Abstract

IC technology continues to closely follow Moore’s Law, while the ability

to verify designs lags behind. The International Technology Roadmap for

Semiconductors (ITRS) predicts production of chips using 16nm technology

already by 2015, but the verification gap, i.e., advancements in verification

technology not keeping up with advancements in design technology, seems

to be also increasing at a fast pace. A recent study shows a drop of more

than 10 percentage points in the number of 1st-silicon success from 2002

through 2009. By 2007, more than two-thirds of chips had to be respun due

to bugs. The increasing verification gap is to blame. Unfortunately, because

more bugs are slipping into the fabricated chip, post-silicon debug is the

only way to catch them.

Post-silicon debug is the problem of determining what’s wrong when the

fabricated chip of a new design behaves incorrectly. The focus of post-silicon

debug is design errors, whereas traditional VLSI test focuses on random

manufacturing defects on each fabricated chip. Post-silicon debug currently

consumes more than half of the total verification schedule on typical large

designs, and the problem is growing worse.

The general problem of post-silicon debug is broad and multi-faceted,

spurring a diverse variety of research. In this thesis, I focus on one of the

most fundamental tasks: getting an execution trace of on-chip signals for

many cycles leading up to an observed bug or crash. Until such a trace

is obtained, further debugging is essentially impossible, as there is no way

to know what happened on the chip. However, the ever-increasing chip

complexity compounded with new features that add non-determinism makes

computing accurate traces extremely difficult.

Thus, to address this issue, I present a novel post-silicon debug frame-

ii

Abstract

work, which I call BackSpace. From theory to practice, I have methodically

developed this framework showing that BackSpace effectively computes ac-

curate traces leading up to a crash state, has low cost (zero-additional

hardware overhead), and handles non-determinism. To support my claims,

I demonstrated BackSpace with several designs using simulation models,

hardware prototypes, and on actual silicon.

iii

Preface

I conducted the research presented in this thesis in collaboration with my

PhD supervisor Alan Hu. The following papers resulted from my research

and were originally published with the corresponding collaborators as co-

authors:

1. Flavio M. de Paula, Marcel Gort, Alan J. Hu, Steven J. E. Wilton, Jin

Yang. BackSpace: Formal Analysis for Post-Silicon Debug. Formal

Methods in Computer-Aided Design, FMCAD’08, IEEE Press, 2008.

2. Flavio M. de Paula, Marcel Gort, Alan J. Hu, and Steven J. E. Wilton.

BackSpace: Moving Towards Reality. In International Workshop on

Microprocessor Test and Verification, MTV’08, pages 49-54, Los Alami-

tos, CA, USA, 2008. IEEE Computer Society.

3. Flavio M. de Paula, Amir Nahir, Ziv Nevo, Avigail Orni, and Alan

J. Hu. Tab-Backspace: Unlimited-Length Trace Buffers with Zero

Additional On-Chip Overhead. In Proceedings of the 48th Design Au-

tomation Conference, DAC’11, pages 411-416, New York, NY, USA,

2011. ACM.

4. Flavio M. de Paula, Alan J. Hu, Amir Nahir. nuTAB-BackSpace:

Rewriting to Normalize Non-Determinism in Post-Silicon Debug

Traces. To appear In Proceedings of the 24th International Confer-

ence on Computer-Aided Verification, CAV’12, Berkeley, CA, USA,

2012. Springer-Verlag.

Since I expanded all these papers into chapters, some of the sentences

and paragraphs were authored by Alan J. Hu. In addition, Section 3.4.2 is

iv

Preface

mostly based on the text written by Avigail Orni (IBM-Israel), with whom

I collaborated on item 3.

v

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . vi

List of Tables . ix

List of Figures . x

Acknowledgments . xi

Dedication . xii

1 Introduction . 1

1.1 Motivation and Philosophy 1

1.2 Post-Silicon Debug: State of the Art 2

1.2.1 Preliminaries . 2

1.2.2 Related Work . 5

1.2.3 Summary . 13

1.3 Scope of the Thesis . 14

1.4 Contributions of the Thesis 17

2 Basic BackSpace . 19

2.1 Intuition and Assumptions 19

2.2 BackSpace Theory . 21

2.3 Experimental Results . 31

2.3.1 Experimental Setup 31

vi

Table of Contents

2.3.2 Signature Functions 31

2.3.3 BackSpacing . 33

2.3.4 Initial Architectural Considerations 38

2.3.5 Results on a Hardware Prototype 40

2.4 Practical Limitations . 46

2.4.1 Area Overhead . 46

2.4.2 Non-Determinism . 46

3 TAB-BackSpace: Computing Traces with Zero-Additional

Area Overhead . 48

3.1 Introduction . 48

3.2 Abstract BackSpace . 50

3.3 TAB-BackSpace . 52

3.3.1 Intuition . 52

3.3.2 Theory of TAB-BackSpace 55

3.4 Experimental Results . 60

3.4.1 Results on Simulation 61

3.4.2 Results on Silicon . 67

4 nuTAB-BackSpace: Normalizing Non-Deterministic Traces

into Equivalence Classes . 71

4.1 Introduction . 71

4.2 Semi-Thue Systems . 73

4.3 Trace Computation Modulo Confluence 76

4.3.1 Formalizing the Intuition 76

4.3.2 Algorithm . 79

4.3.3 Correctness . 80

4.4 Experimental Results . 82

4.4.1 Results on Simulation 83

4.4.2 Results on a Hardware Prototype 87

5 Conclusion and Future Work 91

5.1 Conclusions . 91

5.2 Future Work . 91

vii

Table of Contents

5.2.1 Backspacing Multi-Clock Designs 91

5.2.2 Protocol-Based BackSpace 92

Bibliography . 94

viii

List of Tables

2.1 68HC05 w/ 38-bit Subset Hand-Chosen Signature 36

2.2 68HC05 w/ 38-bit Universal Hashing Signature 36

2.3 8051 w/ 281-Bit Subset Hand-Chosen Signature 37

2.4 8051 w/ 281-Bit Universal Hashing Signature 38

2.5 Results for BackSpacing the OpenRisc 1200 45

3.1 TAB-BackSpace Experiments 66

3.2 TAB-BackSpace on POWER7 70

4.1 Reduction Notations and Descriptions 74

4.2 TAB-BackSpace vs nuTAB-BackSpace Experiments 86

4.3 nuTAB-BackSpace on Leon3 90

ix

List of Figures

2.1 State Machine Requiring ‖ S ‖ Extra State Bits to Be Backspace-

able . 30

2.2 Results for Compressed Signatures Based on Architectural

Insight . 32

2.3 BackSpace Framework . 34

2.4 Debugging Architecture. 39

2.5 OpenRISC 1200 Implemented onto AMIRIX AP1000 Board . 41

3.1 IBM’s Cell Processor Debug Logic Core High-Level Block Di-

agram . 53

3.2 TAB-BackSpacing. 54

3.3 Router4x4 Conceptual Block 62

3.4 Percentage of False-matches Varying the Size of the TAB

(trace-buffer) Overlap. 65

4.1 A String Rewrite System and Normal Form 74

4.2 Router’s Timing Diagrams of Two Trace-Buffers 77

4.3 Router’s Timing Diagram Automaton 78

4.4 Router’s Internal Packet-Processing State-Machine. 85

4.5 Leon3 SoC Block Diagram. 88

x

Acknowledgments

I acknowledge Prof. Alan J. Hu whose support and mentoring have been

essential through these years. I would also like to acknowledge: Prof. Mark

Greenstreet for his inspiring lectures in both theory of computation and

parallel computation courses; my fellow colleagues in the Integrated Systems

Design Laboratory, Zvonimir Rakamaric and Brad Bingham, whose diverse

interests made this journey more enjoyable; the companies Intel Corporation

and IBM Corporation which were an essential part of these doctoral years

— in particular, Flemming Andersen and Jesse Bingham (Intel, US), and

Moshe Levinger (IBM, Israel) who made my research internships possible;

both the Semiconductor Research Corporation and the Natural Sciences and

Engineering Research Council of Canada who have partially sponsored my

research; and last, but definitely not least, I acknowledge Rose-Marie Brown,

OFS, Cesare Stefanon, OFS, Father Hugo, MSpS., Sister Dorothea, OCD

and Father Casey, OCSO, whose spiritual support have been and will always

be a blessing.

xi

Dedication

xii

Chapter 1

Introduction

Philosophy begins in wonder.

Plato

1.1 Motivation and Philosophy

IC technology continues to closely follow Moore’s Law, while the ability to

verify designs lags behind. The International Technology Roadmap for Semi-

conductors [20] (ITRS) predicts production of chips using 16nm technology

by 2015. The verification gap, i.e., advancements in verification technology

not keeping up with advancements in design technology [19, 48], seems to

be also increasing at a fast pace. A recent study referenced in [21] shows a

drop of more than ten percentage points from 2002 through 2009. By 2007,

more than two-thirds of chips had to be respun due to bugs. The increasing

verification gap is to blame. Unfortunately, because more bugs are slipping

into the fabricated chip, post-silicon debug is the only way to catch them.

Post-silicon debug is the problem of determining what’s wrong when the

fabricated chip of a new design behaves incorrectly. The focus of post-silicon

debug is design errors, whereas traditional VLSI test focuses on random

manufacturing defects on each fabricated chip. Post-silicon debug currently

consumes more than half of the total verification schedule on typical large

designs, and the problem is growing worse [1, 13].

The general problem of post-silicon debug is broad and multi-faceted

(e.g., lack of observability, bug localization, bug rectification) spurring a

diverse variety of research. In this thesis, I focus on one of the most funda-

mental tasks: getting an execution trace of on-chip signals for many cycles

leading up to an observed bug or crash. Until such a trace is obtained,

1

1.2. Post-Silicon Debug: State of the Art

further debugging is essentially impossible, as there is no way to know what

happened on the chip.

However, the ever-increasing chip complexity compounded with new fea-

tures that add non-determinism to the design (e.g., multiple clocks, asyn-

chronous communication) makes computing accurate traces extremely dif-

ficult. Consider, for example, the use of embedded trace-arrays [5], a tech-

nology that provides an improved, though still limited, internal multi-cycle

visibility. When embedded trace-arrays are used in the presence of non-

determinism, the biggest challenge is figuring out when to start/stop the

trace-array’s operation1 so that it saves only relevant information. There-

fore, it is not always the case that partial traces extracted with these trace-

arrays are accurate enough to aid debugging.

Thus, to address this issue, I present a novel post-silicon debug frame-

work: BackSpace. In a nutshell, the BackSpace approaches automatically

compute valid and accurate sequences of states that lead the chip to a crash

state. My philosophy is that computing a trace backwards in time is much

less error-prone, and thus, promotes better debugging for debug-engineers.

By working from the crash state backwards, the BackSpace approaches elim-

inate the time-consuming, expensive task of guessing when to start/stop

collecting data from the chip. Also, with BackSpace, it is possible to me-

thodically and correctly construct a complete trace, that is, from initial to

crash states. Therefore, BackSpace is not bound by the available physical

resources dedicated to hardware debug. Consequently, BackSpace dramati-

cally improves observability.

1.2 Post-Silicon Debug: State of the Art

1.2.1 Preliminaries

In this sub-section, I cover relevant definitions used in this thesis. First,

I present different types of bugs. Then, I describe the difference between

validation and debug. Finally, I present a typical post-silicon debug flow.

1Personal communication w/ John Bishop (IBM-US), February 2010.

2

1.2. Post-Silicon Debug: State of the Art

Silicon bugs are generally classified as either electrical or functional bugs.

I will present a couple of commonly used, intuitive definitions. Joseph-

son [28], for example, defines functional bugs as logically incorrect circuits

that do not operate properly under any condition; and, electrical bugs are

logically correct circuits that fail under some operational condition. For

Park and Mitra [42], functional bugs are design errors, and electrical bugs

are caused by interactions between the design and physical effects. The in-

tuition on both of these definitions is that an electrical bug is a malfunction

of a physical device under some operating condition, whereas a functional

bug is simply a logic error. Examples of electrical bugs are setup/hold time

violations and excessive current-leakage. Examples of functional bugs are

unintended logic, e.g., the use of an and gate instead of a nand gate, imple-

menting a wrong protocol, or a request signal followed by a late acknowledge

signal. Basic BackSpace targets only functional bugs, while TAB-BackSpace

and nuTAB-BackSpace target both functional and electrical bugs.

Debugging and validation are two distinct, although complimentary, ac-

tivities. Validation is the process of checking the system for compliance to

its specification2. I will illustrate with an example. Consider a request-

acknowledge communication protocol. Let’s assume an electrical specifi-

cation which states that the setup time of each latch is 5ns. To check

conformance with an electrical specification, validation would entail apply-

ing different test-vectors under different operating conditions and checking

whether the setup times are properly met. Debugging is the process of find-

ing and removing bugs that violate a specification. Finding the bugs (AKA

bug-localization) is rather difficult. It entails deep analysis of the design and

extensive human insight. Once the bug is found, then the correcting action

would be to change the implementation. In the case of the electrical bug,

a fix would be reducing the combinational logic so that, for example, the

acknowledge signal could be held active for the duration of the 5ns setup

time. The focus of this thesis is on debugging, that is, I assume the vali-

dation process has observed a system malfunction due to some existing bug

(or multiple bugs).

2I am referring to validation in the sense commonly used in hardware development.

3

1.2. Post-Silicon Debug: State of the Art

Generally, in a post-silicon debug flow, once a design violation is ob-

served, one is expected to i) run an experiment, ii) collect data, iii) analyze

data, and possibly iv) run a new experiment. More precisely, running an

experiment can be as simple as power-on-reset or as complicated as boot-

ing an operating system; data collection entails access to the internal state

and I/O of a design; and data analysis can be done with logic analyzers3,

wave-form viewers and/or more advanced analysis tools. The underlying

assumptions in this flow are that the state of the design is readily available,

and re-running experiments always produce the same results.

These underlying assumptions break down, however, as technology ad-

vances. First, the number of available pins on a chip today is extremely

small compared to its size (e.g. number of latches). Second, the majority

of today’s complex chips are “non-deterministic” (discussed below), making

repeatable results less likely. Furthermore, current technologies, e.g., multi-

ple clock-domains and asynchronous communications, make reproducibility

one of the key issues in post-silicon debug.

A formal model of the actual physical world is key to better reason about

these reproducibility issues. In particular, non-deterministic and probabilis-

tic models are appropriate for such modeling.4 The main advantage of the

former is that non-determinism very easily models the lack of knowledge

(i.e., under-specification) of the system/environment. The main disadvan-

tage is that non-determinism is a weak model, that is, very little can be said

about the system’s behavior. On the other hand, when modeling the sys-

tem as probabilistic, the assumption is that some knowledge of the system’s

transition probabilities exists. The main advantage of this model is that it

is possible to reason more precisely about the system’s behavior (e.g., how

often the system traverses the same execution path). Therefore, throughout

3A hardware debugging tool that captures and displays data from the system being
debugged.

4To be more precise, a non-deterministic finite automaton is a 5-tuple: with Q as
its set of states, Σ the input alphabet, δ : Q × Σ × Q the transition relation, Q0 the
initial set of states and F the final set of states. A probabilistic finite automaton is an
automaton with probabilities assigned to each transition in δ such that each transition is
chosen according to some probability distribution.

4

1.2. Post-Silicon Debug: State of the Art

the thesis, when reasoning about repeatability, I rely on a probabilistic mod-

eling of the system. In other cases, when there is no need for such stronger

modeling, I refer to the system as non-deterministic.

Not surprisingly, research on post-silicon debug has focused on these

two main areas: improving observability and managing reproducibility. In

the next section, I survey the state-of-the-art research on post-silicon debug

while emphasizing how each research result tackles these two areas.

1.2.2 Related Work

In the last five years, post-silicon debug has been receiving increasing atten-

tion. The body of published work exceeds one hundred papers over these

five years alone. I will select and describe the most relevant papers in this

section.

To make this exposition easier, I group post-silicon debug research pub-

lication onto two classes: research focused on improving observability; and

research focused on improving reproducibility. However, because research

on post-silicon debug is not always focused on a single problem, my classifi-

cation is approximate. My classification serves only the purpose of grouping

together works that have similar objectives so that it becomes easier to

contrast the existing techniques with my thesis contributions.

Improving Observability

1) Scan-Based Data Acquisition

This is the most basic mechanism to peek inside the chip. Scan-

chains [53] are present on almost all chips to allow efficient manu-

facturing test. A chip with scan-chains can be configured into test

mode, in which most or all of the latches on the design are connected

together into a small number of very long shift registers. At any point

in time, the chip can be stopped, and the values of the latches can be

shifted in or out. With hold-scan latches, it is even possible to scan

out a snapshot of the state of the chip at one point in time, while

5

1.2. Post-Silicon Debug: State of the Art

allowing the chip to continue to execute during the scan-out process,

at the cost of substantial on-chip overhead [32].

When chaining all latches is not possible, selecting which latches to add

to the scan-chain becomes crucial. In [3, 34, 40], the authors explore

a wide range of techniques aimed at reducing the number of latches

in the scan-chain while not hindering its testability. The key insight

is that values of some latches may be inferable from others due to

feedback cycles. In particular, Agrawal et al. [3], given a fault-model,

apply test generation patterns to remove unnecessary latches from

the scan-chain. Lee and Reddy [34] reduce the problem of defining

the set of scannable latches to a graph transformation problem in

which the graph representing the circuit is to be transformed into an

acyclic graph. Park et al. [40] propose a technique for finding state-

encodings that reduce the required number of scannable latches by

either eliminating or shortening feedback cycles.

Alternatively, two research groups [1, 45] propose reconfigurable ar-

chitectures that provide more flexibility for monitoring selectable sig-

nals. Abramovici et al. [1] propose a technique in which a set of se-

lectable signals are chosen via scan-chain configuration bits. Quinton

and Wilton [46] also use configurability via scan-chains to select de-

sired signals, but using concentrators, an architecture that allows for

efficient access (and observation) of chosen signals.

In Section 2.3, I assume full-scan to be available. Later, however, I

relax this assumption and investigate how to best handle partial-scans.

2) Trace-Based Data Acquisition

A very limited history of some number of signals can be recorded on-

chip at full speed, and this history can be read out (very slowly),

e.g., via the scan-chains. These techniques (“on-chip logic analyzers”,

“trace buffers”) typically consist of a flexible mechanism to access de-

sired signals on-chip and some way to store the signals for later read

out (e.g., RAM or specialized cells [5]). The main trade-off is that

6

1.2. Post-Silicon Debug: State of the Art

considerable die area overhead must be used for each cycle’s worth

of history for each signal monitored, severely limiting how much his-

tory can be stored. Three different research groups have recently at-

tempted to address this issue by identifying the set of signals that

should be captured in trace buffers [31, 35, 43]. Ho and Nicolici [31]

aim at storing signals that enable larger restorability of missing states.

They explore two different metrics to select signals: topology, i.e, the

cone-of-influence of each signal; and structure, the type of logic gate

driving each signal. Liu and Xu [35] improve upon [31] by defining a

more precise metric for signal selection using conditional probabilities.

Prabhakar and Hsiao [43] use logic-implication to discover the mini-

mum set of signals that can restore the maximum number of missing

signals.

In all three works, they use standard techniques (e.g. logic simulators,

SAT engines) to propagate, both forward and backward, signal values

and restore missing signals. Given a trace-buffer, a signal restoration

algorithm propagates logic 1 or 0 when there is enough information

available. For example, assume a 2-input AND gate has one of its

inputs set to 0. Therefore, the logic 0 is propagated to the AND’s

gate output. On the other hand, if one of its inputs is logic 1, and the

other is unknown, then logic X is propagated.

Out of these last three works, [31, 35, 43], Prabhakar and Hsiao [43]

achieve the highest signal restorability results. Nevertheless, I am

not convinced about the scalability of these proposed methods. The

experiments are based on the ISCAS’89 benchmarks, which are very

small, contrived designs. For example, on most of the experiments in

[43], they achieve more than 90% signal restorability by using only a

few test-vectors. This suggests these circuits have very high fan-in/fan-

out logic, which is very unlikely in complex, industrial-size designs

In this thesis, I am not focusing on identifying which signals should

be in the trace-buffers. Instead, I assume the monitored signals have

been already selected by either some automatic mechanism such as the

7

1.2. Post-Silicon Debug: State of the Art

ones mentioned above (assuming they scale), or by some architectural

insight into the design.

3) Embedding Monitor Circuits

Several groups have proposed leveraging the intellectual investment

into formal specifications during post-silicon debug, by compiling the

formal specifications into on-chip monitor/assertion circuits (e.g., [9,

26, 37]). In particular, three groups propose synthesizing monitors

based on different assertions languages. Nacif et al. [37] propose syn-

thesizing OVL5 assertions; Hu et al. [26] propose GSTE6 assertions;

and Boule et al. [9], a subset of PSL7 assertions. Despite each group’s

usage of different assertion languages, all three share a common and

expected result. The interesting assertions are usually more complex

assertions, which, once synthesized, yield a high area overhead. The

increased use of trace-buffers may also play against the deployment

of synthesized assertions into silicon. The more interesting assertions

require more latches, which are more expensive than RAM (used by

trace-buffers). However, it is more advantageous to use assertions, if

the monitors are also used for implementing fault-tolerant circuits [37].

