
Mixing Symbolic and Ternary Simulation Techniques
for the Verification of Processor-Based Systems

Flávio Miana*1

miana@cpdee.ufmg.br

Patricia Nattrodt*2

patty@dcc.ufmg.br

Julio Cezar de Melo*1

demelo@cpdee.ufmg.br

Antônio O. Fernandes*2

otavio@dcc.ufmg.br

Claudionor N. Coelho Jr*2

coelho@dcc.ufmg.br

Abstract

 We present a new technique to support processor validation and verification in
absence of information when modeling reactive systems. Current processor validation
techniques will not tolerate absence of information for some of its registers. In order to
overcome this problem we combine symbolic simulation with ternary logic simulation
techniques. We exemplify our technique by simulating an Application Specific
Instruction Processor(ASIP) core with its embedded logic.

1. Introduction

One of the most important tasks during the design of a processor is its

validation. Processors are becoming so complex that exhaustively verifying its

implementation is impractical. Therefore, it is only feasible to test exhaustively a

processor when the number of possible states is small. For larger systems, the validation

must be confined to some portions of the system. This is usually the reason for known

bugs found in industry, such as the Pentium bug that was found in the Floating Point

Unit, demanding Intel to replace millions of processors already in the market[12]; and

the bug described by Fujita et al[7], where a network coprocessor presented anomalous

behavior after the chip was manufactured.

One of the techniques used to verify a processor behavior is symbolic

simulation[2][8]. In symbolic simulation, we uniquely represent the sets of values any

variable may take. Examples of verification tools using symbolic simulation can be

found in Murϕ[6], SMV[8] and COSMOS[11], and more recently in conjunction with

process algebras[13][14] such as Circal[15] and CSP[16]. Because this technique has a

prohibitive complexity, commercial tools for processor validation and verification are

based on ternary logic instead.

__
*1 Electrical Engineering Department - Federal University of Minas Gerais - Brazil
*2 Computer Science Department - Federal University of Minas Gerais - Brazil

Ternary logic means a third unknown or indeterminate logic value (usually

named X) is added to the binary logic set {0,1}. The third value X can be used to

reduce the number of cases of the system to be tested[1] by encapsulating values that

are unknown or indeterminate to the processor. Commercial simulators based on the

languages VHDL[3] and Verilog HDL[4] support ternary logic. Albeit its constant use

for processor validation and verification, loosing information for some variables can

invalidate completely the simulation. For example, consider the following skeleton for a

processor behavioral simulator, where branches are handled based on an external

condition.

IR = Mem[PC];

 switch (IR) {

 case branch :

 if (CC)
 PC = PC +2;
 else
 PC = PC + offset;

Figure 1. Handling branch with Condition Code

In Figure 1, let us consider CC as a condition code dependent of an external

value. Therefore, CC can have one of the three values {0,1,X}, defined in the ternary

logic. Assume CC equals to X while the simulator fetches the next instruction. Since X

represents an unknown value, the simulator cannot determine the next value for the PC

register. As a result, the simulation will become invalid because the simulator will

propagate X to the memory and to the all registers of the processor, making the

simulation results useless.

 This paper presents a mechanism to support processor validation in presence of

indeterminate states or input values, as defined in ternary logic. For such models, some

registers of the processor cannot tolerate the loss of information, such as the PC in the

previous example. These registers will be treated symbolically. As we are going to show

later, this method can be very useful for the simulation of reactive systems implemented

by processor cores with surrounding logic, where the logic simulation may generate

indeterminate states to the processor during the simulation, and the processor must

process them appropriately.

 Figure 2 presents one of the properties of reactive systems that we want to

verify. Given a state S1, the system stays in this state until the occurrence of an event

ev, which changes the system’s state to S2. For such systems, we are going to show that

the simulation converges to a valid state even in absence of information for some time.

Figure 2. Reactive System Model

This paper is organized as follows. In Section 2, we provide a mathematical

background, important to understand the concepts used in the rest of the paper. We

introduce a new technique that can be used to verify processor-based systems in Section

3. An example is presented in Section 4 to illustrate the application of the proposed

approach. Finally, Section 5 concludes the paper and suggests some future work.