Ray and Hunt [47] propose a technique to increase observability based

on partially implemented (embedded) assertions. The assumption is

that some assertions may be too expensive to be fully implemented

in hardware. Therefore, the authors propose to partition pre-silicon

assertions into two parts, a post-silicon monitor (off-chip) and an in-

tegrity unit (on-chip). Consider a sequence of events as a sequence of

signal-value changes over multiple clocks. Informally, the integrity unit

guarantees that the observed silicon events represent part of a longer

sequence of events on a higher-level model of the silicon (e.g. behav-

ioral model, RTL netlist). Thus, the post-silicon monitor can check

that if an event sequence, on silicon, does not violate the post-silicon

5Open Verification Library [39].
6Generalized Symbolic Trajectory Evaluation [51].
7Property Specification Language [44].

8

1.2. Post-Silicon Debug: State of the Art

monitor, then it must also not violate the original assertion. Although

this work is preliminary (most of the given theorems are based on a

memory system example), it targets an important issue in post-silicon

debug, which is linking silicon traces (with limited observability) with

logic-simulator traces (full observability).

4) Data Propagation of Diverging Latches

Caty et al. [12] attempt to isolate electrical failures by comparing

multi-cycle scan-dumps8 from good and bad runs. Given two operating

conditions where in one of them the chip passes and in the other one the

chip fails, the authors compare the values of the latches from both runs

to find out diverging latches between good and bad runs. Then, they

propagate the values of those diverging latches backward to improve

observability and root-cause bugs. The authors assume the system to

be deterministic and also that full-scan is available.

5) Model Checking Post-Silicon Bugs

Ahlschlager and Wilkins [4] describe their experience directly using a

model checker for post-silicon debug: they write a formal property to

describe the observed buggy behavior and ask the model checker to

generate a trace. Such an approach is ideal when the model checker

can verify the entire chip or when the debug engineer correctly maps

the observed chip-level buggy behavior onto a block-level formal spec-

ification. In practice, however, this is not often the case.

6) Rebuilding Architectural State of a Processor by Off-Chip Analysis

Park and Mitra [41] propose a processor-specific technique using sum-

maries of in-flight instructions to rebuild (off-line) the architectural

state of the processor. Thus, the authors are able to improve observ-

ability of what is happening inside the chip. For example, assume a

processor that is capable of storing in-flight instructions’ summaries is

running some test program. Each fetched instruction receives a unique

8Refers to dumping the chip’s internal state using scan-chains (described in “Scan-
Based Data Acquisition”, page 5.

9

1.2. Post-Silicon Debug: State of the Art

ID. As the instruction flows through the pipeline, each pipeline-stage

records the instructions’ ID (plus some other auxiliary information).

Once the run is completed, the stored information is dumped from the

chip. Then, the off-line analysis (e.g. data and control flow analy-

sis, load/store analysis) links those summaries and the test program’s

binary code, thus restoring the architectural state of the processor.

Any observed instruction-flow inconsistency (caused by an electrical

bug, e.g., a bit-flip) could be linked to a pipeline-stage, and, thus, to

a micro-architecture block.

Improving Reproducibility

1) Specialized Bring-up Hardware

Some companies (e.g., [52]) have specialized hardware and a great deal

of high-end test equipment that can be used to record and replay all

I/O signals between the chip and its environment. This infrastructure

allows for deterministic repeatability of stimuli that triggered a bug

on-chip. The main drawbacks are the high cost of the test equipment,

the extremely limited ratio of observable I/O pins and pads versus the

internal state of the chip, the inability to debug internal IP blocks,

and the ability to debug the chip only in the specialized bring-up

system. Note that sometimes, a bug will manifest itself only in some

OEM system but not in the original bring-up system. Furthermore,

the logic analyzer traces alone do not allow for reproducing the bug

in a logic simulator. First, we need the internal state of the chip

to start the simulation and not having the chip’s state prevents any

attempt to reproduce the bug in a logic simulator; and second, since

logic simulators are many orders of magnitude slower than the real

hardware, the logic simulator can replay only some limited amount of

data captured by the logic analyzer.

2) “Carbon-Copy” Executions

For a system implemented on FPGAs, the problem of system-level

non-determinism can be eliminated by duplicating the entire design [33].

10

1.2. Post-Silicon Debug: State of the Art

One copy of the design runs in the system as usual; the second copy

has all of its inputs delayed in a FIFO. When the first copy hits the

bug, it triggers trace recording on the second copy. In this way, the

second copy is, in fact, reproducing the exact behavior of the first copy,

but now the execution is being recorded (i.e., “carbon copied”). For a

non-FPGA design, it is obviously impractical to duplicate the design

on-chip, but if two identical dies are available, both of which are fully

deterministic in an identical manner, one could imagine building a spe-

cialized bring-up board that implements this solution9. However, as

systems start adding more sources of non-determinism (e.g., multiple

clocks, asynchronous communication, soft-errors) this technique be-

comes impractical. I illustrate this case with a processor. In one copy,

due to a failing checksum caused by a non-deterministic fault, a pro-

cessor may require an instruction re-issue, resulting in a pipeline stall

while in the other copy, the instruction flows normally in its pipeline.

Once this happens, the execution-flow of each system diverges from

the other. Therefore, information recorded by the second copy may

not be at all related to the first copy.

3) Periodic Sampling

In [10, 29], the chip can be stopped at regular intervals to scan out

a snapshot of the internal state and then allowed to continue exe-

cution. With hold-scan latches, the chip need not even be stopped.

When the crash occurs, the most recent snapshot and the logic ana-

lyzer traces of the I/O can be used to recreate the bug in simulation.

An obvious problem is that stopping the chip disturbs system-level

timing interactions, potentially changing the execution and hiding the

bug. Furthermore, because the scan-out process is so slow, the inter-

val between snapshots must be long, meaning that the most recent

snapshot might be millions of cycles in the past, rendering it useless

for the debugging. The main issue is that logic simulators are orders

9This idea was suggested to us by Igor Markov, June 30, 2008.

11

1.2. Post-Silicon Debug: State of the Art

of magnitude slower than the real hardware. Therefore, given two

consecutive, but far apart snapshots, it will be impossible to simulate

a design in a timely manner, and reproduce the entire run from one

snapshot to another.

4) One-shot Data Acquisition

In [41], the chip uses trace information to off-line reconstruct the

chip run. The technique targets electrical bugs and is very processor-

specific. The authors’ insight is that there are some early signs the chip

is about to crash and they tap into these early signs to start data acqui-

sition. This idea, although very ingenuous, assumes that every early

sign can be identified, which is clearly not possible for non-processor

chips. This approach, if focused towards functional bugs, would be

equivalent to having assertions that would trigger a data acquisition

mechanism. Obviously, it is impossible to predict all possible bugs

and add corresponding hardware monitors to trigger data acquisition.

Furthermore, as explained on page 8 (Embedding Monitors Circuits),

the more interesting assertions have high area-overhead.

5) Removing Non-Determinism with Scan-Dump Analysis

Dahlgren et al. [17] propose a technique to remove non-deterministic el-

ements of a functional test environment via scan-dump analysis so that

bugs can be more precisely root-caused. Although the idea is a very

simple one, this is the first publication which describes a method for

removing non-determinism from functional tests. The authors claim

that even on a deterministic platform, functional tests would be vul-

nerable to non-determinism since parts of the design are uninitialized.

Thus, applying the same test and at the same operating condition may

yield different traces, making it harder to isolate the location of a bug.

Consider the scenario in which one test under two operating condi-

tions lead the chip to two different results: pass and fail. Assuming

bugs to be consistently repeatable and being always observable in the

exact same manner, the authors describe their method as follows: (1)

12

1.2. Post-Silicon Debug: State of the Art

run the chip N times using a passing experiment and compare each

run against each other, annotating each latch with respect to the cycle

number and whether the latch diverges from other runs; (2) remove

the latches that diverge in the previous step; (3) run the chip N times

using a failing experiment and compare each run against each other,

annotating each latch with respect to the cycle number and whether

the latch diverges from other runs; (4) remove the diverging latches

from the previous step. Since we have removed diverging latches from

the passing and failing runs, what is left to do is to compare a passing

run against a failing one. The latches that differ point to the root-

cause of a bug. One of the problems with this method is that some

tests may be too short to capture the latches that are vulnerable to

non-determinism. Another problem is the assumption that bugs would

not be caused by “non-deterministic” latches.

Like many classification schemes, mine has exceptions, most notably,

works that fall under the broad term “rectification” (e.g, [50], [55], [13]).

These works assume data acquisition has been completed and the complete

state of the chip is available (in practice, they only require full-state informa-

tion for specific time-frames). They focus on localizing bugs and proposing

“fixes” to repair the gate-level netlist. Although, these works are important,

they are complementary to my work.

1.2.3 Summary

I have presented a survey of the research focused on improving observability

and reproducibility. Despite the encouraging number of new techniques in

the past few years, many of these techniques work only under stringent

simplifying assumptions. For example, Dahlgren et al. [17] assumes the

system to be deterministic, Ahlshlager and Wilkins [4] assumes the whole

chip can be model checked, and Prabhakar and Hsiao [43] rely on the fact

that a “good” trace already exists. On the other hand, as today’s systems are

increasing the sources of non-determinism — many clock-regions; internal

arbitration circuits; and asynchronous communication — these techniques

13

1.3. Scope of the Thesis

become impractical without other ad-hoc tricks. Instead, we need a general,

but methodical, framework in which we can better use current/new debug

techniques in the face of complex post-silicon bugs.

1.3 Scope of the Thesis

This research is focused on improving the state-of-the-art of post-silicon

debug. To this effect, I take a fresh look at the problem of post-silicon

debug of functional bugs and introduce new, systematic techniques to better

handle it. This thesis targets both observability and reproducibility issues

while uniquely bridging hardware debug techniques with formal analysis.

Ideally, a post-silicon debug method should account for both electrical

and functional bugs. However, targeting either one of them alone will im-

prove the state of the art of post-silicon debug. On the one hand, electrical

bugs are an important issue and some even claim it is the most important

problem [41], but there is also clear evidence that functional bugs are, at

least, as important as electrical ones. Foster [21] refers to a study by Far

West Research which shows that, in the period 2004-2007, while there was

an increase from 75% to 77% of functional bugs requiring chip re-spins, the

impact of other bugs decreased significantly. Clearly, both are important.

Although, in this thesis, I primarily focus on functional bugs, I show later

that the techniques presented here can be extended to electrical bugs.

We need a general, but methodical, framework in which we can better use

current/new debug techniques to reason about complex post-silicon bugs. As

I have shown in Section 1.2.2, most techniques are still being used ad-hoc,

heavily dependent on guesses and simplifying assumptions (e.g. a system

being deterministic and/or bugs being reproducible on a deterministic plat-

form). One of the problems in post-silicon debug is that these techniques

have not been able to keep up with the ever-increasingly complex problems

we face. In particular, 10-to-15 years ago, chips did not have many sources

of non-determinism; thus it used to be easy to decide when to stop the chip

and start data-acquisition (e.g. chip single-stepping10).

10Single-stepping refers to repeated toggling of the clock signal and scan-dumps.

14

1.3. Scope of the Thesis

However, under the presence of non-determinism, guessing (predicting)

when to start and stop the chip (or data-acquisition) becomes incredibly

hard, time-consuming, and error-prone. Instead, reconstructing the past

may be a better approach to post-silicon debug. Thus, I introduce my formal

framework, which I call BackSpace because its name embeds the notion of

going towards the past.

The BackSpace framework includes the original Basic BackSpace, TAB-

BackSpace and nuTAB-BackSpace. I developed Basic BackSpace as a more

theoretical approach. Subsequently, I introduced the other techniques to

address the practical limitations I encountered with Basic BackSpace.

Intuitively, BackSpace’s objective is to iteratively reconstruct the history

of a chip run. To that end, I need a mechanism to stop the chip at certain

points of the run (e.g., breakpoint circuitry) and a storage capability to

save some history information about the run. BackSpace starts by letting

the chip run until it crashes; then, dumps the state and history information;

computes the crash’s predecessor state; loads it into the breakpoint circuitry

and runs the chip again. If the chip does not stop, then we know the chip-

run took a different path due to non-determinism. In that case, BackSpace

runs the chip again. I assume that bugs are repeatable with probability

greater than some ǫ > 0. Therefore, the chip will eventually encounter the

breakpoint; at which point BackSpace dumps its state and history. This

process iterates as many times as necessary until BackSpace computes a

trace that is long enough for a designer to debug.

The Basic BackSpace technique computes predecessor states by formal

analysis (pre-image computation), working perfectly in theory. However,

this perfect solution comes with impractical overhead: correctness relies on

computing breakpoints, signatures, and pre-images over the entire concrete

state of the chip. The hardware overhead is too high to be practical.

Most complex chips, however, already include some on-chip debug hard-

ware. In TAB-BackSpace, I flipped the problem around: instead of adding

excessive on-chip hardware for a perfect debug solution, I leveraged the Basic

BackSpace approach to get much more out of the already existing in-silicon

debug logic (i.e., trace buffers). Thus, there is no additional hardware cost.

15

1.3. Scope of the Thesis

In particular, TAB-BackSpace does not use pre-image computations to com-

pute predecessor states. Instead, upon a breakpoint match, TAB-BackSpace

picks one entry of the trace buffer as the new “crash state”and run the chip

again. TAB-BackSpace imposes the condition that the next, successive trace

buffer must successfully overlap cycle-by-cycle with the previous trace. If

they do successfully overlap, then TAB-BackSpace considers the (abstract)

states in the trace buffers as valid predecessor states of the crash state and

the trace computation iterates. Thus, TAB-BackSpace achieves the effect of

extending the trace buffer arbitrarily far back in time (assuming no spurious

traces).

In theory, the weakness of TAB-BackSpace is the possibility of spurious

abstract traces. By practical necessity, a trace buffer can record only a tiny

fraction of on-chip signals. Therefore, the trace computed is an abstract

trace. When two abstract trace dumps agree on the overlap region, TAB-

BackSpace joins the two into a longer abstract trace, implicitly assuming

that the underlying concrete traces agree as well, which might not be true.

Empirically, we show that by using a reasonably sized overlap region, the

possibility of spurious traces can be made very small.

In practice, the real weakness of TAB-BackSpace is the need to repeat-

edly trigger the bug via the same execution. Non-determinism in the hard-

ware and in the bring-up environment make such exact repetition very un-

likely. The result is that the newly computed trace-dump does not always

completely agree with the previous trace over the entire overlap region, in

which case TAB-BackSpace fails to make progress. Thus, TAB-BackSpace

benefits from an environment which has better controllability (by exten-

sively reducing non-determinism). However, creating such an environment

while still triggering a bug might not be practical.

What I have observed, however, is that although an exact match rarely

occurs, what typically happens in practice is that the same bug is triggered

by an intuitively “equivalent” trace, that is not cycle-by-cycle identical.

Thus, I present nuTAB-BackSpace. This technique is based on rewriting.

I prove that, under reasonable assumptions, nuTAB-BackSpace computes

concretizable abstract traces — i.e., traces corresponding to possible, real

16

1.4. Contributions of the Thesis

chip executions.

1.4 Contributions of the Thesis

All the techniques presented here have a common goal to improve the state-

of-the-art of post-silicon debug. More specifically, I addressed one funda-

mental issue, extracting an accurate trace from a buggy chip. In particular,

these are the main contributions of this thesis:

• I have developed the theory of BackSpace. I have investigated is-

sues such as: what is the proper image-computation framework (e.g.,

BDDs, SAT); the use of signatures, more specifically, I investigate the

tradeoff between hardware cost and precision with different signatures

(e.g., CRC, universal-hashing); and finally, the backspaceability of de-

signs. I have demonstrated by both logic simulation and hardware pro-

totyping that BackSpace works. However, when applying BackSpace

in practice, I have found limitations (e.g., excessive chip area-overhead,

large-constant time-cost due to the lack of reproducibility). From these

experimental results I have created new hypotheses.

• To address the problem of excessive area-overhead, I have developed

TAB-BackSpace. By leveraging only existing hardware debug-logic, I

have shown that TAB-BackSpace has zero-additional area-overhead.

Moreover, I have demonstrated its effectiveness on a real silicon, the

IBM POWER7 processor.

• To address the reproducibility cost due to non-determinism, I have

put forward a hypothesis that, from the debug-engineer’s point-of-

view, different traces might share some notion of equivalence. To

that end, I have leveraged the theory of string-rewriting to normal-

ize the non-determinism found in different traces. I call this technique

nuTAB-BackSpace. I have demonstrated that, indeed, given some

reasonable assumptions, different traces can be normalized into equiv-

alence classes. More importantly, nuTAB-BackSpace can compute an

17

1.4. Contributions of the Thesis

accurate trace even on an environment in which non-determinism is

pervasive (e.g. many clock domains, asynchronous communication).

Experiments on simulation and a complex SoC prototype show the

success of nuTAB-BackSpace.

In summary, this thesis addresses the need for a methodical framework

to post-Si debug. In particular, this thesis targets the problems of lack of

observability and reproducibility by uniquely combining formal analysis and

existing hardware debug techniques.

18

Chapter 2

Basic BackSpace

No problem can be solved from the

same level of consciousness that

created it.

Albert Einstein

2.1 Intuition and Assumptions

The basic problem is that we have observed the chip in some buggy state, and

we have no idea how that could have happened. The goal is to explain the

inexplicable buggy state, by creating a “backspace” capability — iteratively

computing predecessor states in an execution that leads to the bug. The

resulting trace can be viewed like a simulation waveform, except it shows

what actually happened just before the bug/crash on the real silicon.

I assume that the problem occurs at a depth and complexity not trivially

solved by existing methods. For example, if the full chip can be handled

in a model checker, one can simply ask the model checker to generate a

trace to the observed buggy state. This solution is not realistic for complex

designs, because of the capacity limits of model checkers. Alternatively,

if the bug occurs extremely shallowly during bring-up, one could run the

bring-up tests on the simulator, or via single-stepping11. Such an approach

is also not realistic: the roughly billion-to-one speedup of the actual silicon

versus full-chip simulation means that one second of runtime on-chip equals

decades of runtime in simulation, and within seconds of first power-on, the

silicon has executed more cycles than months of simulation on vast server

farms. Trying to reproduce the bug ab initio in simulation is clearly not

11As defined in Section 1.3.

19

2.1. Intuition and Assumptions

feasible. Similarly, trying to monitor externally the full execution trace of

the chip running full-speed is electrically impossible.

In this chapter, I consider a few simplifying assumptions that I made as

I was starting to develop my framework:

• It must be possible to recover the state of the chip when an error has

occurred. For example, this could be done with the chip in test mode,

via the scan chain.

• The key assumption is that since I am focusing on functional bugs, I

will assume that manufacturing testing has eliminated manufacturing

defects and that the chips has no electrical bugs. Therefore, I assume

that the silicon implements the RTL (or gate-level or layout or any

other model of the design that can be analyzed via formal tools).

• The bring-up tests can be run repeatedly and the bug being targeted

will be at least somewhat repeatable (with some reasonably large prob-

ability).

In Chapter 3, I relax some of these assumptions. In particular, not all chips

are full-scan capable, but have other mechanisms to capture some history of

a chip run (e.g. trace buffers). I make use of this fact in later chapters.

My framework consists of adding some debug support to the chip: a sig-

nature that saves some history information but otherwise has no functional

effect on the chip’s behavior, and a programmable breakpoint mechanism

that allows us to “crash” the chip when it reaches a specified state. Given

these, the approach repeats the following steps:

1. Run the chip until it crashes or exhibits the bug. This could be an

actual crash or a programmed breakpoint.

2. Scan out the full crash state, including the signature.

3. Using formal analysis of the corresponding RTL (or other model), com-

pute the set of predecessor-candidates (i.e., the pre-image) of the crash

state. The signature must provide enough information so that the

number of predecessor-candidates is reasonably small.

20

2.2. BackSpace Theory

4. For each predecessor-candidate s, let s be the new breakpoint; re-

run the chip; if the chip reaches the breakpoint, then s is a valid

predecessor.

The iteration stops when it has computed enough of a history trace to

debug the design or Step 3 fails. Each iteration of the loop is like hitting

“backspace” on the design – going back one cycle. The approach exploits the

capabilities of different analyses: formal analysis is very slow with limited

capacity, but can go forward or backwards equally well; simulation is too

slow to run in a real system with actual software, but the visibility of a

simulation trace is user-friendly and well-accepted for design understanding

and debugging; the actual silicon runs full-speed, rapidly hitting bugs that

may have escaped pre-silicon validation, but offers very poor visibility and

no way to go backwards to determine how the chip arrived in some state.

2.2 BackSpace Theory

In this section, I formalize BackSpace. I start by describing how I model the

system and by introducing some definitions. Then, I formalize the (intuitive)

algorithm I presented in Section 2.1.

Let M = (Q,Σ, Γ, Q0, δ, ω) be a finite state machine modeling a digital

design D, where:

• Q = 2S is the set of states, where S is the set of latches in D;

• Σ is the input alphabet;

• Γ is the output alphabet;

• Q0 ⊆ Q is the set of initial states;

• δ ⊆ Q × Σ × Q is the transition relation;

• ω ∈ Q × Σ 7→ Γ is the output function.

21

2.2. BackSpace Theory

Notice that M is modeled as a non-deterministic finite state machine, so the

formalism can handle randomness in the bring-up tests as well as transient

errors, race conditions, etc.

Given a state machine M , I can build an augmented state machine M ′

which has the same behavior as M (when projected onto the original S

latches), but has an additional T latches of signature. Let R = 2T be the

set of signatures. The T signature latches are not allowed to affect the

behavior of M , so the transition relation of M ′ is a pair of relations: the

original δ ⊆ Q×Σ×Q as well as a δ′ ⊆ Q×R×Σ×R. In other words, the

next signature can depend on the signature as well as the state and inputs,

but the next state cannot depend on the signature.

Definition 1 (k-Backspaceable State). A state (s′, t′) of augmented state

machine M ′ is k-backspaceable if the size of its pre-image projected onto Q

is bounded by k ≥ 1, i.e.,

Pre={(s, t)|s ∈ Q ∧ t ∈ R ∧ ∃i ∈ Σ . (((s, i, s′) ∈ δ) ∧ ((s, t, i, t′) ∈ δ′))}! (2.1)

ΠQ(Pre) = {s | (s, t) ∈ Pre} (2.2)

‖ ΠQ(Pre) ‖ ≤ k (2.3)

Equations (2.1) and (2.2) are typical definitions of pre-image computation

and projection. Equation (2.3) bounds the size of the projected pre-image

by k.

Definition 2 (k-Backspaceable Machine). An augmented state machine

M ′ is k-backspaceable iff all reachable states are k-backspaceable.

In Algorithm 1 (pp. 24), I present the procedure that, starting from a

given crash state, iteratively computes an arbitrarily long sequence of pre-

decessor states by going backwards in time. The procedure has 2 nested

loops. The outer loop, lines 10−28, controls the two termination conditions

for the algorithm: either the procedure has computed a trace of length j or

the procedure has reached the set of initial states. The outer loop is also

responsible for the pre-image and projection computations and continually

prepending the trace with newly found predecessor states. The inner loop,

22

2.2. BackSpace Theory

lines 14−21, is responsible for controlling the hardware while trying out dif-

ferent predecessor-candidate states, scand. In each loop iteration, the proce-

dure selects, using a round-robin scheme, a predecessor-candidate state (line

16), loads it into the breakpoint-circuit (line 18) and starts a run (line 20).

The objective of the inner loop is to validate a predecessor-candidate state. If

ResetAndRun returns TRUE then the breakpoint circuitry matched (hence,

validated) scand, in which case, scand is prepended to the trace sequence, line

27. Otherwise, the run violates the timebound (line 20) parameter because

either the current run took a “wrong path” (caused by non-determinism) or

the current scand is not a valid predecessor. In this case, the inner loop is

repeated, the procedure selects another predecessor-candidate and starts a

new chip run.

Theorem 1 (Correctness of Trace Computation of Algorithm 1). Given a

sufficiently large timebound , the sequence of states returned by Algorithm 1

is the suffix of a valid execution of M .

Proof: Let l be the length of the trace returned by Algorithm 1. For

all states si in trace : s0, · · · , sl−1, I must prove that two properties hold:

(1) ∀i . 1 ≤ i ≤ l − 1, the state si−1 is a predecessor of si in M ; (2)

∀i . 0 ≤ i ≤ l − 1, the state si is reachable in M . These two properties

combine to yield the desired result. To prove (1), notice that si−1 and si in

trace are related by the Preimage function call in line 12. Therefore, the

set pre resulting from Preimage(si, ti) contained at least one state of the

form (si−1, x) for some x. In other words, there exists x such that (si−1, x)

is a predecessor of (si, ti) in M ′. By the definition of the augmented state

machine, si cannot depend on x, therefore si−1 must be a predecessor of si

in M . That establishes the first property. For the second property, notice

that there are only two possibilities for a state to be prepended to trace. In

line 9, the state sl−1, which is given as reachable, is prepended to trace ;

the remaining states, s0, · · · , sl−2 are prepended to trace in line 27. But, to

execute line 27, ResetAndRun must have matched those states, which makes

them reachable. Therefore, all states in trace are reachable. Thus, I have

established the second property and conclude the proof.

23

2.2. BackSpace Theory

Algorithm 1 Crash State History Computation

1: input Q0 : set of initial states,
2: (s, t) : reachable state of a k-backspaceable augmented state ma-

chine M’,
3: j ∈ N+ : user-specified bound on the trace length,
4: timebound : user-specified time bound for any run of M’ ;
5: output trace : sequence of states of M ;
6: i := j − 1;
7: si := s;
8: ti := t;
9: trace := (si); // i.e., initialize trace with target state (s, t) projected

onto Q
10: while i > 0 and si /∈ Q0 do

11: matched := FALSE;
12: pre := Preimage((si, ti)); // as defined in Eq. 2.1
13: proj := ProjectionQ(pre); // as defined in Eq. 2.2
14: repeat

15: // Pick a candidate-state in proj following a round-robin selection
scheme

16: scand := PickState(proj);
17: // Program the hardware-breakpoint circuitry with scand

18: LoadHardwareBreakpoint(scand);
19: // (Re-)run M’ at full-speed with timeout timebound

20: matched := ResetAndRun(timebound);
21: until matched = TRUE
22: // This line is only reached if the hardware breakpoints at scand

23: i := i − 1;
24: si := scand;
25: // Scan-out hardware signature ti
26: ti := ScanOut();
27: Prepend(si, trace);
28: end while

29: return trace;

24

2.2. BackSpace Theory

The parameter timebound is a user-specified timeout value. I assume users

can roughly measure the time it takes for the chip to crash. Thus, users can

use this approximate measurement as the timebound value (plus some safety

margin). Intuitively, timebound is an approximation of the length of a path

leading to the bug. Therefore, even in the presence of randomness, there is

a non-zero probability the chip will take such path again.

Given a timebound value, what happens with Algorithm 1 if the timebound

value is too short (shorter than the shortest path to the crash state)? If the

timebound value is too short, the algorithm will never leave the repeat-loop

(lines 14-21) and Algorithm 1 will never terminate.

Even with a large enough timebound value, if we consider non-determinism

(as opposed to randomness), the algorithm is not guaranteed to terminate.

For example, assume that only 1 out of the k states in proj, I call it spred,

is a valid predecessor of (si, ti). It is possible that, every time PickState se-

lects spred, the chip will take a different path not leading to this state. Thus,

Algorithm 1 will never leave the repeat-loop and this algorithm will not ter-

minate. Can we guarantee termination otherwise (i.e., under an assumption

of randomness and with a sufficiently large timebound value)?

Theorem 2 (Probabilistic Termination of Algorithm 1). If timebound is

sufficiently large to allow the chip to crash, and the executions σ′ of M ′ are

chosen randomly such that all valid transitions have probability greater than

some ǫ > 0, then termination occurs with probability 1.

Proof: Algorithm 1 has two nested loops: the repeat-loop (lines 14-21)

and the while-loop (lines 10-28). To prove termination, I have to show that

this algorithm exits both loops. I will start the proof with the repeat-loop.

Let si be a state in trace and its corresponding state in M ′ be (si, ti).

Since si ∈ trace, the state (si, ti) must be a reachable state of M ′. By

the definition of k-backspaceable augmented state machine M ′, the set of

predecessor-candidate states of (si, ti) has at most k states when projected

onto Q (computed by Preimage and ProjectionQ, lines 12 and 13, respec-

tively). I must simultaneously satisfy two conditions to exit the repeat-loop:

(1) choose a valid predecessor-candidate; and (2) choose a valid execution

25

2.2. BackSpace Theory

path leading the chip to the chosen state in (1). In each iteration of the

repeat-loop, PickSate chooses a state following a round-robin scheme. Since

there is at least one valid predecessor-candidate state, say spred, this state

will be chosen every k repeat-loop iterations. Because all valid transitions

have probability greater than some ǫ > 0 of being taken, every valid finite

execution path also has a non-zero probability of being chosen. Therefore,

since spred is a valid state, there exists a valid and finite path, σ′, from

an initial state to spred. Let l be the length of σ′. A lower-bound on the

probability of taking this path is ǫl, which is greater than zero, and so, even-

tually, ResetAndRun will traverse such a path and return TRUE (line 20).

Thus, the computation leaves the repeat-loop. To show that Algorithm 1

leaves the while-loop, notice that there are two conditions for which this

loop terminates: i ≯ 0 or si ∈ Q0. Let’s ignore the si ∈ Q0 condition. Note

that i is decremented by 1 in each iteration and so i must eventually be less

than or equal to zero. Therefore, Algorithm 1 exits both loops and, thus,

terminates.

I draw the following fact from this proof to support a later theorem:

Corollary 1. Every (si, ti) is a reachable state in M’.

Proof: As stated in proof of Theorem 2, Algorithm 1 starts with a reachable

state. After that, the algorithm references state (si, ti) in line 12 only after

ResetAndRun has matched (reached) a candidate state scand and scanned-

out signature ti, lines 20 and 26, respectively.

Note that it is not obvious what happens if the user-specified bound, j, is

infinite. Besides the fact that Algorithm 1 may not terminate under the as-

sumption of non-determinism, there is also the possibility that the algorithm

will not make progress towards the initial states. For example, consider two

states, (sa, x) and (sb, y), of k-backspaceable augmented machine M’. Fur-

thermore, assume that setting the programmable breakpoint hardware to

sa will result in an execution σa that reaches (sa, x) from state (sb, y). In

theory, it is conceivable that by reprogramming the breakpoint hardware to

26

2.2. BackSpace Theory

target state sb and re-running the chip, non-determinism might cause the

chip to follow a different execution σb that reaches (sb, y) from the state

(sa, x). In this case, Algorithm 1 will still compute a valid suffix execution

of M , as indicated by the Theorem 1, but this execution will not make any

progress toward the initial states. Fortunately, if non-determinism in the

model is really randomness, with non-zero probability of choosing all legal

transitions, then I can prove (analogously to Theorem 2) that Algorithm 1

makes progress towards the initial states with probability 1:

Theorem 3 (Probabilistic Progress of Algorithm 1). Given a sufficiently

large timebound, if we terminate Algorithm 1 only when the computed se-

quence reaches an initial state of M , and if the executions σ′ of M ′ are

chosen randomly such that all valid transitions have probability greater than

some ǫ > 0, then Algorithm 1 reaches the set of initial states with probability

1.

Proof: To prove this theorem, it suffices to show that Algorithm 1 performs

a random walk on the reachable state space, R, of M ′, arriving at the initial

set of states Q′
0. By Corollary 1, I know that every state (si, ti) considered

by Algorithm 1 is reachable. Therefore, the random walk always remains

within the reachable set of states. Two cases are possible: (1) (si, ti) = (u, v)

for some (u, v) ∈ Q′
0 and (2) (si, ti) 6= (u, v) for all (u, v) ∈ Q′

0. In (1), the

algorithm is already in the initial state and, thus, the theorem holds. In (2),

there is at least one execution path from some (u, v) ∈ Q′
0 to (si, ti). Let’s

call this path σ′ and let l be the length of σ′. Since each valid transition

has probability greater than some ǫ > 0, σ′ has probability greater than ǫl

of being taken. Note that, in Algorithm 1, if ResetAndRun is repeatedly

called k × l times and that each time the algorithm follows the path σ′ (an

event that occurs with lower-bound probability ǫkl2), then the algorithm

reaches the initial set of states after l steps. Otherwise, because there may

be multiple (valid) execution paths to (si, ti), ResetAndRun may “choose”

a valid path other than σ′; thus, the algorithm might make a step on this

other path and the random walk continues thereon (the algorithm iterates).

Therefore, the random walk will eventually end up at an initial state.

27

2.2. BackSpace Theory

Informally, the proof of Theorem 3 says that the walk that Algorithm 1

is making in the reachable state of M ′ is a Markov process. And, as long

as each valid transition has a probability greater than some ǫ > 0 of being

taken, this algorithm will eventually hit the set of initial states which are the

only absorbing states in this Markov process (arriving at any initial state

causes the algorithm to terminate).

In my preliminary experiments (Section 2.3) and also in the hardware

prototype I built (Section 2.3.5), I did not find these issues of non-determinism,

randomness and termination to be a problem. The main difficulty with ran-

domness is the number of trials required to hit a breakpoint state when the

chip runs — if the probability is low, many runs will be needed for each

backspace step.

Precise measurement of the runtime cost of Algorithm 1 is complicated

because some functions mix software and hardware operations (e.g., Rese-

tAndRun). However, I can measure the expected number of function calls,

and I will consider this measurement the expected runtime cost of Algo-

rithm 1. I assume that non-determinism simply amounts to randomness.

But even then, computing the expected runtime cost from Algorithm 1 is

not straightforward. To simplify this analysis, I make some assumptions:

(i) I replace lines 15 through 20 with a function I call Round(), which

returns a boolean value. In other words, the repeat-loop now has only

one statement: matched := Round() (Algorithm 2, pp. 29, depicts the

Round() function);

(ii) the Round() function tries out all k -states in proj regardless of a suc-

cessful match (e.g., in Algorithm 2, if breakpoint becomes TRUE in

the first for -loop iteration, then it remains TRUE throughout the re-

maining k − 1 iterations);

(iii) I assume some repeatability of runs, i.e., a crash state is reproducible

in 1 out r calls to Round().

Under the aforementioned assumptions, I can compute the cost of each loop

28

2.2. BackSpace Theory

separately. Given assumption (ii), the runtime cost of Round() is O(k); due

to assumption (iii), the expected cost of the repeat-loop is

E[time to match scand] = O(rk). (2.4)

Finally, the expected runtime cost of Algorithm 1 depends on the length,

j, of the trace being computed. Since each trace increment has expected

runtime cost O(rk), the expected runtime of Algorithm 1 is

E[time to compute trace of length j] = O(jrk). (2.5)

Algorithm 2 Round()

1: breakpoint := FALSE;
2: for l in 0 .. k-1 do

3: // Select candidate-state l in proj
4: scand := SelectState(l, proj);
5: // Program the hardware-breakpoint circuitry with scand

6: LoadHardwareBreakpoint(scand);
7: // (Re-)run M’ at full-speed with timeout timebound

8: breakpoint := breakpoint |ResetAndRun(timebound);
9: end for

10: return breakpoint;

In Algorithm 1, the best computational cost happens when k = 1 because

I need to try out only one predecessor-candidate states. But, is it always

possible to augment any state machine to make it 1 -backspaceable? The

answer is yes. I can simply make ‖ T ‖ = ‖ S ‖ and set up δ′ to copy the

values in the latches of S to the latches of T . In other words, I can always

backspace to a unique predecessor state because I have stored that state.

Is it possible to do better, to make any state machine 1 -backspaceable

using fewer than ‖S‖ additional latches? Unfortunately, in the worst case,

the answer is no. For a simple example, consider the state machine in

Figure 2.1. This example is a simple n-bit counter, with a single input.

If the input is low, the counter transitions to the 0 state; otherwise, it

counts up. Almost all states have only a single predecessor, making them 1 -

backspaceable with no additional signature. However, the 0 state has every

29

2.2. BackSpace Theory

state as a predecessor. To make the machine 1 -backspaceable, I must add

the full n additional state bits, just to handle one particularly bad state.

I call such states “convergence states” because many incoming transitions

converge on them.

Figure 2.1 shows that in the worst case, I can do no better than by

storing a copy of all the state bits. However, it also suggests that I might

be able to do much better for most states. Is it good enough if I make most

states 1 -backspaceable; or even k -backspaceable?

Definition 3 (k-Backspace Coverage). Given state machine M augmented

into M ′, the k-backspace coverage of M ′ for M is the fraction of the reachable

states of M ′ that are k-backspaceable.

Can I get good backspace coverage with much fewer than ‖S ‖ bits in

the signature, or more to the point, can I backspace a long enough trace

to be useful before hitting a convergence state? The convergence states

are likely to be states that are easy to get to and easy to understand (like

reset or idle states); backspacing to a convergence state may be sufficient

for debugging purposes. In fact, as I show in the next sections, I am always

able to backspace a substantial number of states, each of which with the

pre-image-set size bounded by a reasonably small k.

2^n − 1

3

2

1
0

Figure 2.1: State Machine Requiring ‖ S ‖ Extra State Bits to Be Backspace-
able

30

2.3. Experimental Results

2.3 Experimental Results

2.3.1 Experimental Setup

My goal in this section was to explore and evaluate the basic components

of my framework, namely, signature functions and backspacing capability;

thus, I chose to focus on two easy-to-learn design examples so that I could

generate research hypotheses. The designs also had to be small enough so

that repeated experiments were feasible, and so that the supporting algo-

rithms and tools that are not germane to this research did not need to be

highly optimized. On the other hand, the designs had to be realistic, to

capture characteristics of real designs.

In particular, I picked two processors: a 68HC05 and an 8051. These are

both open-source designs that are rebuilds from datasheets of the respective

classic 8-bit microcontrollers from Motorola and Intel [38]. The 68HC05 is

smaller, with 109 latches. The 8051 implementation has 702 latches. In

both cases, I developed a simulation testbench based on the testbenches

supplied with the designs: the 68HC05 ran real LED and LCD controller

applications, and the 8051 ran some small software routines.

For these experiments, I treated the design running on a commercial

logic simulator as if it were the actual chip running on silicon. I simulated

the designs in a logic simulator for an arbitrary number of cycles and ran-

domly selected 10 states each to serve as “crashed” states for our analysis.

In addition, my testbench also recorded the immediate predecessor state be-

fore the crash state (which wouldn’t be possible in silicon); this predecessor

state is the correct answer that my analysis is trying to recover. Thus, my

experiments generated 10 pairs of states per design to serve as testcases.

2.3.2 Signature Functions

As a first step, I needed to find some plausible signature functions. I concen-

trated on the 68HC05 and tried a variety of approaches. Fig. 2.2 summarizes

the results of my experiments.

My first idea was to try a quick experimental upper bound on the size

31

2.3. Experimental Results

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

M
ed

ia
n

of
 th

e
N

um
be

r
of

 S
ta

te
s

in
 th

e
P

re
-I

m
ag

e

Hashing Size as of Percentage of the 68HC05 Latches

Random Constraints
Checksum Signatures

Univ. Hashing Signatures

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

F
re

qu
en

cy
 o

f a
 S

in
gl

e
S

ta
te

 in
 th

e
P

re
-I

m
ag

e

Hashing Size as of Percentage of the 68HC05 Latches

Random Constraints
Checksum Signatures

Univ. Hashing Signatures

Figure 2.2: Results for Compressed Signatures Based on Architectural In-
sight

32

2.3. Experimental Results

of the signature. I created the signature as a randomly selected subset of

all state bits. Unfortunately, this approach fared poorly: assuming k = 1

for k -backspaceable machine, we observe that 90% of the state bits were

needed in the signature before the median size of the pre-image was 1, and

even for a small k, more than 50% of the state bits would be required in the

signature.

In real life, the designers understand their design, and architectural in-

sight might allow selecting a particularly good subset of the state bits to

use as a signature. Based on a careful study of the 68HC05, I identified 38

latches (35% of the design) to use as the signature. This approach was very

successful, yielding unique pre-image states for all 10 test cases.

Spurred by that success, I tried some simple checksums on those 38 bits,

reducing the number of bits used to 6, then 12, and then 19. These results

were not very successful at getting unique pre-image states, but the plot

suggested that better compression would be promising.

Accordingly, I tried a perfect hash function — universal hashing [11] (es-

sentially the same as X-Compact [36], which is easier to implement on-chip)

to compress the 38 bits to 6, 19, and 25 bits. These results demonstrated

the promise of universal hashing.

In all of these experiments, computations were fast, and the SAT solver

had no problem computing pre-image states.

2.3.3 BackSpacing

With some promising ideas for signature functions, I proceeded to the real

test: can I backspace for hundreds of cycles from the random crash states?

I created an automatic framework to experiment and explore the BackSpace

paradigm (Fig. 2.3). The components of the framework are the BackSpace

Manager, a commercial logic simulator, and a SAT solver. The input to the

framework is a synthesized design (gate-level netlist). The logic simulator

plays the role of the silicon: I use it to run my testbench, exactly as the real

silicon would run bring-up tests. The SAT solver is the engine to compute

the required pre-image states. The core of the framework is the BackSpace

33

2.3. Experimental Results

Design
Synthesized

SAT Solver

Logic Simulator

BackSpace

Manager

Figure 2.3: BackSpace Framework

Manager.

The BackSpace Manager coordinates the logic simulation and the SAT

solving tasks by dispatching each task and processing their intermediate re-

sults (shown as the double-headed arrow in Fig. 2.3). For logic simulation,

the BackSpace Manager automatically generates a testbench instance based

on the synthesized design, dispatches the logic simulation, awaits its termi-

nation, and captures the crash state and signature. For SAT solving, given

the crash state and the signature, the BackSpace Manager generates a SAT

problem instance. When the SAT solver finds a solution, it means there is

one (more) state in the pre-image of the crash state. The BackSpace Man-

ager generates a blocking clause based on this solution and asks the SAT

solver for another solution. If another solution is found, this process repeats

until there are no more solutions. At that point, a single state or a set of

states is available as candidate states prior to the crash state. The task

now is to find which candidate state is reachable. The BackSpace Manager

dispatches logic simulation, setting a candidate state as a simulation break-

point. If simulation reaches the breakpoint, it means we have a new crash

state and a signature. This process continues until we have “backspaced”

some pre-determined number of cycles. If simulation does not reach the

breakpoint, it means we need to try another candidate. For logic simula-

tion, I used Synopsys VCS (version 7.2), and for our SAT solving, I used

Minisat (version 2.0). Due to VCS licensing issues and GCC compatibility

34

2.3. Experimental Results

problems, I had to run these tools on different machines: logic simulation

was run on a Sun Fire V880 server (UltraSPARC III at 900Mhz); SAT

solving was run on an Intel Xeon at 3.00GHz.