2. Mathematical Background

 We present in this section a brief summary on the theory of posets and how they

can be used for dealing with absence of information in processor-based systems

according to definitions presented in [1][5].

 We denote sets by A and B and individual elements of the sets by a and b. The

cartesian product A x B of the two sets A and B is the set of all ordered pairs (a, b),

where a ∈ A and b ∈ B. A binary relation on a set B is any subset of B x B. Let R be a

binary relation on B, i.e., R ⊆ B x B. We say that R is reflexive if and only if (iff) aRa

for all a∈B. Similarly, R is antisymmetric iff aRb and bRa implies a = b for all a, b ∈

B. Finally, R is transitive iff aRb and bRc implies aRc for all a, b, c ∈ B. A binary

relation on B which is reflexive, antisymmetric, and transitive is called a partial ordered

on B.

 A poset (partially ordered-set) is an ordered pair 〈S, 〉, where S is a set and

is a partial order on S. Intuitively, we will view a partial order as ordering the values by

their “information content”. That is, elements less than others “contain less

information”.

 If 〈S, 〉 is a poset, A S, and b ∈ S, then b is a lower bound of A iff b a for

all a ∈ A. A lower bound a of A is called greatest lower bound of A, written glb(A), iff

b a for every lower bound b of A. The concept of upper bound and least upper bound

of A , written lub(A), are defined dually. If A = {a,b}, we will write glb(a,b)(lub(a,b))

rather than glb({a,b})(lub({a,b})). Clearly, if glb(A) exists, it is unique, and the same

holds for lub(A).

 Mapping f: A→B consists of a function f assigning an element b from the

codomain B to each element a of its domain A, written as b = f(a).

 Given a poset 〈S, 〉 and mapping f : S→S, we say that f is monotone iff

a b ⇒ f(a) f(b)

This monotonicity definition is consistent with our use of information content. If

a mapping is monotone, we cannot “gain” any information by reducing the information

content of the arguments to the function.

 We can apply the concept of partial ordered set to Γ={0,1,X} in order to

formalize the concept of unknown value. Assuming the partial order ≤ on Γ as a≤a for

all a∈Γ, X ≤0 and X ≤ 1, we can show in Fig. 3 the Hasse diagram of partial order.

 0 1

 X

Figure 3. The ≤ partial order

We can extend the theory of ternary logic in digital circuits to word-level

systems by the following definitions.

Definition 1 : Assume a word can take the values in the set A = {α0, α1, α2,... αn-1},

where n is the number of the elements on A. A partial ordering representing the absence

of information can be defined in the following way. For all αi ∈ A, αi ≤ αi and X ≤ αi.

Figure 4. The ≤ partial order on A

 0 1 2 .. 5 6 7 8......n

 X

In Figure 4, we present the partial order for A = {0, 1, 2,..., n}. In this figure, we

can see that glb(αi, αj) = X if i ≠ j, implying that if two different values are possible for

a single variable, the variable looses its information content. The accuracy for

information loss can be improved by the following definition.

Definition 2 : Consider a set B = {β0, β1, β2,... βn-1} where n is the number of the

elements on B and each βi can be represented by the binary encoding rm,irm-1,i...r0,i, rk,i

∈ {0,1}. For each rk,i , rk,i ≤ rk,i and X ≤rk,i, for k ∈ [0,m].

For example, assume we represent each number of the set B = {0, 1, 2, 3} with

two bits, i.e, β0 = 00, β1 = 01, β2 = 10, β3 = 11.

 0 1 2 3
 00 01 10 11

 0X X0 X1 1X

 XX

Figure 5. The ≤ partial order on B

 In Figure 5, we can see that the greatest lower bound of B is given as following:

glb(βi, βj) = glb(rmi,rmj). glb(rmi-1,rmj-1)... glb(r0i,r0j)

 In Definition 2, the concept of partial-order applied to elements in set B on bit-

level generates new elements containing less information than original numbers. We can

see that in some elements there are some bits with less information than others. In this

case, the “content information” of the elements diminishes gradually.