I ran experiments for both the 68HC05 and the 8051. For each, the

goal was to see how far I could backspace before the pre-image set got too

large or the computation blew-up. For the 68HC05, I reused the signature

consisting of a hand-selected subset of 38 of the 109 total state bits, chosen

based on my insight into the design. I also tried a 38-bit hash generated

via universal hashing over the 109 state bits. For the 8051, I hand-selected

a 281 bit subset of the 702 total state bits to be the “human architectural

insight” signature. I also tried to use a 281 bit universal hash of the 702

state bits.

In these experiments, I used the k -backspaceable computation (i.e., pre-

image sets are allowed to have up to k states), with k set to 300 states. To

keep my experiments manageable, I also set an upper limit of 500 cycles of

backspacing per test crash state.

Tables 2.1 and 2.2 show the results for the 68HC05. With the hand-

chosen subset of bits, my framework hit the preset 500-cycle limit on 3 of

the 10 test crash states. But on 4 of the 10, it cannot backspace more

than a handful of cycles. With a universal hash of the same size, all 10

test crash states can be backspaced to our limit, and all of the pre-images

are very small. In Section 2.3.4, we will see that a hand-chosen subset of

bits is a very low-overhead signature, whereas universal hashing all bits of a

large design appears to be prohibitively expensive. This suggests a trade-off

between quality and cost.

Table 2.3 presents the results for the 8051 using the hand-chosen subset

of the state bits as the signature. The results are excellent: my framework

can backspace up to the preset 500 cycle limit in 9 out of the 10 test crash

states. Initially, my framework was unable to complete results for the 8051

with a 281-bit universal hash. The SAT solver exhausted the system’s main

memory (1 hour timeout and 1GB memory limit) on all 10 test cases. The

universal hash function is essentially a matrix-multiplication over GF(2),

with a random matrix, so it is not surprising that large instances are chal-

35

2.3. Experimental Results

Crash # of Cycles Max States Sim Sat Manager
State BackSpaced in PreImg Time Time Time

s1 54 4096 63.44 0.93 204.42

s2 1 65536 1.45 86.61 4.38

s3 37 4096 62.65 0.71 139.67

s4 7 4096 37.76 0.52 27.11

s5 53 4096 116.16 0.92 200.34

s6 500 1 1261.48 3.24 1884.31

s7 500 1 2384.29 3.15 1890.91

s8 500 1 4575.41 3.01 1893.89

s9 2 4096 22.93 0.51 22.93

s10 9 65536 2424.55 91.18 34.86

“Sim Time” is the time spent in the logic simulator. This time would be re-
placed by time running on the actual silicon. “Sat Time” is the time spent
in the SAT solver. “Manager Time” is the time spent by the BackSpace
Manager to supervise the framework and connect the various tools. Our
BackSpace Manager implementation is very preliminary and can be opti-
mized extensively.

Table 2.1: 68HC05 w/ 38-bit Subset Hand-Chosen Signature

Crash # of Cycles Max States Sim Sat Manager
State BackSpaced in PreImg Time Time Time

s1 500 2 1097.25 185.57 8524.15

s2 500 2 2011.04 187.21 8397.09

s3 500 2 2737.15 171.57 8335.45

s4 500 2 2988.38 242.89 8477.88

s5 500 2 3358.40 216.81 8398.14

s6 500 1 3176.94 31.89 8175.62

s7 500 1 6247.61 31.42 8280.93

s8 500 1 12207.49 38.58 8297.21

s9 500 2 15280.79 42.31 8173.19

s10 500 1 34084.53 36.63 8125.62

Table 2.2: 68HC05 w/ 38-bit Universal Hashing Signature

36

2.3. Experimental Results

Crash # of Cycles Max States Sim Sat Manager
State BackSpaced in PreImg Time Time Time

t1 205 512 2841.07 4.58 6048.46

t2 500 256 21759.74 9.70 14720.71

t3 500 257 8326.66 10.84 14746.10

t4 500 257 10342.40 10.77 14772.03

t5 500 256 11587.21 11.26 14742.81

t6 500 256 11581.93 8.72 14735.07

t7 500 255 25767.40 8.54 14742.60

t8 500 256 13581.20 11.57 14759.73

t9 500 257 22493.04 10.62 14735.48

t10 500 257 24793.42 10.81 14759.77

Table 2.3: 8051 w/ 281-Bit Subset Hand-Chosen Signature

lenging for current SAT solvers. However, note that any full-rank matrix

provides correct universal hashing, but a sparse matrix will be easier for the

SAT solver, and also reduce area overhead. Thus, all that is needed is to

generate a sparse matrix, which is done by increasing each matrix-element’s

probability of being zero, and then to check that the resulting matrix is full-

rank. In these experiments, I generate the random hash matrix with a 0.985

probability of each entry being 0. The end result is that my framework can

backspace up to our set limit for all 10 test crash states. Furthermore, the

number of states in the pre-image is 2 orders of magnitude smaller for all

crash states. Table 2.412 gives these results.

To summarize, Basic BackSpace works. It can compute hundreds of cy-

cles of error trace backwards from a crash state. However, the area overhead

is a potential limitation for this method and so it needs further investigation.

12Note that simulation time is an order of magnitude longer than the results shown
in Table 2.3. Commercial logic simulators are optimized for speed. However, these opti-
mizations are ineffective when testbenches probe signals deeper into the design through
hierarchical references. In particular, the 8051 hash function is computed at the top level
of the design, but all the 281 signals used in this computation are accessed through hierar-
chical references. Thus, the end result is a slow down of the simulation runs. In practice,
because Basic BackSpace is to be used with a real chip, this simulation overhead can be
ignored.

37

2.3. Experimental Results

Crash # of Cycles Max States Sim Sat Manager
State BackSpaced in PreImg Time Time Time

t1 500 8 138616.15 1379.21 55389.29

t2 500 4 497905.92 1350.15 55104.32

t3 500 4 191655.42 1378.15 55462.20

t4 500 4 183283.27 1383.10 55642.82

t5 500 8 431057.79 1377.87 55039.00

t6 500 4 151950.65 1399.62 55601.11

t7 500 4 506787.53 1388.94 55639.58

t8 500 8 506229.79 1368.52 55512.44

t9 500 4 488157.90 1379.14 55049.31

t10 500 4 534870.14 1378.37 55448.52

Table 2.4: 8051 w/ 281-Bit Universal Hashing Signature

2.3.4 Initial Architectural Considerations

In [24], Marcel Gort describes in detail a post-silicon debug architecture for

BackSpace, some possible variants and, their associated overheads. To make

this proposal self-contained, I will describe the post-silicon debug architec-

ture used during my preliminary experiments and comment on its imple-

mentation costs. I will present more advanced architecture considerations

in Chapter 3.

In Figure 2.4, I depict a circuit under debug (CUD) augmented with our

debug logic. More precisely, the basic debug architecture contains three ma-

jor blocks: a breakpoint circuit (BRE); a signature creation circuit (SCR);

and a signature collection circuit (SCO). The debug logic probes the CUD

via two buses, Nbreak and Nmon. For my preliminary experiments, I as-

sumed that the entire state of the chip could be probed. In other words, if

Nstate represents the CUD latches, then ‖ Nbreak ‖ = ‖ Nmon ‖ = ‖ Nstate ‖.

In Chapter 3, I propose alternative architectures to relax this assumption.

But, in general, if the set of Nmon signals cannot be determined at fabri-

cation time, the selection of these signals can be made programmable at

debug-time (e.g., use of tree-type multiplexer structures, concentrator ac-

cess networks [45]). Such a network would programmably connect a subset

38

2.3. Experimental Results

of the Nmon monitored signals for use in the signature.

SCO

Chip

Scan Out Control

CUD

Signature

Scan Out

Debug Logic

BREConfig

S

SCR

N

N
break

mon

stop

sig

Figure 2.4: Debugging Architecture. BRE: breakpoint circuit; SCO: signa-
ture collection circuit; SCR: signature creation circuit; CUD: circuit under
debug. During debug, while the chip runs, the BRE circuit compares the
breakpoint value and the state of the CUD, via Nbreak, at every clock-cycle;
the SCR monitors Nmon signals, generates signatures, Ssig, over those sig-
nals and stores them in the SCO. Upon a successful comparison, the BRE
signals the SCO to stop the signature collection and also to stop the running
chip. Typically, designs have some external controller (e.g., a single pin; or
an interface to an external logic analyzer) that can signal to stop the chip.
So, having BRE stopping the chip is not a design requirement, but this is
how I implemented this debug logic for my preliminary experiments. Then,
an external controller scans out the collected signatures.

The construction of the signature, SCR circuit, depends on what signa-

ture function the circuit implements (described in Section 2.3.2). Consider

Ssig as a signature generated by SCR. If ‖ Nstate ‖ = ‖ Ssig ‖, then the

history of all latches is stored in the SCO, and the circuit becomes trivially

backspaceable. If ‖ Nstate ‖ > ‖ Ssig ‖, then missing bits must be recon-

structed using off-chip analysis (described in Section 2.3.3).

The BRE is basically comprised of comparators and some number of

configuration registers. I assume that a configuration, i.e., a breakpoint

value, is always loaded into the BRE during the chip’s initialization phase.

Typically, designs have some external controller that can signal to stop the

39

2.3. Experimental Results

chip/CUD at will (e.g., via a single pin; or via an interface to an external

logic analyzer). In this basic debug logic, however, BRE’s stop signal stops

the running CUD when asserted, otherwise BRE does not interfere with the

CUD.

The SCO is mainly a memory circuit, controlled by the BRE and some

external controller that scans-out the SCO’s internal memory. I assume the

SCO’s memory is arranged as a FIFO buffer. The depth of this FIFO buffer

dictates how many consecutive states can be stored, i.e., when the FIFO’s

depth is larger than one, this circuit implements a so-called trace-array

(AKA trace-buffer). I assume that the SCO is always running.

Clearly, the area overhead is a function of these three circuits. The

breakpoint circuit comprises a set of latches and a comparator; SCR can be

a variety of circuits. One example is a universal hash function (discussed

in Section 2.3.3), which will incur an overhead due to extra logic-gates.

Another example is a hard-wired signature, in which a pre-selected set of

latches is chosen as a signature incurring no area overhead. The SCO over-

head depends on the choice for the signature storage (e.g. latches, SRAM).

Based on Marcel’s architectural studies [24], I have drawn a couple of impor-

tant conclusions regarding the area overhead of the presented debug logic:

using concentrator networks to select observable signals yields an overhead

between 1.5x and 40x compared to hard-wired signatures; and using the uni-

versal hash function to generate signatures yields an overhead between 10x

and 20x compared to hard-wired signatures. These two points indicate that

based on area overhead, using hard-wired signatures is the best alternative.

(Obviously, these are impractical overheads. I will revisit them later.)

2.3.5 Results on a Hardware Prototype

Given the encouraging results of my preliminary experiments, my next step

was to move BackSpace closer towards reality, by stepping up the size, com-

plexity, and realism from the preceding two microcontrollers, and by imple-

menting BackSpace on a design in actual hardware. I did this work together

with Marcel Gort, an M.Sc. student in the ECE department at UBC. We

40

2.3. Experimental Results

selected a classic RISC processor with 32-bit datapaths and a 5-stage inte-

ger pipeline: the OpenRisc 1200 [38]. This core is non-trivial, open-source,

and software-friendly (i.e., we can compile and simulate real applications).

The only drawback is that the RTL implementation does not have a memory

controller, which prevented us from working with more complex applications

(e.g., the Linux operating system). The configuration we are using has 3007

latches in the processor core plus one UART for I/O.

Our hardware implementation is on an AMIRIX AP1000 FPGA devel-

opment board. Figure 2.5 shows the overall architecture. The development

system consists of a PC workstation (the “host PC”), with the AMIRIX

board mounted in one of its PCI slots. The AMIRIX board has a Virtex-II

Pro FPGA, containing a PowerPC and a PCI bridge hard core in addition

to the programmable logic, as well as an SDRAM memory subsystem and

two UART ports.

com2

UART

PLB

OPB

com1

Host PC

PCI

AMIRIX AP1000

SDRAM

OpenRisc

PowerPC

Figure 2.5: OpenRISC 1200 Implemented onto AMIRIX AP1000 Board

We use the FPGA’s programmable logic to implement the OpenRisc, a

UART for I/O, and the hardware components for BackSpace (breakpoint

and signature circuits). So, the programmable logic corresponds to the CUD

on silicon in a real debug scenario. We have programmed the PowerPC to act

as a middleman between the host PC and the OpenRisc, as well as serving

as the memory controller. Thus, the PowerPC and SDRAM emulate the

41

2.3. Experimental Results

rest of the bring-up system for the OpenRisc. The host PC functions as the

test/debug controller, where the software components of BackSpace (the

BackSpace Manager and formal analysis) run.

The basic implementation of the OpenRisc on the FPGA was fairly stan-

dard, although it did require some ingenuity. We started with a different

design provided by CMC Microsystems (who also supplied the prototyp-

ing system), in which the PowerPC communicates with on-board SDRAM

through the processor local bus (PLB) and provides serial communication

to the host through a UART sitting on the on-chip peripheral bus (OPB).

We added our OpenRisc processor implementation to the OPB bus. The

OpenRisc also includes a UART, which was connected directly to the sec-

ond serial port on the AMIRIX AP1000 board. This allows running software

applications on the OpenRisc, using this UART port for console I/O. The

host PC and the PowerPC communicate via a “mailbox” mechanism on the

SDRAM.

My implementation of the BackSpace hardware was also fairly straight-

forward. The OpenRisc design did not have scan-chains. Thus, to avoid

having to interface my framework with a commercial scan-chain insertion

tool, Marcel augmented the design with hardware structures to mimic a full

scan-chain circuit. For a signature, I hand-selected 1276 out of the 3007

latches, without any further compression. To provide a more flexible envi-

ronment for experimentation, Marcel implemented a breakpoint circuit that

matched all state bits, but also allowed partial matches by masking off bits.

This capability proved very helpful when we were initially debugging our

design.

On the software side, the BackSpace Manager and SAT solver ported

to the host PC with minimal changes. The primary tasks were implement-

ing the API interface for the BackSpace Manager to communicate with the

PowerPC via the mailbox mechanism, and for the PowerPC to control the

OpenRisc. For example, to begin backspacing, the host PC writes a reset

command to the mailbox; the PowerPC then resets the OpenRisc. Next,

the host PC writes a run command, and the PowerPC starts the OpenRisc.

For these experiments, we specify some number of cycles for the OpenRisc

42

2.3. Experimental Results

to run before crashing. As the OpenRisc is running, signatures are gen-

erated and collected at every clock cycle (we only store the most recent,

however). The PowerPC stops the OpenRisc when the number of cycles

hits the target, after which the OpenRisc’s current state and signature are

written into memory. The host PC reads them and computes the set of can-

didate predecessor-states (the pre-image). For each candidate, the host PC

writes a load command to load it into the breakpoint circuitry and requests

the OpenRisc to run until a state matches the breakpoint. When the break-

point is hit, it means we have a new state and a signature to work with.

Otherwise, the BackSpace Manager keeps trying until eventually finding the

right candidate. Altogether, the BackSpace Manager will automatically and

accurately compute a backward trace of arbitrary length from the crash

state.

We were able to successfully run this prototype13. We can load simple

software applications onto the OpenRisc, run, and then BackSpace at will.

We report in Table 2.5 some results on using BackSpace on this system. We

show results for two simple application programs: the Euclidean Algorithm

for greatest common divisor; and the Sieve of Eratosthenes for computing

prime numbers. For target/crash states, I picked 3 states during the run of

each program. For the GCD program, these states were tens of thousands

of cycles deep after reset; for the prime number program, they were roughly

300,000 cycles deep.

The results are excellent. Even with the simple signature, my frame-

work was able to backspace for hundreds of cycles from all crash states,

and hitting our self-imposed experimental limit of 500 cycles in 3 of the 6

cases. Run-times were typically a few hours, with most of the time spent on

communication overhead between the CUD and the debug manager.

As in larger, real-life designs, our implementation has non-determinism.

In this system, the source of the non-determinism is the variable memory

access time. Exactly as modeled by Basic BackSpace’s theory, the frame-

work can handle the non-determinism, but it produces a run-time slowdown,

13In 2008, we gave live demonstrations in two fairs: Canadian Microelectronics Corpo-
ration’s TEXPO and Semiconductor Research Corporation’s TECHCON.

43

2.3. Experimental Results

because it must repeatedly try to hit each breakpoint.

Similarly, in my preliminary experiments, we noted the need for good

signatures that constrain the number of states in the pre-image. The cur-

rent implementation results confirm that need, as the average size of the

pre-image set also produces a slowdown, and these two slowdown factors

combine. For example, gcd1 has only 17 candidate states in most of the

pre-image computations. However, the pre-image size impact over runtime

gets compounded with non-determinism. For example, in Fig. 2.5, column

5, the 30.5 average retries per cycle during one BackSpace run means that

the BackSpace Manager had to request almost two chip runs, on average,

for each of the 17 candidate states. On the other hand, when the pre-image

size is 1 for most of the pre-image computations, e.g., prime1, the run time

improves considerably. Curiously, we see a wide range on the number of

retries over all crash states. The intuition here is that some of the state bits

and/or some segments of the running application may be more susceptible

than others to non-determinism.

44

2.3. Experimental Results

Crash # of Cycles Max States in Most Frequent
State BackSpaced PreImg (freq) PreImg Size (freq)

gcd1 322 > 300(1) 17(321)

gcd2 442 > 300(1) 17(441)

gcd3 500 34(1) 17(499)

prime1 500 80(1) 1(498)

prime2 500 80(1) 64(100)

prime3 369 > 300(1) 64(100)

Crash # Retries per cycle Run Time Sat Manager
State run1 run2 run3 run1 run2 run3 Time Time

gcd1 30.5 31.0 25.4 9,840 11,302 8,952 366.3 2,440

gcd2 27.1 35.0 30.1 11,982 17,134 14,460 496.3 3,330

gcd3 28.7 21.1 32.3 14,387 10,562 17,936 556.0 3,774

prime1 2.4 15.2 4.7 1,826 7,637 3,026 539.7 3,782

prime2 58.3 34.8 23.3 31,718 19,270 13,345 565.0 3,730

prime3 14.1 24.8 14.3 5,910 10,118 6,226 420.6 2,783

We used two programs, gcd and prime. The upper table shows number of
cycles computed and pre-image statistics. The bottom table shows number
of retries needed due to non-determinism and overall runtime statistics.
For each program, we selected 3 crash states from which to attempt to
backspace as far as possible, up to a pre-set limit of 500 cycles. We set an
upper-bound of 300 for the size of a pre-image set; if a pre-image exceeded
that size, we terminated that run. For each of these states, we repeated the
backspace computation 3 times (reported as “run1”, “run2” and “run3” in
the bottom table). In the bottom table, for each crash state and for each of
the 3 runs, we report “# Retries per Cycle”— the average number of retries
over the backspaced cycles; and “Run Time”— the total elapsed time spent
between the time the BackSpace Manager issued a run command and the
time the new “crash state” is available in memory. Notice that the average
varies from run to run, which is due to the non-determinism in the hardware.
“Sat Time” is the total elapsed time spent in the SAT solver. “Manager
Time” is the total time spent by the BackSpace Manager to supervise the
framework and connect the various tools. “Sat Time” and “Manager Time”
had minimal variance, so we report the averages over the 3 runs.

Table 2.5: Results for BackSpacing the OpenRisc 1200

45

2.4. Practical Limitations

2.4 Practical Limitations

In the preceeding sections, I presented the theory of BackSpace and explored

its feasibility by means of simulation and hardware prototyping. Although

the results are promising, I found two practical limitations, namely, excessive

area overhead and excessive number of repetitions due to non-determinism

and/or randomness. I detail these limitations and what to look for in the

next chapters.

2.4.1 Area Overhead

The initial architectural studies (Section 2.3.4) point to an area overhead of

1.5x to 40x, which renders Basic BackSpace a theoretical work. However,

other researchers such as Park and Mitra [41] and, more recently, Gort et

al. [23], have shown that it is possible to achieve far less area overhead.

In particular, Gort et al., whose research is based on Basic BackSpace,

demonstrated that the area overhead can be cut to about 20%. Neverthe-

less, insisting on either replacing existing hardware debug logic with Basic

BackSpace or requesting more overhead to accommodate this framework is

not practical.

In Chapter 3, I will describe a technique that leverages existing hardware

debug logic. In fact, the new technique has no additional area overhead, and

thus, is much easier to adopt in practice.

2.4.2 Non-Determinism

In Section 2.3.5, it became clear that non-determinism can negatively affect

the performance of Basic BackSpace. It appears that the only solution is

“determinizing” the system. Unfortunately, as systems start adding more

sources of non-determinism (e.g., multiple clocks, asynchronous communi-

cation), determinizing these systems become more difficult. Also, because

bugs may be observable only in the original, non-deterministic design, de-

terminization may hide bugs.

I will present a new technique in Chapter 4 that, instead of being con-

46

2.4. Practical Limitations

cerned with reducing non-determinism, can better cope with it and thus, be

able to handle complex bugs in designs/environment where non-determinism

is pervasive.

47

Chapter 3

TAB-BackSpace: Computing

Traces with Zero-Additional

Area Overhead

...the separation between past,

present, and future is only an

illusion, although a convincing one.

Albert Einstein

3.1 Introduction

In the previous chapter, I showed that BackSpace perfectly solves the trace

computation problem by computing arbitrarily long sequences of all on-chip

signals up to the bug. I also showed, however, that BackSpace requires an

impractical amount of hardware overhead: correctness relies on computing

breakpoints, signatures, and pre-images over the entire concrete state of the

chip. In this chapter, I present a new technique, dubbed TAB-BackSpace

(Trace-Array Buffer BackSpace), which lifts the BackSpace algorithm to an

abstract setting, leverages already existing in-silicon debug logic (i.e., trace

buffers), and therefore has no additional hardware cost.

Recall that, in post-silicon debug, little can be done until a trace leading

to an observable bug or crash is available. Because of the critical impor-

tance of these traces, almost all chips have some debug logic to facilitate

deriving them. For example, the same scan chains [53] for manufacturing

test can be used to get a single-cycle snapshot of the state of many on-chip

signals. However, this process is slow, so these snapshots can be taken only

48

3.1. Introduction

rarely during a chip’s execution. Furthermore, stopping the chip to take a

scan dump disturbs the chip’s interaction with its environment, potentially

changing or obscuring buggy behavior. To compensate for the single-cycle

and disruptive nature of scan dumps, complex chips often include “trace

buffers” or “on-chip logic analyzers” (e.g.,[5, 49]): a limited number of the

most important on-chip signals are routed to and recorded in a FIFO, with

some mechanism to trigger starting and stopping of recording. These allow

recording a multi-cycle trace of internal signals, while the chip is running

at full speed. Unfortunately, because of the die area overhead of the trace

buffer, the number of cycles of history that can be stored is small. In prac-

tice, considerable ingenuity, persistence, and luck are required to trigger scan

dumps or trace buffer recordings at exactly the right times to observe the

correct signals just before a bug manifests itself. The on-chip debug logic

helps a lot, but obtaining debugging traces is still an exceedingly challenging

problem.

Similarly to BackSpace, I show that TAB-BackSpace eliminates all this

guess-work by computing a trace backwards in time (from the bug towards

the initial state). Also, given that most complex chips already include some

on-chip debug hardware, I treat this existing hardware as “free”, and by

making use of it, I flipped the problem around: instead of insisting on an

excessive hardware overhead, could BackSpace successfully work with this

existing on-chip debug logic? Indeed, I show in this chapter that TAB-

BackSpace not only leverages existing in-silicon debug hardware, but also

achieves the effect of extending the trace buffer arbitrarily far back in time,

i.e., an effectively unlimited length trace buffer (assuming no spurious traces

— See Section 3.3.2.).

I present TAB-BackSpace in the next two sections. In Section 3.2, I

develop a theory of BackSpace with abstraction, which provides the frame-

work for using partial information (available from trace buffers) and intro-

duces the danger of spurious traces. Then, in Section 3.3, I introduce the

TAB-BackSpace algorithm, including how to suppress spurious traces. In

Section 3.4, I conduct both simulation and hardware experiments to assess

and validate the overall TAB-BackSpace method.

49

3.2. Abstract BackSpace

3.2 Abstract BackSpace

The root cause of BackSpace’s excessive overhead is the requirement that

the entire state of the chip be included in the analysis. Let’s make a more

realistic assumption that only a small subset of all on-chip state can be

monitored, recorded, and used for breakpoints.

Formally, I model the full chip on-silicon as a finite-state transition sys-

tem with state space Sc and (possibly non-deterministic) transition relation

δc ∈ Sc × Sc. This is the concrete system. As is typical in model check-

ing [14], let’s abstract away the inputs and consider only signals on-chip as

the state. A concrete trace is a finite sequence of concrete states s1, . . . , sn

such that ∀i. (si, si+1) ∈ δc.

The choice of signals to record in the trace buffer defines an abstraction

function α : Sc → Sa that projects away everything but the chosen signals.

Sa is the abstract state space, and the abstract transition relation δa(sa, ta)

is defined as usual (e.g., [16]):

∃sc, tc [δc(sc, tc) ∧ sa = α(sc) ∧ ta = α(tc)] (3.1)

An abstract trace is a finite sequence of abstract states s1, . . . , sn such

that ∀i. (si, si+1) ∈ δa. Informally, given a concrete crash-state, which when

abstracted onto the trace-buffer signals yields an abstract crash-state, the

Abstract BackSpace algorithm computes an arbitrarily long abstract trace

following these steps:

1. Run the chip until it crashes or exhibits the bug. Like in the original

BackSpace, this could be an actual crash or a programmed breakpoint.

2. Scan out the abstract crash-state, including the signature (e.g. the

partial information in the trace-buffer).

3. Using formal analysis of the corresponding RTL, compute the abstract

pre-image of the abstract crash-state (constrained by the signature as

in BackSpace).

4. For each abstract-state s in the pre-image, let s be the new breakpoint;

50

3.2. Abstract BackSpace

re-run the chip; if the chip reaches the breakpoint, then s is a valid

abstract predecessor-state.

If the algorithm successfully computes the abstract pre-image set in step

3, the algorithm proceeds with step 4 and iterates. In each iteration this

algorithm adds one new abstract-state to the trace computed so far. Oth-

erwise, it terminates (the pre-image computation is too large, exceeding

memory’s capacity).

The upside of this algorithm is that now the pre-image computation is

done in the abstract state space of the transition system, thus reducing the

chance of exceeding memory resources (compared to the pre-image compu-

tation over the entire concrete state space in BackSpace). The downside,

however, is that Abstract BackSpace may compute “spurious traces”, which

I define next.

Given a concrete trace, σc, let the abstraction function, α(·), be lifted

to traces such that each concrete state in σc is pointwise abstracted. Thus,

the result of the abstraction function is a unique abstract trace α(σc). In

the opposite direction, an abstract trace σa is said to be concretizable if

there exists a concrete trace σc such that σa = α(σc). Because the abstract

transition relation is conservative, not all abstract traces are concretizable;

such traces are called spurious. In practice, concretizability is a crucial

property: a spurious trace does not correspond to any possible execution

of the real hardware, so it is not only wrong, but it misleads the debug

engineer and wastes time. There are two sources of spurious transitions in

the abstract BackSpace algorithm:

1. Because the abstract transition relation is conservative, the abstract

pre-image can include states that do not correspond to any concrete

transition to the crash state. If the chip reaches any of those states

(step 1 of the Abstract BackSpace algorithm), I add a spurious abstract

transition to the abstract trace.

2. Because the breakpoint is done on the abstract state, when I re-run the

chip, it may breakpoint at the wrong time, or (in the presence of non-

determinism) on a completely different trace, because a wrong concrete

51

3.3. TAB-BackSpace

state might map to the same abstract state as the correct concrete

state. I call this situation a false match. For example, consider a

4-bit counter, where the high-order two bits are the abstract state.

If the algorithm tries to compute a trace leading to state 1111 from

state 0000, the abstract target will be state 11, which has abstract

predecessor states of 11 (because, e.g., 1110 goes to 1111) and 10

(because 1011 goes to 1100). If I set 10 as the abstract breakpoint,

the algorithm will hit it, and then try to compute abstract predecessors

of 10, etc. Eventually, abstract BackSpace can compute a 4-cycle trace

00, 01, 10, 11, which is spurious. The shortest non-spurious abstract

trace is 00, 00, 00, 00, 01, 01, 01, 01, 10, 10, 10, 10, 11, 11, 11, 11.

The problem of identifying spurious traces have been extensively stud-

ied. The most common approach is by Counterexample Guided Abstrac-

tion Refinement, CEGAR [15, 18, 25]. Fundamentally, the goal of abstrac-

tion refinement techniques is to prevent spurious counterexamples (non-

concretizable traces) by creating new abstract models containing more in-

formation about the design. Unfortunately, refining the abstract model in

post-silicon debug means that every time a spurious trace is found, a chip

re-spin would be required, which is unrealistic.

Therefore, the challenge is to minimize the risk of spurious traces, which

is addressed in the next section.

3.3 TAB-BackSpace

3.3.1 Intuition

For TAB-Back-Space, my goal is to leverage the underlying insights of

BackSpace, but use existing on-chip debug hardware and no pre-image com-

putation. Accordingly, I have to make some assumptions about what is

available. I assume a trace buffer that records a set of signals. (In this

thesis, I assume this set of signals have already been determined via some

automatic framework, e.g., [31, 40], or using architectural insights from the

chip designers.) This recording must be able to run continuously (e.g., trace

52

3.3. TAB-BackSpace

4

4 Trace−Array

Controller

Trigger Bus

Event Bus

Trace Bus

Debug Logic Core

Start

N−Trace

Stop Trace−Array

1k x 132 bits

JTAG Interface

128 132

Figure 3.1: IBM’s Cell Processor Debug Logic Core (DLC) High-Level Block
Diagram. The DLC has 3 inputs: the trigger bus, carrying signals used to
control the trace array; the event bus, carrying additional status signals that
may be stored in the trace array; and the trace bus, carrying pre-selected
signals to be stored in the trace array. The trace array controller (TAC) uses
signals from both the trigger and the trace buses to control the recording of
information (start/stop recording, and N-trace for recording N consecutive
cycles).

buffers are usually implemented as circular buffers). And it must be possi-

ble to set a breakpoint to stop recording when the circuit reaches a specific

value on the trace buffer input signals. These are minimum requirements;

the method can be improved if some of these are better, e.g., if I can set

multi-cycle breakpoints.

To make things more concrete, I base my experiments on a well doc-

umented post-silicon debug infrastructure: the debug architecture used on

IBM’s Cell processor[49]. Fig. 3.1 depicts the debug architecture. This

architecture provides many debugging features, but for this thesis, I use

only the minimum requirements: trace buffer recording, and the breakpoint

(trigger) capability.

This architecture has been typically used by the lab engineer guessing

when to start/stop recording information into the trace-array. However,

finding the right time window to capture the chip’s partial state information

is one of the most time-consuming tasks faced in post-silicon debug14. With

14Personal communication with Jim Bishop (IBM-US), February 2010.

53

3.3. TAB-BackSpace

0

0

0

0 time*

Bug observed and
chip stopped

t

Overlap region

Extended Trace Computation

run3

run2

run1

2 13

Bug root−cause
run0

Figure 3.2: TAB-BackSpacing. Once the bug is observed, re-run the chip
with trace arrays enabled, i.e., run1; collect the information from the trace
arrays and compute a new set of triggers for the subsequent run (run2); and
iterate these steps, extending the length of the computed trace beyond the
trace arrays’ depth.

TAB-BackSpace, I will eliminate this problem.

Fig. 3.2 gives an overview of TAB-BackSpace. I assume that the trace

buffers are always recording until stopped by a trigger. TAB-BackSpace

iterates the following steps:

1. Run the chip until it “crashes” (hits the bug or the programmed break-

point).

2. Dump out the state of the trace buffer into a file.

3. Select an entry from the trace dump as the new trigger condition,

configuring the breakpoint circuitry to stop the chip when it hits this

breakpoint on the next run.

Depending on how the trigger condition is configured, the trace-dump of

the next run will overlap the most recent trace-dump by some number of

cycles f . If the length of each trace-dump is m, then, after the nth run, the

computed trace is approximately n(m−f) cycles long. (This is approximate

because of non-determinism, and because in practice, f may vary from run

to run.)

54

3.3. TAB-BackSpace

The next two subsections formalize this intuition.

3.3.2 Theory of TAB-BackSpace

The fundamental principle underlying the BackSpace approach is to use rep-

etition to compensate for the lack of on-chip observability. The fundamental

challenge, therefore, is how to determine when a new run of the chip is fol-

lowing “the same” execution as a previous one, so that information from the

two physical runs can be combined.

The first technique is the breakpoint mechanism. I never try to combine

traces unless the new trace, hits the breakpoint in the previous trace (i.e.,

the hardware reaches a specified state). Because the two traces share an

identical state, I am guaranteed that by combining the two traces at that

state I have computed a valid, longer trace — but the guarantee is only valid

at the level of abstraction of the breakpoint state. In the original BackSpace,

the breakpoint was concrete, guaranteeing that the algorithm constructed a

valid, concrete trace leading to the bug. In TAB-BackSpace, the breakpoint

is only on a partial state, so the guarantee is only that the constructed trace

is a legal, but possibly spurious (non-concretizable), abstract trace.

To reduce the possibility of spurious traces, and since a trace buffer

provides multiple cycles of history anyway, I therefore insist that not only

the breakpoint match, but every abstract state match in a multicycle overlap

region between a new trace buffer dump and the previously computed trace.

Intuitively, the longer the overlap region required to match, the less likely

that the computed trace is spurious. I formalize the intuition that a large

enough overlap eliminates spurious traces as follows:

Definition 4. Let ldiv (“divergence length”) be the smallest constant such

that for all concrete traces x1y1z1 and x2y2z2 (where the xs, ys, and zs are

strings of concrete states), if α(y1) = α(y2) and the length |α(y1)| > ldiv ,

then x1y1z2 and x1y2z2 are also valid concrete traces.

In other words, if two concrete executions share a long enough period of

abstracting to the same states, then the future concrete execution is oblivious

to what happened before that period, and so the combined abstract trace

55

3.3. TAB-BackSpace

is not spurious. Note that, in practice, the divergence length is specific

to the design and also to the chosen abstraction function. Although ldiv

may not always exist (because, for example, the abstraction function might

abstract away key information from the concrete traces), in theory, it is

straightforward to check whether the length of the overlapping region is

longer than ldiv : let f be the length of the overlapping region. Do there exist

two traces σ1=x1y1z1 and σ2=x2y2z2 such that |xi|=|zi|=1, |y1|=|y2|=f ,

α(y1)=α(y2), and either x1y1z2 or x1y2z2 are not valid traces? If not, then

f > ldiv. Otherwise, f < ldiv. Therefore, all that needs to be done is to

unroll the design (as in bounded model checking [7]) up to f+2 cycles and

check for a witness.

In practice, it may be unrealistic to unroll the design for f+2 cycles.

However, I show that it is possible to empirically limit the number of ex-

perimentally observed spurious traces. In particular, if I have trace dumps

from different concrete executions that match on the overlap region, I dub

this a “false match”, which is a necessary (but not sufficient) condition for

a spurious trace. In Section 3.4.1, experiments show that false matches are

rare when the overlap region is reasonably long.

Algorithm 3, shown on page 58, presents the TAB-BackSpace procedure:

starting from a given crash state and its corresponding trace-buffer, it iter-

atively computes an arbitrarily long sequence of predecessor abstract states

by going backwards in time. This procedure has 4 user-specified parame-

ters: steps bound specifies how many iterations back the algorithm should

go; retries timeout limits the amount of search for an equivalent overlap-

ping region between the new trace dump and the trace computed so far;

the time bound (as in Algorithm 1, page 24) is a timeout for each chip-run

and is a mechanism to tell whether a chip-run went on a path that does not

reproduce the crash-state or buggy-state; and, lbindex is the trace buffer’s

smallest index, which defines a region for the overlapping of two consecutive

trace buffers.

This procedure has 2 nested loops. The outer loop, lines 13 – 41, con-

trols the three termination conditions for the algorithm: we reach the user-

specified number of iterations; we reach the initial states; or the previous

56

3.3. TAB-BackSpace

iteration was unsuccessful. The outer loop is also responsible for joining the

new trace buffer dump onto the successful trace computed so far (line 32),

and then selecting a new state as the breakpoint for the next iteration. The

inner loop, lines (17 – 31), is responsible for controlling the hardware while

trying out different candidate-states, scand, given a retries timeout. The

procedure keeps track of time using the subroutine ElapsedTime() (passing

reset as parameter resets the time counter, otherwise it counts the elapsed

time since it was last reset). In each loop iteration, the procedure loads scand

into the breakpoint-circuit (line 19), and runs the chip. The objective is to

collect a new trace-buffer upon matching scand and match (after overlapping)

it with the previous trace-buffer. If ResetAndRun() returns TRUE then the

breakpoint circuitry matched scand and we have a new trace-buffer. Other-

wise, the chip-run violates the time bound parameter (line 21) because the

current run took another path (caused by non-determinism). If the break-

point occurs, we dump the contents of the trace-buffer, for comparison with

the trace computed so far. The OverlapAndCheck() subroutine (line 24) is

responsible for matching the overlapping region of the previously computed

trace with the new trace dump and checking for equality. If the procedure

neither breakpoints nor proves equality, PickState() (line 29) selects another

candidate-state from the previous trace using a round-robin scheme while re-

specting lbindex, and the inner loop iterates. The procedure exits the inner

loop when either it successfully proves equality of the overlapping regions

of the two trace-buffers, or this loop has iterated longer than the specified

retries timeout.

The main correctness theorem proves that the trace computed by Algo-

rithm 3 is as informative as one could hope: it concretizes to a trace that

leads to the actual crash state, using reachable states.

Theorem 4 (Correctness of Trace Computation). If the size of the overlap-

ping region used to check equality is greater than ldiv , then the trace produced

by Algorithm 3 is concretizable to the suffix of a concrete trace leading from

the initial states Q0 to the crash state s.

Proof: The proof is by induction on the iteration count i at line 37. The

57

3.3. TAB-BackSpace

Algorithm 3 Crash State History Computation
1: input Q0 : set of initial states,
2: (s, t) : crash-state and trace-buffer
3: steps bound ∈ N+ : user-specified bound on the number of iterations,
4: retries timeout ∈ N+ : user-specified time-bound on retrials,
5: timebound : user-specified time bound for any chip-run
6: lbindex: user-specified lower-bound length of overlap region;
7: output trace : equivalent sequence of abstract states;
8: // init. breakpointable candidate-state, current trace-buffer and final trace
9: i := 0; scand := s; ti := t; trace := (ti);

10: // initialize variable nindex; nindex gets updated by PickState()
11: // nindex range is [lbindex , |trace-buffer |]
12: nindex := lbindex; succ iteration := FALSE;
13: while (i < steps bound) && (scand /∈ Q0) && (succ iteration = TRUE) do

14: equivalent := FALSE; matched := FALSE;
15: //Resets retrial elapsed time
16: ElapsedTime(reset)
17: while (!equivalent) && (ElapsedTime(go) ≤ retries timeout) do

18: // Program the hardware-breakpoint circuitry with scand

19: LoadHardwareBreakpoint(scand);
20: // (Re-)run the chip at full-speed with timeout timebound

21: matched := ResetAndRun(timebound);
22: if matched then

23: ti := ScanOut();// Dump trace-buffer contents ti
24: equivalent := OverlapAndCheck(ti, ti−1, nindex);
25: end if

26: if (!matched) || (!equivalent) then

27: // Pick another state following a round-robin scheme
28: // and updates nindex
29: scand := PickState(nindex, ti−i);
30: end if

31: end while

32: if equivalent = TRUE then

33: // Accumulate trace
34: OverlapConcatenate(ti, trace);
35: // Pick a candidate-state in ti for the next iteration
36: scand := PickState(nindex, ti);
37: i := i + 1;
38: else

39: succ iteration := FALSE
40: end if

41: end while

42: return trace;

58

3.3. TAB-BackSpace

base case is trivial, as when i = 0, the trace is a single trace buffer dump that

ends at the crash state. Since this trace dump is taken from the physical

chip, it can be concretized to the specific physical execution that occurred

on-chip.

In the inductive case, let uy represent the trace computed so far, and let

xv represent the new trace dump ti, with v = u. In other words, u and v

are the overlap region. By construction, x and y are non-empty.

We know that xv is concretizable to a trace with all states reachable from

the initial states, because it is taken directly from the hardware. Let xcvc be

one such concretization of xv, with x = α(xc) and v = α(vc). Similarly, uy

is concretizable to a trace that leads to the crash state s, by the inductive

hypothesis. Let ucyc be one such concretization of uy, with u = α(uc) and

y = α(yc). From the hypotheses, |u| = |v| > ldiv , so by the definition

of ldiv , both xcucyc and xcvcyc are legal concrete traces. By construction,

both start at reachable states, and therefore contain all reachable states.

Furthermore, both end at the crash state s. Therefore, both xcucyc and

xcvcyc are witnesses that the new trace computed by Algorithm 3, xuy, is

concretizable to the suffix of a concrete trace leading from the initial states

to the crash state.

When comparing TAB-BackSpace to both preceding algorithms (Back-

Space and Abstract BackSpace), I point out the following:

• Like BackSpace, because it works backwards from the crash state,

TAB-BackSpace eliminates manual guesswork about when to trigger

state recording for the trace arrays. Completely automatically, it com-

putes an arbitrarily long trace dump.

• Unlike BackSpace, because trace buffers typically have many cycles

of history, TAB-BackSpace can compute many cycles back on each

iteration, gradually gluing together entire trace buffer dumps, instead

of individual states.

• Like BackSpace, TAB-BackSpace relies on repetition to compensate

for lack of observability. Hence, it needs the same assumption that

59

3.4. Experimental Results

the bug appears somewhat repeatably. Therefore, like BackSpace,

TAB-BackSpace can handle some non-determinism/randomness in the

system behavior, but not too much (see Section 3.4.1).

• Unlike BackSpace, there is no pre-image computation. Instead, TAB-

BackSpace use the fact that the trace buffer records actual history of

the chip. This completely eliminates a major computational bottleneck

of BackSpace. Furthermore, this also eliminates the assumption that

the silicon matches the RTL; it can still compute a trace.

• Because TAB-BackSpace is using only the small set of important sig-

nals that reach the trace buffer, it is computing an abstract trace.

Therefore, TAB-BackSpace has low overhead thanks to abstraction.

Furthermore, because we are using pre-existing debug hardware, whose

overhead has been already accounted for, TAB-BackSpace has no ad-

ditional on-chip overhead at all.

• Assuming an overlapping region longer than ldiv, Theorem 4 proves

it is always the case that TAB-BackSpace computes a concretizable

trace leading up to the actual crash state, which is not always true for

Abstract BackSpace. However, finding this appropriate length for the

overlapping region may be hard in practice. Thus, there is a risk for

spurious traces. Note that since there is no pre-image computation

with TAB-BackSpace, one source of spurious transitions that exists in

Abstract BackSpace is completely eliminated. The only danger is false

matches.

How can false matches be suppressed in practice? I investigate this

question in the next section.

3.4 Experimental Results

In this section, I validate TAB-BackSpace using both simulation and hard-

ware experiments. I use simulation because some of the experiments, such

60

3.4. Experimental Results

as investigating spurious traces, need full visibility to the design and so sim-

ulation is necessary. The real question is whether TAB-BackSpace works

in real silicon. To answer this question, I validate TAB-BackSpace on an

actual chip, the IBM POWER715.

3.4.1 Results on Simulation

Suppressing Spurious Traces

In the previous section, I showed that Algorithm 3 computes a concretizable

trace leading up to the actual crash state. The fundamental assumption is

that Algorithm 3 always use an overlapping region, f , that is longer than

ldiv. However, as noted earlier, determining the value of f may be hard or

impossible in practice.

It is tempting to make analytical models of the probability of false

matches to compute the appropriate value of f . Unfortunately, very lit-

tle can be said, because the abstract states are not random states, but the

result of an abstraction function. Given a really bad abstraction function

(e.g., one that focuses on irrelevant bits whose values seldom change), there

will be many false matches.

Instead, I show experimentally that the risk of false matches can be

made zero or near zero in practice. In particular, I measure the frequency of

undetected false matches that may generate a spurious transition: when the

abstract breakpoint has a false match, but so does the entire overlap region.

Setup:

I chose to work with a design that is non-trivial, but also not too com-

plex so that I can simulate it in its entirety, understand it and leverage any

architectural insight in selecting signals to be probed using a trace-buffer. I

chose to use a router design, which is an RTL implementation of a 4x4 rout-

ing switch (conceptual block depicted in Fig. 3.3). This router is typically

used by IBM for training new employees with IBM’s tools. The design has

15These experiments were conducted during my internship with IBM Corp. - IBM
Haifa Research Lab, Israel.

61

3.4. Experimental Results

inPort0

Table

req0

dest0

lock0

port0

reply0

rdata0

OutPort0

Mem

rreq0

raddr0

wreq0

waddr0

wdata0

pk_rdy0

pk_info0

Figure 3.3: Router4x4 Conceptual Block. The router has 4 input/output
packet processing blocks; a routing table; and a buffer for storing in-flight
packets. For the sake of readability, I am presenting the basic signals used
for communication among only four design blocks while abstracting away
the input/output signals of the router top-level block.

9958 latches, which is larger than most open-source design examples (e.g.,

[38]), but not too large too run experiments, and collect and analyze results

quickly.

The router implements a routing policy (“Table”), which is programmed

beforehand in configuration registers. The router routes incoming pack-

ets from four distinct input ports (“inPort”) into one of four output ports

(“OutPort”). The router recognizes packets in a pre-defined format contain-

ing source and destination addresses, payload, and bit-parity. In addition to

routing the packets, the router also checks the validity of incoming packets

and rejects bad packets.

I simulated the router on a feature-rich constrained-simulation environ-

62

3.4. Experimental Results

ment developed by IBM, using Cadence’s Incisive Simulator (with Specman

Elite) version 09.20-s016. This proved very helpful when modeling environ-

mental non-determinism.

Experiments:

I present two different experiments. The first experiment evaluates the

probability of false matches versus amount of overlap. In Section. 3.3, I

asserted that if the overlap region, f , is greater than ldiv, then there can be

no false matches. However, determining the value of f such that f > ldiv

may be hard. Thus, I empirically evaluate what value for f is appropriate

for the router. I set the simulation environment to be fully deterministic,

i.e., using the same random seed will always generate the same simulation

trace. I uniformly chose 100 abstract states, ai, from this trace such that

∀i.ai /∈ Q0 and ∀i, j.(ai 6= aj)∧ |(i− j)| > l, where l is the TAB length. I set

l to be 50, but unlike the CELL’s debug logic, I am not relying on any cycle

compression; and, the TAB width is set to 120 bits. I used my architectural

insight of the design to select 120 different design signals. For each selected

state ai, I checked if there were earlier false matches, while incrementing the

size of TAB overlap. Fig. 3.4 shows the results. These results substantiate

my claims: even with a small overlap (25 cycles) the probability of a false

match drops to about 1%. If I had set the length of the overlap to be 29

cycles, then I would have no false matches at all. Thus, choosing a value of

f ≥ 30 is likely to guarantee no false-match.

The second experiment concerns false matches and non-determinism/ran-

domness. Intuitively, because complex chips have many sources of non-

determinism, it is very unlikely that the exact same concrete state in one

chip run, occurs in different, randomized runs. Does this phenomenon hap-

pen also with abstract states?

To test this hypothesis, I used the same constrained-simulation environ-

ment, but now with non-determinism enabled. This simulation environment

provides many parameters to make each simulation run very different from

the others. However, I control the non-determinism in the environment as

much as possible so that I can better evaluate its impact on chip runs. More

63

3.4. Experimental Results

specifically, I simulate non-determinism only affecting the delays on packet

arrivals (a real scenario encountered in bring-up labs). I modified the orig-

inal simulation environment so that it always uses a fixed random seed for

everything except packet generation. For packet generation, I use an ex-

ternal and independent random generator to add different delays between

packets in each run.

To simulate the scenario in which the desired “buggy trace” (original

trace showing the bug) is repeatable with probability 1/6, I generated 5

additional random traces of similar length to the first trace (i.e., after a

specified number of packets were sent). I uniformly selected 100 abstract

states from the buggy trace in the same way as I did in the first experiment.

For each selected abstract state, ai, in the buggy trace, I checked for a

false match on all other 5 traces. For all selected states, I found no false

matches whatsoever, even with only one cycle overlap. This result shows

that even with some non-determinism, traces from the same test-case can

be very different, making this type of mismatch unlikely.

Computing Abstract Traces

The experiments in the previous subsection focused on showing empiri-

cally that choosing proper values for the overlap region greatly reduced the

chances of a false match. In this section, my focus is on validating my claim

that, indeed TAB-BackSpace can compute traces.

To this end, I use the Router design/environment from the previous

subsection, but with following configuration:

1. TAB length set to 50 with no compression;

2. TAB width set to 75 bits with signals chosen out of 3 design blocks;

3. the overlap region set to f = 30;

4. total number of iterations is set to 20 (steps bound=20 in Algorithm 4,

page 81), that is, compute 20 trace buffers that overlap for f cycles;

5. timeout is set to 5 hours (retries timeout=5 in Algorithm 4);

64

3.4. Experimental Results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 F

al
se

-m
at

ch
es

Size of TAB Overlap

Figure 3.4: This is the percentage of false-matches for the Router design,
assuming a TAB length of 50 entries, a TAB width of 120 bits and the max-
imum overlap of 30 consecutive cycles. We randomly selected 100 abstract
states from a trace 13581-cycles long. This graph shows the percentage of
those states that have false matches for a given overlap size. If I set the
overlap size to 29, I eliminate all false matches.

6. 30 randomly chosen crash states, ai, satisfying these two properties:

∀i.ai /∈ Q0 and ∀i, j.(ai 6= aj) ∧ |(i − j)| > 1000 (These properties

guarantee that the “crash” states in this experiment are far enough

apart so that the computed traces are distinct. In other words, since

steps bound = 20 and each trace dump has 50 cycles, even if the overlap

between two consecutive trace-dumps were one single cycle, the total

number of cycles for each trace would be 20*49+1 < 1000, which is

smaller than the distance between two crash states);

7. randomized inter-packet delays.

As item 7 suggests, non-determinism only affects the inter-packet delays.

65

3.4. Experimental Results

CS #Succ. #Chip
Iter. Runs

1 3 57

2 5 94

3 6 65

4 7 75

5 8 65

6 8 306

7 8 234

8 20 321

9 20 324

10 20 233

CS #Succ. #Chip
Iter. Runs

11 20 123

12 20 281

13 20 112

†14 20 115

15 20 210

16 20 311

17 20 137

18 20 246

19 20 271

20 20 365

CS #Succ. #Chip
Iter. Runs

21 20 330

22 20 235

23 20 973

24 20 360

25 20 390

26 20 345

27 20 193

28 20 87

29 20 383

30 20 531

Table 3.1: TAB-BackSpace Experiments. “CS” are the 30 crash states. “#
Succ. Iter.” is the number of iterations before timing out or reaching set
limit of 20. The timeout per iteration was chosen to be 5 hours. Each
simulation run averages 10 minutes. “# Chip Runs” is the total number of
iterations plus the number of retries. Crash states with a † are states that
nuTAB-BackSpace computed all 20 iterations, but somewhere during the
computation it deviated from the “expected” trace. Therefore, these might
be spurious traces. I suspect that, at some iteration, the normalized region
of two different traces was too small to discriminate them.

These experiments simulate the scenario in which non-determinism has been

extensively removed, i.e., the range of delays, that is, the number of cycles

between packets, is small (0 ≤ delay ≤ 5).

Table 3.1 shows that TAB-BackSpace works successfully. More than 70%

of the cases were able to complete the goal of 20 iterations. However, these

results show evidence that non-determinism may negatively impact TAB-

BackSpace. Consider only the cases which completed the 20 iterations. The

average number of runs necessary to complete this goal is approximately

300 runs. This average is surprisingly high given that non-determinism is

very limited in these experiments. In Chapter 4, I will address this issue.

The real question now is whether TAB-BackSpace can repeat this success

on silicon. This is what I investigate in the next section.

66

3.4. Experimental Results

3.4.2 Results on Silicon

To demonstrate that TAB-BackSpace is feasible in practice, we used16 an

existing IBM processor, running in the post-silicon bring-up lab. Using the

existing debug logic in the processor, we performed several iterations of

TAB-BackSpace, extending our initial trace by nearly a thousand cycles.

Our experiments were conducted with the IBM POWER7 processor [30].

This processor has built-in hardware debug capabilities, whose architecture

is similar to the debug features of the CELL processor [49](briefly discussed

in Section 3.3.1).

At the core our experiments is a real machine bug, which was found

during early stages of POWER7 bring-up in the lab. This bug is related to

a problem in pipeline bypassing, which appears when floating point instruc-

tions are executed out-of-order. In order to discover the root cause of the

bug, designers needed to trace backward from the point of the crash to find

all the participating instructions that caused the illegal situation. This was

done by conventional trial-and-error methods.

At the time this bug was initially found, it was easily worked-around

using existing logic on the processor. Our experiments were conducted after

this fix, therefore we used a modified configuration of the processor, in which

the workaround was disabled and the bug became active again. In addition,

we created an environment in which we could deterministically re-run the

processor and reach the crash caused by the bug. This involved running

on bare metal, using the Threadmill post-silicon exerciser[2]. We configured

the processor to use only one active core, since this is sufficient to reproduce

the bug.

In each of the runs, we activate trace-arrays of the active core, to record

signal values throughout the run (we activate a fixed subset of the trace-

array signals, used in all our runs). When the processor stops, the contents of

the trace-arrays reflect the values of the recorded signals, for some number

16I conducted the preliminary experiments to study the IBM POWER7 debug hardware
and validate, in principle, that we could TAB-BackSpace the IBM POWER7 chip. Avigail
Orni (IBM-Israel) conducted the final experiments with my remote guidance (since my
internship had ended a few months earlier).

67

3.4. Experimental Results

of cycles at the end of the run. The number of cycles represented in the

trace-arrays may vary, since some compression is applied when values are

repeated for consecutive cycles. After each run, the values of the trace-arrays

are dumped to a file, and are processed in order to produce a decompressed.

The recorded signals are the subset of the trace-arrays activated during

our runs. This set contains 352 signals. In addition, we selected a subset

of 176 recorded signals, to use as trigger signals (this set is also fixed for

all runs). An assignment of values to the trigger signals is a trigger pattern,

and the pattern-matching mechanism of the debug logic can be configured

to halt the processor when the trigger pattern is identified on the trigger

signals.

Our initial trace is the trace produced by running the processor in the bug

reproduction environment, until the crash is reached. This trace provides us

with a window of 958 cycles leading up to the bug. In practice, this isolated

window is too small for debugging purposes, since it does not include the

root cause of the bug.

Starting from this initial trace, we applied repeated iterations of TAB-

Back-Space steps, creating a sequence of trace-array dumps. In each TAB-

BackSpace step, we are assured that it will not continue to run past the

breakpoint cycle. However, it is possible that the trigger pattern appears

in an earlier cycle (an abstract false match, as described in Sec. 3.2), and

thus the run will stop earlier than the breakpoint cycle. In a bare-metal lab

run, we typically do not have a cycle counter, which could help us to detect

whether we have stopped at the breakpoint cycle or earlier. We therefore

use the overlap check. If the new trace and the current trace agree on all

of the recorded signals, for the entire prefix of the current trace up to the

breakpoint cycle, we consider the new trace to be a true trace leading up

to the breakpoint cycle. To reduce the risk of false matches, we strive to

make the overlap of two consecutive runs greater than (or equal to) half

the length of the current trace. In addition, although we use only the 176

trigger signals for defining the trigger pattern, we perform the overlap check

on all 352 recorded signals, which gives additional confidence we stopped at

the correct breakpoint cycle.

68

3.4. Experimental Results

In practice, some of the runs do stop at a cycle that is too early, and

therefore fail the overlap check. In this case, we select a new breakpoint

cycle from the current trace, with a different trigger value, and repeat the

run with this value. We found that 3 attempts were always sufficient, in

any given iteration, for generating a trace with an overlap. Overall, for all

the runs executed in all iterations, 86% of the runs were successful, i.e.,

produced a new trace that overlapped with the current trace.

Obviously, there is a trade-off between the size of the overlap and the size

of the backspace, i.e., the number of new cycles recorded in this iteration.

If we aim for a large overlap, in order to increase our confidence in the

correctness of the new trace, then the number of new cycles is reduced, and

more iterations will be needed in order to extend the trace to a given length.

In our experiments, we executed 10 TAB-BackSpace iterations, produc-

ing 10 new traces in addition to the initial trace. The results of these itera-

tions are shown in Table 3.2. The first row represents the initial trace, while

the following rows represent the traces generated by the TAB-BackSpace it-

erations. These traces are all 256 cycles long. The New cycles column shows

the number of new cycles added in the current iteration. The Accumulated

new cycles column shows the accumulated number of new cycles in the trace

in all iterations up to and including the current one. The final accumulated

number, at the bottom of this column, shows the total backward extension

that we have achieved in these 10 iterations, which amounts to 988 cycles.

For this particular bug, this extension was sufficient to reveal the root cause

of the bug.

69

3.4. Experimental Results

Trace # Length
Overlap with New Accumulated
prev. trace cycles new cycles

0 958
1 256 64 192 192
2 256 130 126 318
3 256 146 110 428
4 256 168 88 516
6 256 186 70 586
7 256 116 140 726
8 256 188 68 794
9 256 150 106 900
10 256 168 88 988

Table 3.2: TAB-BackSpace on POWER7

70

Chapter 4

nuTAB-BackSpace:

Normalizing

Non-Deterministic Traces

into Equivalence Classes

Very few things happen at the right

time, and the rest do not happen

at all.

Herodotus

4.1 Introduction

In the previous chapter, I have shown that TAB-BackSpace works success-

fully in practice. The simulation results, however, show that non-determinism

leads to an excessive number of retries (chip re-runs) per TAB-BackSpace

iteration. The reason is the lack of reproducibility of the exact same chip

run. Is it possible to do better with fewer retries? The answer to this ques-

tion is yes, but, as I point out in the next paragraphs, not with conventional

post-silicon debug methods.

In practice, engineers make great efforts to “determinize” as much as

possible the system to improve reproducibility. This effort usually requires

building highly specialized systems (e.g. [33, 52]) to improve controllability.

In some cases, parts of the design may run at slower clock or simply turned

off completely. In others, it may require confining the debug instances to a

71

4.1. Introduction

single core (as we did with the IBM POWER7 processor in Section 3.4.2).

This determinization effort works great only if bugs are reproducible in the

determinized environment. Thus, there is still a risk that determinization

might not help. For example, determinizing the system may not help de-

bug problems that happen in the field (OEM boards), since the in-house,

determinized systems are very different from what is in the field.

On the other hand, I observed that, in many cases, different traces share

“similar views” of what is going on in the design. For example, a processor

waiting for a grant to access a bus may sit idle for a different number of

cycles from run to run. However, if the bus stalls the processor execution

until it grants access, then the number of cycles the processor waits does not

affect its internal state. Thus, in reality, these different executions represent

essentially equivalent behaviors.

To capitalize on this insight, I extend TAB-BackSpace to account for

these equivalent behaviors. I call this new technique nuTAB-BackSpace

(Normalized TAB-BackSpace) since it normalizes traces into equivalent clas-

ses. More specifically, the goal of nuTAB-BackSpace is to allow the debug

engineer to specify intuitive notions of “equivalence” by providing rewrite

rules.17 This provides ease-of-use, considerable expressiveness, and a rich

underlying theory that allows efficient checking of equivalent traces. In

particular, I treat the debug trace and trace buffer dumps as strings whose

alphabet is the abstract state space of the design being debugged, and the

user-provided rewrite rules produces a string rewriting system (also known

as a semi-Thue system).

In the next section, I review definitions of semi-Thue systems that are

relevant to this thesis. In Section 4.3, I formally present nuTAB-BackSpace.

Finally, I conclude this chapter with experimental results.

17Recall that the debug process is iterative. Debug engineers formulate hypotheses
about what might be going wrong, develop a test for the hypotheses, and then formulate
new hypotheses based on the results. Because the focus is design errors, debug engineers
have deep understanding of the design. Therefore, defining rewrite rules nicely follows the
same debug flow of formulating/testing hypotheses.

72

4.2. Semi-Thue Systems

4.2 Semi-Thue Systems

As pointed out in the previous section, my interest in semi-Thue systems

lies in the fact that traces might form equivalence classes. Thus, instead of

trying to exactly reproduce traces, it suffices to find equivalent ones.

In this section, I present an overview of semi-Thue systems18 (STS). This

subject is very broad, and so I focus on concepts such as normal forms, ter-

mination and confluence, which are fundamental for computing equivalence

classes.

Definition 5. A semi-Thue system, S, is a tuple (Σ∗,R), where

• Σ is a finite alphabet,

• R is a relation on strings from Σ∗, i.e., R ⊆ Σ∗ × Σ∗, where ∗ denotes

the standard Kleene closure.

Each element (l, r) ∈ R is called a rewrite rule. A rewrite rule (l, r) may

be notated as l → r. The symbol → is called a reduction. Rewrite rules can

be applied to arbitrary strings as follows: for any u, v ∈ Σ∗, u → v iff there

exists an (l, r) ∈ R such that for some x, y ∈ Σ∗, u = xly and v = xry. In

Table 4.1, I recursively define the notation used for reductions →.

The definition of ↔∗ and its relationship with normal forms are of par-

ticular interest in this thesis. First, the relation ↔∗ is the least equivalence

relation on Σ∗ containing →. And second, computing semi-Thue systems’

equivalence classes depends heavily on the existence of normal forms. Let’s

now define normal forms.

Definition 6. Let S be an STS with alphabet Σ.

a) Denote the set of descendants of u ∈ Σ∗ as ∆(u)∗ = {v|u →∗v} and

the set of proper descendants as ∆(u)+ = {v|u →+v}.

b) A string u ∈ Σ∗ is called irreducible if ∆(u)+ = ∅.

18The name Thue comes from Axel Thue, who developed the string rewriting calculus.
Semi-Thue systems have been extensively studied; the presentation in this section is based
on [6, 8, 27].

73

4.2. Semi-Thue Systems

→0 ≡ {(x, x) | x ∈ Σ∗} identity
→ ≡ {(x, y) | (x, y) ∈ R} simple reduction
→i+1 ≡→i ◦ → (i+1)-fold composition i ≥ 0
→+ ≡

⋃

i>0 →i transitive closure
→∗ ≡→0 ∪ →+ reflexive transitive closure
→−1 ≡ {(y, x) | (x, y) ∈ R} inverse
↔ ≡→∪ →−1 symmetric closure
↔+ ≡ (↔)+ transitive symmetric closure
↔∗ ≡ (↔)∗ reflexive transitive symmetric closure

Table 4.1: Reduction Notations and Descriptions. The symbol ◦ represents
the standard definition of relational composition.

c) If u ↔∗ v and ∆(v)+ = ∅, then v is called a normal form of u and

[v] = {u|u ↔∗ v} denotes the entire equivalence class of v.

For example, consider the STS S1 in Fig. 4.1. Let u = abcdeefff . The set

of all descendants of u are ∆(u) = {abcdeef , abbdeefff , abbdeef , abbeef }; the

string abbeef is irreducible because ∆(abbeef) = ∅; abbeef is a normal form

of u since by definition, ↔∗ ≡ (→∪ →−1)∗ and so abcdeefff ↔∗ abbeef ; and, the

equivalence class is [abbeef] = {abcdeefff , abcdeef , abbdeefff , abbdeef , abbeef }.

Furthermore, abbeef is the unique normal form of u.

c
3

r b:

r
1 3

r

3
r r

1

2
r

abbeef

r

r
1

2
d ε

ffff:

: abbdeefffabcdeef

abbdeef

abcdeefffu :

Figure 4.1: Given Σ = {a, b, c, d, e, f} and u ∈ Σ∗, let S1 = (Σ∗,R) and
R = {r1, r2, r3}.

Given an STS, computing the set of descendants and the set of irreducible

strings is undecidable in general. However, if every element in STS has a

74

4.2. Semi-Thue Systems

unique normal form, then these problems become solvable. To determine

whether an STS has a unique normal form we use the concepts of termination

and confluence.

Definition 7. A semi-Thue system is Noetherian (terminating) if there is

no infinite chain x0, x1, . . . such that for all i ≥ 0, xi → xi+1.

Assuming a Noetherian STS, the two properties in the next definition

are equivalent:

Definition 8. A semi-Thue system is confluent if for all w, x, y ∈ Σ∗, the

existence of reductions w →∗x and w →∗y implies there exists a z ∈ Σ∗ such

that x →∗z and y →∗z. A semi-Thue system is locally confluent if for all

w, x, y ∈ Σ∗, the existence of reductions w → x and w → y implies there

exists a z ∈ Σ∗ such that x →∗z and y →∗z.

Theorem 5 (Unique Normal Form). If S = (Σ∗,→) is an STS that is

Noetherian and confluent, then for every x ∈ Σ∗, [x] has a unique normal

form.

Proof: Described in Theorem 1.1.12 [8], pp. 13.

Thus, a key result from rewriting theory is that for a rewriting system

that is confluent and Noetherian, any object can be reduced to a unique nor-

mal form by applying rewrite rules arbitrarily until the object is irreducible.

Furthermore, two objects u and v are equivalent under ↔∗ iff their unique

normal forms are the same. In this thesis, the notation N(u) denotes the

unique normal form for any string u.

To show that a unique normal form exists, all that is needed is a proof

that the string rewrite system is Noetherian and locally confluent. Proving

noetherianess is also undecidable in general. However, by defining a strict

partial ordering function (e.g., string length) which all rewrite rules obey, it

can be established that a string rewrite system is terminating. Now, if the

system is terminating, then it is possible to test for local confluence. Conse-

quently, many algorithms for testing an STS for local confluence have been

developed (e.g. computing critical pairs, Knuth-Bendix Completion). Put

75

4.3. Trace Computation Modulo Confluence

simply, these algorithms rely on testing whether critical pairs (the results of

applying two rules whose left-hand side overlap) have a common descendant

— a necessary and sufficient condition for local confluence (see Theorem

6.2.4 in [6]). For a detailed treatment of these algorithms, I refer the reader

to Chapters 1, 2 and 3 in [8], Chapters 1, 5, 6 and 7 in [6], and Chapters 1

and 2 in [27].

4.3 Trace Computation Modulo Confluence

4.3.1 Formalizing the Intuition

The fundamental principle underlying both BackSpace and TAB-BackSpace

approaches is to use repetition to compensate for the lack of on-chip observ-

ability. However, as noted in Section 4.1, non-determinism can make the

execution of “the same” trace very unlikely.

Indeed, the experiments in Section 3.4 show that the problem in prac-

tice is not too many matches generating spurious traces, but the lack of

exact matches preventing any progress in trace computation. Empirically,

however, I have often observed intuitively “equivalent” traces that are not

cycle-by-cycle matches, e.g., a trace with slightly different timing, with in-

dependent events reordered, etc. Consider, for example, sample traces from

two different simulation runs of the Router after they have breakpointed

(timing-diagram shown in Fig. 4.2). Let ai be the abstract state defined by

the following

STATE ×Z
+ ×Z

+ ×Z
+ (4.1)

where STATE = {idle, wait buff, wait data, get dest, get rest, wait route,

wait idle, pkt end, abort}, Z
+ the set of positive integers19. Both traces

breakpoint at the same “crash state”, but, at first glance, these traces are

very different. For example, consider the marking “S0”. This marking rep-

resents the valuation (idle, 2, 59, 1B) in the top diagram and in the bottom

diagram. Notice the number of cycles that the Router stays in “S0” is very

19The 2nd, 3rd and 4th numbers in this mapping are actually bounded, positive integers
representing different FIFO pointers.

76

4.3. Trace Computation Modulo Confluence

gd grwdwb

2

59

1B

info_wr_ptr[2:0]

clock

in_state[3:0]

mem_wr_ptr[7:0]

bytes_left[4:0]

...

...

...

...gr

23

11

2

59

1B

idlepe

...

info_wr_ptr[2:0]

clock

in_state[3:0]

mem_wr_ptr[7:0]

bytes_left[4:0]

...

...

...

...wdwb grgd

2

1B

idle

59

gr

2

23

11

2

59

1B

gr

......

...

...

...

...

S0

S0

Figure 4.2: Two trace-buffers of length 50 from different runs that break-
pointed at the same abstract state. The aliases “gr”, “pe”, “wb”, “wd”
and“gd” stands for get rest, pkt end, wait buffer, wait data and get dest,
respectively.

different from one run to the next. Nevertheless, it is possible these traces

share some notion of equivalence. In fact, after further inspection and with

the help of the automata representing these two traces, depicted in Fig. 4.3,

notice that there are only 8 distinct states. Thus, the differences in these

two runs are only the timings in each state.

These are all differences that could be manipulated via rewriting. But,

because it is not obvious, a priori, what is the correct notion of equivalence,

I propose to allow the debug engineer to specify rewrite rules to define

what “equivalent” means to them, on a particular design. nuTAB-Backspace

will then match overlap regions if they are equivalent under the specified

rewriting, rather than requiring an exact match.

Will this idea produce correct traces? Correctness depends on the rewrite

rules respecting the semantics of the design. Accordingly, nuTAB-BackSpace

imposes a few restrictions on the rewrite rules. Not surprisingly, it requires

that the rules be Noetherian and confluent, which allows efficient equivalence

77

4.3. Trace Computation Modulo Confluence

a0

4

13

a1
1

1
a2

1

1
a3

1

1

35

a4
1

1
a5

1

1

3

3

a6
1

1
a7

1

1

26

Figure 4.3: This automata represents the state-machine from the timing
diagrams of Fig 4.2. The edges on top match the delays of the top timing
diagram. Similarly, the edges on the bottom match the delays of the bottom
diagram.

checking via reduction to the unique normal form. The following definition

captures the notion that the rewrite rules truly reflect equivalent traces of

the underlying concrete chip:

Definition 9. Consider a rewrite rule l → r on strings of abstract states.

The rewrite rule is concretization preserving if for all concrete states

xc and zc, the concretizability of the abstract state sequence α(xc)lα(zc) to

a concrete sequence starting with xc and ending with zc implies the con-

cretizability of the abstract state sequence α(xc)rα(zc) to a concrete sequence

starting with xc and ending with zc, i.e.:

∀concrete states xc, zc







(∃concrete trace xcylzc . α(yl) = l)

⇒

(∃concrete trace xcyrzc . α(yr) = r)







Obviously, a rewrite rule should be rejected if it breaks concretizability al-

together. This definition is slightly stronger in that it requires that a pre-

existing concretization be preserved, mutatis mutandis the rewriting.

As with ldiv , in theory, it is straightforward to check whether a rule is

concretization preserving. There are a finite number of rewrite rules, l → r,

each of which is finite in length. Does there exist a concrete trace xcylzc such

that α(yl) = l, but where no string yr exists such that xcyrzc is a concrete

trace and α(yr) = r? One could, for example, use bounded model checking

to enumerate all xc and zc that satisfy the antecedent of the definition, and

then use bounded model checking to check that each satisfying xc and zc

78

4.3. Trace Computation Modulo Confluence

also satisfies the consequent.

In practice, depending on the design and abstraction, this check may

also not be realistic. On the other hand, debug engineers have expert design

knowledge, so they are capable of defining rewrite rules that are concretiza-

tion preserving (or close enough for their purposes).

4.3.2 Algorithm

Algorithm 4 presents the nuTAB-BackSpace procedure, which is exactly the

same as Algorithm 3 (page 58) except for the OverlapAndCheck() subrou-

tine, here replaced with NormalizeAndCheck(). Because Algorithm 4 works

with normalization instead of overlapping regions, the correctness argument

is also different. To make this exposition self-contained, I explain Algo-

rithm 4: starting from a given crash state and its corresponding trace-buffer,

it iteratively computes an arbitrarily long sequence of predecessor abstract

states by going backwards in time. This procedure has 4 user-specified

parameters: steps bound specifies how many iterations back the algorithm

should go; retries timeout limits the amount of search for an equivalent

overlapping region between the new trace dump and the trace computed so

far; the time bound is a timeout for each chip-run and is a mechanism to tell

whether a chip-run went on a path that does not reproduce the crash-state or

buggy-state; and, lbindex is the trace buffer’s smallest index, which defines

a region either for the overlapping (TAB-BackSpace) or the normalization

(nuTAB-BackSpace) of two consecutive trace buffers.

The procedure has 2 nested loops. The outer loop, lines 13 – 41, con-

trols the three termination conditions for the algorithm: we reach the user-

specified number of iterations; we reach the initial states; or the previous

iteration was unsuccessful. The outer loop is also responsible for joining the

new trace buffer dump onto the successful trace computed so far (line 32),

and then selecting a new state as the breakpoint for the next iteration. The

inner loop, lines (17 – 31), is responsible for controlling the hardware while

trying out different candidate-states, scand, given a retries timeout. The

procedure keeps track of time using the subroutine ElapsedTime() (passing

79

4.3. Trace Computation Modulo Confluence

reset as parameter resets the time counter, otherwise it counts the elapsed

time since it was last reset). In each loop iteration, the procedure loads scand

into the breakpoint-circuit (line 19), and runs the chip. The objective is to

collect a new trace-buffer upon matching scand and match (after rewriting)

it with the previous trace-buffer. If ResetAndRun() returns TRUE then the

breakpoint circuitry matched scand and we have a new trace-buffer. Oth-

erwise, the chip-run violates the time bound parameter (line 21) because

the current run took another path (caused by non-determinism). If the

breakpoint occurs, we dump the contents of the trace-buffer, for compari-

son with the trace computed so far. The NormalizeAndCheck() subroutine

(line 24) computes the unique normal form of the overlapping region of the

previously computed trace as well as the new trace dump, as described in

Sec. 4.2 and then compares them to check equivalence. If the procedure

neither breakpoints nor proves equivalence, PickState() (line 29) selects an-

other candidate-state from the previous trace using a round-robin scheme

while respecting lbindex, and then the inner loop iterates. The procedure

exits the inner loop when either it successfully proves equivalence of the

overlapping regions of the two trace-buffers, or this loop has iterated longer

than the specified retries timeout.

4.3.3 Correctness

The main correctness theorem proves that the trace computed by Algo-

rithm 4 is as informative as one could hope: it concretizes to a trace that

leads to the actual crash state, using reachable states.

Theorem 6 (Correctness of Trace Computation). If the rewriting rules

are Noetherian, confluent, and concretization preserving, and if the size of

all unique normal forms used to prove equivalence of overlapping regions is

greater than ldiv , then the trace produced by Algorithm 4 is concretizable to

the suffix of a concrete trace leading from the initial states Q0 to the crash

state s.

Proof: The proof is by induction on the iteration count i at the bottom of

the outer loop. The base case is trivial, as when i = 0, the trace is a single

80

4.3. Trace Computation Modulo Confluence

Algorithm 4 Crash State History Computation
1: input Q0 : set of initial states,
2: (s, t) : crash-state and trace-buffer
3: steps bound ∈ N+ : user-specified bound on the number of iterations,
4: retries timeout ∈ N+ : user-specified time-bound on retrials,
5: timebound : user-specified time bound for any chip-run
6: lbindex: user-specified lower-bound length of normal region;
7: output trace : equivalent sequence of abstract states;
8: // init. breakpointable candidate-state, current trace-buffer and final trace
9: i := 0; scand := s; ti := t; trace := (ti);

10: // initialize variable nindex; nindex gets updated by PickState()
11: // nindex range is [lbindex , |trace-buffer |]
12: nindex := lbindex; succ iteration := FALSE;
13: while (i < steps bound) && (scand /∈ Q0) && (succ iteration = TRUE) do

14: equivalent := FALSE; matched := FALSE;
15: //Resets retrial elapsed time
16: ElapsedTime(reset)
17: while (!equivalent) && (ElapsedTime(go) ≤ retries timeout) do

18: // Program the hardware-breakpoint circuitry with scand

19: LoadHardwareBreakpoint(scand);
20: // (Re-)run the chip at full-speed with timeout timebound

21: matched := ResetAndRun(timebound);
22: if matched then

23: ti := ScanOut();// Dump trace-buffer contents ti
24: equivalent := N ormalizeAndCheck(ti, ti−1, nindex);
25: end if

26: if (!matched) || (!equivalent) then

27: // Pick another state following a round-robin scheme
28: // and updates nindex
29: scand := PickState(nindex, ti−i);
30: end if

31: end while

32: if equivalent = TRUE then

33: // Accumulate trace
34: OverlapConcatenate(ti, trace);
35: // Pick a candidate-state in ti for the next iteration
36: scand := PickState(nindex, ti);
37: i := i + 1;
38: else

39: succ iteration := FALSE
40: end if

41: end while

42: return trace;

81

4.4. Experimental Results

trace buffer dump that ends at the crash state. Since this trace dump is

taken from the physical chip, it can be concretized to the specific physical

execution that occurred on-chip.

In the inductive case, let uy represent the trace computed so far, and let

xv represent the new trace dump ti, with N(v) = N(u). In other words, u

and v are the overlap region that has been proven equivalent by rewriting.

By construction, x and y are non-empty.

We know that xv is concretizable to a trace with all states reachable from

the initial states, because it is taken directly from the hardware. Therefore,

xN(v) has the same properties, by preservation of concretization. Similarly,

uy is concretizable to a trace that leads to the crash state s, by the inductive

hypothesis, and therefore, N(u)y is, too, by preservation of concretization.

Let xcvc be a witness to the concretizability (with additional properties) of

xN(v), with x = α(xc) and N(v) = α(vc). Similarly, let ucyc be a witness

to the concretizability of N(u)y, with N(u) = α(uc) and y = α(yc).

From the hypotheses, |N(u)| = |N(v)| > ldiv , so by the definition of

ldiv , both xcucyc and xcvcyc are legal concrete traces. By construction, both

start at reachable states, and therefore contain all reachable states. And

both end at the crash state s. Therefore, either is a witness that the new

trace computed by Algorithm 4, xN(u)y, is concretizable to the suffix of a

concrete trace leading from the initial states to the crash state.

4.4 Experimental Results

In this section, I demonstrate the feasibility of nuTAB-BackSpace with ex-

periments on a simulation environment and a hardware prototype. First,

I use a simulation-based evaluation since it offers full visibility of the de-

sign, and therefore it is possible to identify false matches. Then, I evaluate

nuTAB-BackSpace on actual hardware. In both experiments, I compare

nuTAB-BackSpace against TAB-BackSpace.

82

4.4. Experimental Results

4.4.1 Results on Simulation

Setup:

Similarly to Section 3.4.1, I chose to use the same IBM Router design.

This is a non-trivial design (9958 latches), but not too complex to be simu-

lated in its entirety. Also, I used the same simulation environment as before

(Cadence’s Incisive Simulator with Specman Elite v.09.20-s016).

Experiment:

In Section 3.4.1, I have shown that TAB-BackSpace works successfully

when non-determinism in the environment/design has been extensively re-

duced. My claim is that when non-determinism cannot be extensively re-

moved from the environment/design, nuTAB-BackSpace will either succeed

when TAB-BackSpace fails or it will require far less effort to compute a

trace than TAB-BackSpace (explained later in this section). To validate

this claim, I use the same configuration as in Section 3.4.1, that is:

1. number of iterations is set to 20 (steps bound=20 in Algorithm 4, page

81);

2. timeout is set to 5 hours (retries timeout=5 in Algorithm 4);

3. the TAB length is set to 50 with no compression;

4. the TAB width is set to 75 bits with the same signals chosen out of 3

design blocks;

5. the same 30 randomly chosen crash states, ai, satisfying these two

properties: ∀i.ai /∈ Q0 and ∀i, j.(ai 6= aj) ∧ |(i − j)| > 1000;

6. randomized inter-packet delays.

As item 6 suggests, non-determinism only affects the inter-packet delays

as in the experiments in Section 3.4.1. However, unlike those experiments,

I chose a wider range of values for the inter-packet delays, thus simulating

the case in which non-determinism has not been extensively reduced from

the design/environment.

83

4.4. Experimental Results

Section 3.4.1 empirically shows that, for the Router, an overlap of 30

cycles or more would most likely prevent false matches. Thus, in these

experiments, I use 30 cycles as the lower bound for either the overlapping

region (TAB-BackSpace) or the normalization region (nuTAB-BackSpace)

of two consecutive trace-buffers.

To be able to normalize the non-determinism during nuTAB-BackSpace

simulations, I need to provide a set of rewrite rules. In practice, defining

such rewrite rules would follow the same iterative process as debugging. In

this case, however, I had worked with this design in Chapter 3 and had a

good understanding of it.

A subset of the 75 signals being probed describes three identical, but in-

dependent state-machines from three of the Router’s design-blocks. Fig. 4.4

presents one such machine. Notice that 6 states have self-loops, namely idle,

wait buff, wait data, wait idle, wait route, get rest. Non-determinism in the

inter-packet delays affects all these states with self-loop edges (e.g., a long

delay might cause an input port to remain in idle or wait data states for

some number of cycles). The exception is the state get rest. In this state, the

Router processes incoming packets without interruption, that is, the Router

does not accept partial packets. Thus, to normalize non-determinism, I

define a rewrite system, RouterRS(Σ∗, R):

Let Proj(·)sm be a projection function that takes in an abstract-

state, a, and projects it onto the set of bits representing the state

machine from Fig. 4.4 and let P = {idle,wait buff,wait data,wait route,

wait idle}. Now, define R as follows:

∀a.Proj(a)sm ∈ P . aa → a (4.2)

Thus, this rewriting rule creates an equivalence class of traces, treating

traces with different numbers of repetitions of certain states as similar.

How can it be shown that the rewrite system, RouterRS(Σ∗, R), is Noethe-

rian, confluent, and concretization-preserving? Let’s consider each in turn.

First, note that RouterRS(Σ∗, R) is a length-reducing rewrite system, and

so it is Noetherian. Next, note that Eq. 4.2 contains 5 rules (or technically,

84

4.4. Experimental Results

idle wait buff wait data get dest

get rest

wait route

pkt end

wait idle

abort

Figure 4.4: Router’s Internal Packet-Processing State-Machine.

rule schema), and no two rules have overlapping left-hand sides. The only

possible critical pairs arise from rewriting a string of the form aaa into aa

with two different applications of a single rewrite rule. Obviously, these

are locally confluent. Thus, the entire rewrite system, RouterRS(Σ∗, R), is

confluent. For concretization preservation, consider an informal argument.

Based on knowledge of the design, any execution of the system that goes

through a state that projects to P can spend more or less time in that state,

without impacting the rest of the execution. This is exactly the property

that concretization preservation captures. In contrast, when the state ma-

chine is in the state get rest, the underlying concrete state tracks the number

of cycles for the packet, so a rule that changed the number of get rest cycles

would not be concretization-preserving.

Let a successful TAB-BackSpace iteration be one in which two con-

secutive trace-buffers agree cycle-by-cycle over all 30 cycles, i.e., a full-

overlap match; and let a successful nuTAB-BackSpace be one in which the

normalization-region (30 cycles or more) from the consecutive trace-buffers

are equivalent under RouterRS(Σ∗, R).

The results are as expected. Table 4.2 shows that nuTAB-BackSpace

85

4.4. Experimental Results

CS # of Succ. # of Chip
Iterations Runs

TAB nuTAB TAB nuTAB

1 0 11 62 143
†2 0 20 339 21

3 0 20 67 52

4 0 20 77 75

5 0 20 79 24

6 0 20 93 27

7 0 20 283 28
†8 0 20 128 20
†9 0 20 58 23

10 0 20 342 20

11 1 20 173 57

12 2 7 204 137

13 3 15 399 536

14 3 20 134 144

15 4 19 270 661

CS # of Succ. # of Chip
Iterations Runs

TAB nuTAB TAB nuTAB
†16 4 20 112 27

17 5 20 157 28

18 5 20 199 41

19 6 6 120 58
†20 6 20 60 26

21 6 20 181 24

22 6 20 788 24
†23 7 20 568 22

24 12 20 251 27

25 12 20 308 25

26 15 20 534 20

27 20 20 282 28

28 20 20 403 29

29 20 20 463 52

30 20 20 726 26

Table 4.2: TAB-BackSpace vs nuTAB-BackSpace Experiments. “CS”is the
index of each crash state. The same crash states are used for each TAB- and
nuTAB- experiment. “# of Successful Iterations” is the number of iterations
before timing out or reaching the set limit of 20. The timeout per iteration
was chosen to be 5 hours. Each simulation run averages 10 minutes. “#
of Chip Runs” is the total number of iterations plus the number of retries.
Because “# of Chip Runs” is an aggregate, when the number of iterations
for TAB is smaller than the number of iterations for nuTAB, the number
of nuTAB runs may be greater than TAB runs (e.g., crash states 1, 13-
15). Crash states with a † are states that nuTAB-BackSpace computed
all 20 iterations, but somewhere during the computation it deviated from
the “expected” trace (in simulation, we can determine if the run reached
the specified “crash” state). Therefore, these might be spurious traces. I
suspect that, at some iteration, the normalized region of two different traces
was too small to discriminate them.

86

4.4. Experimental Results

computes, for all crash-states, longer traces than TAB-BackSpace. More-

over, TAB-BackSpace could not compute even one iteration for 1/3 of the

cases. And, when TAB-BackSpace is comparable to nuTAB-BackSpace with

respect to the number of successful iterations (e.g., crash states 19, 27-

30), nuTAB-BackSpace requires, for the most cases, an order of magnitude

smaller number of runs.

4.4.2 Results on a Hardware Prototype

To demonstrate that nuTAB-BackSpace is feasible in practice, I conducted

experiments with a hardware prototype running on an FPGA emulation

board [54]. The hardware prototype is a Leon3-based [22] SoC. This pro-

totype is a full-blown SoC featuring a SPARC V8 compatible core, AMBA

bus, video, DDR2, Ethernet, i2c, keyboard and mouse controllers (depicted

in Fig. 4.5). The SoC also has some built-in debug features that can be en-

abled. In particular, I enable the provided on-chip logic-analyzer, LOGAN,

but with minimal configuration. Note that, in contrast to the CELL debug

logic, LOGAN has no signal compression. Using this debug logic in the

SoC, nuTAB-BackSpace iterated several times, more than doubling the ini-

tial trace-buffer contents, more importantly, it shows that the same could not

be done with TAB-BackSpace. The signals monitored are a combination of

AMBA bus signals and some signals of the SPARC V8’s execution-pipeline-

stage, totaling 134 signals.

One of the goals of demonstrating nuTAB-BackSpace on a hardware-

prototype is to show that it works in a real (or as realistic as possible) de-

bugging environment.Thus, in these experiments, the SoC is booting Linux

(Linux Kernel 2.6.21).

Here is the proposed debug scenario for these experiments: while boot-

ing Linux, the objective is to derive the sequence of CPU and bus opera-

tions leading to the kernel’s function start kernel. Thus, start kernel is the

“crash” state. The boot sequence up to this “crash” state is more than 20

million cycles deep. Simulating it with a logic simulator is impractical given

this depth. Similarly, model checking it is infeasible.

87

4.4. Experimental Results

Sparc v8
 IU

D$

IRQ

Leon3 FPU

I$

MMU

MAC

JTAG
Ctrl

Eth

AHB/APB BRIDGE

I2C PS/2 PS/2 UART

SVGA

DDR2

Ctrl

CF
Ctrl

AMBA BUSCtrl

Xilinx FPGA

Figure 4.5: Leon3 SoC Block Diagram.

The first experiment is to try to TAB-BackSpace. I follow the same

steps as Algorithm 4. The main difference is that instead of normalizing the

extracted trace, I try to find an exact match on the overlap region between

the current and previous traces. I set an address within start kernel function

as the breakpoint and run the chip; when it breakpoints, the tool dumps

the contents of the trace-buffer into a file. From that trace-buffer, I pick a

trace-buffer entry as the new crash-state and repeat. In these experiments,

I set 2 hours as the retry timeout limit. The result of these experiments

is a total of 207 chip runs, all of which breakpoint successfully, but none

overlap cycle-by-cycle. In other words, the SoC cannot TAB-BackSpaced at

all because, at each run, non-determinism changes the path the chip takes

and so the probability of an exact match is too low.

The next experiment is to try nuTAB-BackSpace using the same scenario

as before. However, I need to define the rewrite rules first. In this case,

the SoC was built entirely from third-party IP, so my learning process was

from the documentation and trace buffer dumps from the actual system

88

4.4. Experimental Results

running. Studying the trace buffer dumps, I observed that sometimes entire

trace-buffers might not have a single video-controller transaction. Also, I

noted that nullified instructions, although they vary from run to run, do

not affect overall functionality of a system run. Therefore, for this debug

scenario, my hypotheses are that traces may have video-controller activity

occurring at essentially arbitrary times, and that nullified instructions can

be ignored. From this understanding of the design, I can create rewrite-

rules easily to formalize the hypotheses and test them. (If these hypotheses

produced uninteresting traces, I would start again with a new hypothesis,

creating new rewrite rules to try.)

I define the rewrite rules using the same notation as used for the Router.

Let Proj(·)ahbm and Proj(·)inst be two projection functions that map abstract-

states, a, onto the subset of AMBA signals, which identify the current bus-

master and onto the subset of signals from the CPU that define whether an

instruction has been nullified. I define R as follows:

∀a.Proj(a)ahbm = 0x3 . a → ǫ (4.3)

∀a.Proj(a)inst = annul . a → ǫ (4.4)

The rewriting rules ignore states representing AMBA bus transactions from

the video-controller, and states where instructions have been nullified in

the CPU’s execution pipeline stage. (Note that the ignored cycles do not

get deleted from the generated trace — the rewriting is solely to establish

equivalence on the overlap region. The generated trace will always consist

of actual states taken from trace buffer dumps.)

As in Section 4.4.1, I need to show that Leon3RS(Σ∗, R) is Noetherian,

confluent, and concretization-preserving. As before, the system is length-

reducing, and hence Noetherian. No two rules have an overlapping left-hand

side. Consequently, there are no critical-pairs, so Leon3RS(Σ∗, R) is locally

confluent. The argument for concretization preservation is again based on

insight into the design. The video controller bus transactions are irrelevant

to the boot sequence and can be arbitrarily ignored.20 Similarly, nullified

20Technically, ignoring video controller transactions is not truly concretization preserv-

89

4.4. Experimental Results

Trace Trace-Buffer Normalization Normalized New Accum.
Number Length Region Length Length Cycles new cycles

1 1024 904 354 1024 1024
2 1024 519 137 384 1408
3 1024 781 133 241 1649
4 1024 680 168 514 2163
5 1024 709 168 348 2511
6 1024 892 141 45 2556
7 1024 – – 398 2954

Table 4.3: nuTAB-BackSpace on Leon3. Trace-Buffer Length is the physical
depth of the trace-buffer. Since I do not use compression, its depth is fixed.
Normalization-Region Length is the number of cycles in the current trace-
buffer that nuTAB-BackSpace normalizes and use as a reference for the next
trace-buffer. New Cycles is the number of new states present in the current
trace-buffer.

instructions have no effect on the (bus-level) debugging process, so they

can be safely ignored as well. Any concrete execution trace which has these

ignorable states corresponds to a concrete execution trace where those states

have been deleted.

Table 4.3 shows the results. nuTAB-BackSpace iterated 7 times, result-

ing in a trace more than 2.5x the length of a single trace-buffer. Unlike

TAB-BackSpace, the new technique handles the non-determinism, comput-

ing an abstract trace based on the trace-buffer signals.

ing, since any real concrete trace will have the occasional video transaction, whose timing
is determined by state hidden in the video controller and the external video hardware.
What the rewrite rule is really specifying is that that hidden state is irrelevant for the cur-
rent debugging scenario. If we were debugging some video controller timing interaction,
we would use different rewrite rules.

90

Chapter 5

Conclusion and Future Work

It is better to be wrong than to be

vague.

Freeman Dyson

5.1 Conclusions

In this thesis, I have presented BackSpace, a novel post-silicon debug frame-

work. From theory to practice, I have methodically developed this frame-

work showing that BackSpace effectively computes accurate traces leading

up to a crash state, has low cost (zero-additional hardware overhead), and

handles non-determinism. I have successfully demonstrated BackSpace with

several industrial designs using simulation models, hardware prototypes, and

on actual silicon.

Because of BackSpace’s success, I believe this framework holds promise

for more complex designs. In particular, designs with multiple clocks and

even designs with globally asynchronous, locally synchronous clocks (GALS)

are suitable areas for future research since nuTAB-BackSpace provides the

formalism necessary to handle non-determinism.

5.2 Future Work

5.2.1 Backspacing Multi-Clock Designs

Most of today’s designs have multiple clock domains. In my experiments, I

either assumed single-clock designs or confined debugging to a single-clock

domain (e.g., we restricted debugging to one core of the IBM POWER7,

91

5.2. Future Work

while turning off the other parts of the design). The next step is to consider

the impact of multiple clocks on BackSpace.

One of the fundamental problems of debugging a design with multiple

clocks is that it is not clear how to correlate traces from the different clock

domains (assuming a design with debug logic such as trace-buffers). In

the case of nuTAB-BackSpace, debug engineers could analyze signals cross-

ing different clock-domain and define rewrite-rules to normalize traces with

different delays (due to clock-domain crossing). The key is that nuTAB-

BackSpace provides the formalism (rewriting systems) for such debugging.

The problematic debug scenario, however, is when the bug is actually in

the clock-crossing logic (e.g., a rewrite-rule that unintentionally “hides” the

bug). Clearly, then, the rewrite-rules should be defined carefully. Neverthe-

less, I believe that nuTAB-BackSpace already offers a solid foundation for

debugging multi-clock designs.

5.2.2 Protocol-Based BackSpace

In the previous section, I presented some of the problems of multi-clock de-

signs. However, the debugging problem is exacerbated when designs, like

some SoCs today, have a GALS architecture. For example, a multi-clock

breakpoint may not be feasible in a design with independent clocks. Thus,

I propose to investigate a technique to abstract the underlying GALS ar-

chitecture and to BackSpace a high-level model. This idea is analogous to

protocol-level modeling (or transaction-level modeling), which abstracts the

low-level implementation details.

Intuitively, the main idea is that, if carefully crafted, the protocol-level

model (PLM) would guide the debug-engineer to the source of a bug. Typ-

ically, PLM states are much smaller than chip states, and, thus, they could

be captured with trace-buffers. In this way, if a bug is observed in the PLM,

then, using a technique similar to nuTAB-Backspace, I could BackSpace the

PLM. Two scenarios are possible. First, if the bug is fully captured in the

PLM I am done. Second, if the bug is not fully captured in the PLM, then I

would need to concretize a “suspect” bad PLM state and check if the bug ex-

92

5.2. Future Work

ists in the actual (concrete) model. Fortunately, nuTAB-BackSpace always

computes a concretizable trace (assuming an overlapping region greater than

f > ldiv).

93

Bibliography

[1] Miron Abramovici, Paul Bradley, Kumar Dwarakanath, Peter Levin,

Gerard Memmi, and Dave Miller. A Reconfigurable Design-for-Debug

Infrastructure for SoCs. In DAC ’06: Proceedings of the 43rd Annual

Design Automation Conference, pages 7–12, New York, NY, USA, 2006.

ACM.

[2] A. Adir, M. Golubev, S. Landa, A. Nahir, G. Shurek, V. Sokhin,

and A. Ziv. Threadmill: A Post-Silicon Exerciser for Multi-Threaded

Processors. In Design Automation Conference (DAC), 2011 48th

ACM/EDAC/IEEE, pages 860 –865, june 2011.

[3] Vishiwani D. Agrawal, Kwang-Ting Cheng, Daniel D. Johnson, and

Tony Sheng Lin. Designing Circuits with Partial Scan. IEEE Design

and Test, 5(2):8–15, 1988.

[4] Catherine Ahlschlager and David Wilkins. Using Magellan to Diagnose

Post-Silicon Bugs. Synopsys Verification Avenue Technical Bulletin,

4(3):1–5, September 2004.

[5] ARM. Embedded Trace Macrocell Architecture Specification, volume 20.

July 2007. Ref: IHI0014O.

[6] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-

bridge University Press, New York, NY, USA, 1998.

[7] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan

Zhu. Symbolic Model Checking without BDDs. In Proceedings of the

5th International Conference on Tools and Algorithms for Construction

94

Bibliography

and Analysis of Systems, TACAS ’99, pages 193–207, London, UK,

1999. Springer-Verlag.

[8] Ronald V. Book and Friedrich Otto. String-Rewriting Systems. Texts

and Monographs in Computer Science. Springer, 1993.

[9] Marc Boule and Zeljko Zilic. Incorporating Efficient Assertion Checkers

into Hardware Emulation. In ICCD ’05: Proceedings of the 2005 Inter-

national Conference on Computer Design, pages 221–228, Washington,

DC, USA, 2005. IEEE Computer Society.

[10] Adrian Carbine and Derek Feltham. Pentium Pro Processor Design for

Test and Debug. IEEE Design and Test, 15(3):77–82, 1998.

[11] J. Lawrence Carter and Mark N. Wegman. Universal Classes of Hash

Functions (Extended Abstract). In STOC ’77: Proceedings of the Ninth

Annual ACM Symposium on Theory of computing, pages 106–112, New

York, NY, USA, 1977. ACM.

[12] O. Caty, P. Dahlgren, and I. Bayraktaroglu. Microprocessor Silicon

Debug Based on Failure Propagation Tracing. In International Test

Conference, pages 293–302. IEEE International, Nov. 2005.

[13] Kai-Hui Chang, Igor L. Markov, and Valeria Bertacco. Automating

Post-Silicon Debugging and Repair. In International Conference on

Computer-Aided Design, pages 91–98. IEEE/ACM, 2007.

[14] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of

Finite-State Concurrent Systems using Temporal Logic Specifications.

ACM Trans. Program. Lang. Syst., 8:244–263, April 1986.

[15] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut

Veith. Counterexample-Guided Abstraction Refinement for Symbolic

Model Checking. J. ACM, 50:752–794, September 2003.

[16] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Check-

ing and Abstraction. In Symposium on Principles of Programming Lan-

guages, pages 343–354. ACM, 1992.

95

Bibliography

[17] P. Dahlgren, P. Dickinson, and I. Parulkar. Latch Divergency in Mi-

croprocessor Failure Analysis. In International Test Conference, pages

755–763. IEEE International, 2003.

[18] Satyaki Das and David L. Dill. Successive Approximation of Abstract

Transition Relations. In Proceedings of the 16th Annual IEEE Sympo-

sium on Logic in Computer Science, pages 51–, Washington, DC, USA,

2001. IEEE Computer Society.

[19] The International Roadmap for Semiconductors. Design.

2009 Edition, page 7. Downloaded on February, 2009

(http://www.itrs.net/reports.html).

[20] The International Roadmap for Semiconductors. Overall Technology

Roadmap Characters - Tables. 2009 Edition. Downloaded on February,

2009 (http://www.itrs.net/reports.html).

[21] Harry Foster. Assertion-Based Verification: Industry Myths to Realities

(Invited Tutorial). In CAV ’08: Proceedings of the 20th International

Conference on Computer Aided Verification, pages 5–10, Berlin, Hei-

delberg, 2008. Springer-Verlag.

[22] Gaisler. http://www.gaisler.com.

[23] M. Gort, F. M. De Paula, J. J. W. Kuan, T. M. Aamodt, A. J. Hu,

S. J. E. Wilton, and J. Yang. Formal-Analysis-Based Trace Compu-

tation for Post-Silicon Debug. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, PP(99):1 –14, 2012.

[24] Marcel Gort. Practical Considerations for Post-Silicon Debug using

BackSpace. Master’s thesis, Electrical and Computer Engineering De-

partment - University of British Columbia, 2009.

[25] Shankar G. Govindaraju and David L. Dill. Counterexample-Guided

Choice of Projections in Approximate Symbolic Model Checking.

In Proceedings of the 2000 IEEE/ACM International Conference on

96

Bibliography

Computer-Aided Design, ICCAD ’00, pages 115–119, Piscataway, NJ,

USA, 2000. IEEE Press.

[26] Alan J. Hu, Jeremy Casas, and Jin Yang. Efficient Generation of Mon-

itor Circuits for GSTE Assertion Graphs. In International Conference

on Computer-Aided Design, pages 154–159. IEEE/ACM, 2003.

[27] M. Jantzen, editor. Confluent String Rewriting. Springer-Verlag New

York, Inc., New York, NY, USA, 1988.

[28] Don Douglas Josephson. The Manic Depression of Microprocessor De-

bug. In International Test Conference, pages 657–663, Los Alamitos,

CA, USA, 2002. IEEE Computer Society.

[29] Don Douglas. Josephson, Steve Poehhnan, and Vincent Govan. De-

bug Methodology for the McKinley Processor. In International Test

Conference, pages 451 –460. IEEE International, 2001.

[30] R. Kalla, B. Sinharoy, W.J. Starke, and M. Floyd. Power7: IBM’s Next-

Generation Server Processor. Micro, IEEE, 30(2):7 –15, March-April

2010.

[31] Ho Fai Ko and N. Nicolici. Algorithms for State Restoration and Trace-

Signal Selection for Data Acquisition in Silicon Debug. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 28(2):285 –297, Feb. 2009.

[32] Ravishankar Kuppuswamy, Peter DesRosier, Derek Feltham, Rehan

Sheikh, and Paul Thadikaran. Full Hold-Scan Systems in Micropro-

cessors: Cost/Benefit Analysis. Intel Technology Journal, 8(1):63–72,

February 2004.

[33] Mario Larouche. Infusing Speed and Visibility into ASIC Verification.

Synopsys’s Synplicity Business Group. Downloaded on Jan, 2007.

www.synplicity.com/literature/whitepapers/pdf/totalrecall wp 1206.pdf.

97

Bibliography

[34] D.H. Lee and S.M. Reddy. On Determining Scan Flip-Flops in Partial-

Scan Designs. In IEEE International Computer-Aided Design. Digest

of Technical Papers, pages 322–325. IEEE International, Nov 1990.

[35] Xiao Liu and Qiang Xu. Trace Signal Selection for Visibility Enhance-

ment in Post-Silicon Validation. In Design, Automation Test in Eu-

rope Conference Exhibition, pages 1338 –1343. IEEE Computer Society,

April 2009.

[36] Subhasish Mitra and Kee Sup Kim. X-Compact: An Efficient Response

Compaction Technique for Test Cost Reduction. In International Test

Conference, pages 311–320. IEEE, 2002.

[37] José Augusto M. Nacif, Flavio M. de Paula, Claudionor N. Coelho, Jr.,

Fernando C. Sica, Harry Foster, Antônio O. Fernandes, and Diógenes C.

da Silva. The Chip is Ready, Am I done? On-Chip Verification using

Assertion Processors. In International Conference on Very Large Scale

Integration of System-on-Chip (VLSI-SoC), pages 111–116. IFIP WG

10.5, 2003.

[38] OpenCores. http://www.opencores.org.

[39] Accellera Standards Organization.

http://www.accellera.org/activities/committes/ovl.

[40] S. Park, S. Yang, and S. Cho. Optimal State Assignment Technique

for Partial Scan Designs. Electronics Letters, 36(18):1527 –1529, Aug

2000.

[41] Sung-Boem Park and Subhasish Mitra. IFRA: Instruction Footprint

Recording and Analysis for Post-Silicon Bug Localization in Processors.

In 45th Design Automation Conference, pages 373–378. ACM/IEEE,

2008.

[42] Sung-Boem Park and Subhasish Mitra. Post-silicon Bug Localization

for Processors using IFRA. ACM Communications, 53(2):106–113,

2010.

98

Bibliography

[43] S. Prabhakar and M. Hsiao. Using Non-trivial Logic Implications for

Trace Buffer-Based Silicon Debug. In Asian Test Symposium, pages

131 –136. IEEE Computer Society, Nov. 2009.

[44] IEEE P1850 PSL. http://www.eda.org/ieee-1850/.

[45] B. R. Quinton and S .J. E. Wilton. Concentrator Access Networks for

Programmable Logic Cores on SoCs. In IEEE International Symposium

on Circuits and Systems, pages 45–48, 2005.

[46] B .R. Quinton and S. J. E. Wilton. Programmable Logic Core Based

Post-Silicon Debug For SoCs. In 4th IEEE Silicon Debug and Diagnosis

Workshop, Germany, May 2007.

[47] Sandip Ray and Warren A. Hunt Jr. Connecting Pre-Silicon and Post-

Silicon Verification. In Formal Methods in Computer-Aided Design

(FMCAD), pages 160–163, 2009.

[48] Collett International Research. IC/ASIC Functional Verification Study.

Industry Report, page 34, 2004.

[49] Mack Riley, Nathan Chelstrom, Mike Genden, and Shoji Sawamura.

Debug of the CELL Processor: Moving the Lab into Silicon. In Inter-

national Test Conference, pages 1–9. IEEE International, Oct. 2006.

[50] Sean Safarpour, Hratch Mangassarian, Andreas Veneris, Mark H. Liffi-

ton, and Karem A. Sakallah. Improved Design Debugging Using Maxi-

mum Satisfiability. In Formal Methods in Computer-Aided Design (FM-

CAD), pages 13–19. IEEE, 2007.

[51] Carl-Johan H. Seger and Randal E. Bryant. Formal Verification by

Symbolic Evaluation of Partially-Ordered Trajectories. volume 6, pages

147–189, Hingham, MA, USA, 1995. Kluwer Academic Publishers.

[52] Ronak Singhal, K. S. Venkatraman, Evan R. Cohn, John G. Holm,

David A. Koufaty, Meng-Jang Lin, Mahesh J. Madhav, Markus

99

Bibliography

Mattwandel, Nidhi Nidhi, Johathan D. Pearce, and Madhusudana Se-

shadri. Performance Analysis and Validation of the Intel Pentium 4

Processor on 90nm Technology. Intel Technology Journal, 8(1):34–42,

February 2004.

[53] Michael J. Y. Williams and James B. Angell. Enhancing Testability of

Large-Scale Integrated Circuits via Test Points and Additional Logic.

IEEE Transactions on Computers, C-22(1):46–60, January 1973.

[54] Xilinx. http://www.xilinx.com.

[55] Y. Yang, N. Nicolici, and A. Veneris. Automated Data Analysis Solu-

tions to Silicon Debug. In Design, Automation Test in Europe Confer-

ence Exhibition, pages 982–987. IEEE Computer Society, April 2009.

100