 These definitions are useful when modeling incompletely-specified systems. In

the next section, we show an approach in order to allow symbolic simulation of portions

of processors in ternary based simulators.

3. Processor Symbolic Simulation with Ternary Logic

In the first section, we presented two known approaches used to simulate

processors. The symbolic simulation is very powerful because each symbolic variable

represents a set of different conditions to the processor. However, it becomes

prohibitive due to its complexity for larger systems.

On the other hand, ternary logic simulation can cover many conditions of the

system, though it becomes impractical in some cases because the simulator cannot

tolerate loss of information for some of the variables during the simulation. Once there

is a loss of information, the system monotonically propagates this loss.

Considering the advantages of these techniques, we developed a simulator for

the validation of processor-based systems mixing symbolic simulation with ternary

logic. The registers and the memory are simulated according to the ternary logic that

makes the simulation feasible by allowing loss of information. The Program Counter

(PC) is simulated using symbolic techniques, since it is a critical register and cannot

tolerate the loss of information. Thus, the state of the program being executed is

dependent on the PC, i.e. we must maintain the current state of the program being

simulated in terms of its internal registers and memory for each PC.

In order to exemplify the simulator behavior, assume the following assembly

code for some hypothetical RISC machine:

PC Assembly Code
100 ld r1,0(r2)
... ...

110 jf.ext 120
111 add r1,r2,r3
112 ldi r3,#4
...

120 sub r2,r4,r1
...

Table 1. Assembly Sample Code

On address 110, the jf.ext represents a branch if an external condition ext is

false. The other instructions belong to common RISC instruction sets, as given by[10].

 When PC =110, we find the branch instruction defined previously. If the

condition ext is unknown, the simulator forks its state into two parts as follows.

PC = 110 (jf.ext 120)
 value

... ...
regs[1] -3
regs[2] X

... ...
regs[4] 2

... ...
ext X

ext = 1 ext = 0

PC = 111 (add r1,r2,r3) PC = 120 (sub r2,r4,r1)
 value value

...
regs[1] X regs[1] -3
regs[2] X regs[2] 5

...
regs[4] 2 regs[4] 2

...

Figure 6. Forking States

Figure 6 presents a partial snapshot of the state following the execution of the

code when PC = 110. Assume that regs represents the set of general-purpose registers of

the processor core and that the external input ext has an undefined value prior the

execution of the branch instruction. In addition, below each box labeled by the PC, we

present the partial state after the instruction was executed. In this figure, we see that

when instruction labeled by PC = 111 is executed, the values for regs[1] and regs[2]

becomes undefined. Nonetheless, when the instruction labeled by PC = 120 is executed,

regs[1] and regs[2] have defined values.

 The simulation continues in these two ways regardless of each other. The

forking situation can occur whenever the decision to be made by the processor is

indeterminate. The simulation system increases its reliability since more information

about each possible state is available. We discuss how this information can affect the

behavior of the system in the next two subsections.

3.1Visibility of Symbolic Simulations in Ternary Environments

 Symbolic simulations in ternary environments means that the system behaves as

a ternary model externally. However, in the core simulator there may be many states

being simulated. The Figure 7 illustrates this model.

Symbolic & Ternary
 Simulation

Ternary Environment

Figure 7. Simulation Environment

In this way, symbolic simulation is transparent to the ternary environment. In the

previous example, a snapshot of the processor simulation can be found in Figure 7.

In this simulation, we can maintain the external visibility of each processor state

by reducing the information content of the state for all PCs being simulated in any

cycle. . This can be achieved if we apply glb(state[PC],...,state[PC]). 1 n

Let us consider Figure 8, for example. The processor flags is externally

indeterminate since it assumes different values for flagsPC=111 and flagsPC=120. Note also

that the value for regs[4] is determinate, since it has a value 2 regardless of the PC

value. From this external visibility, we can obtain information of the state of the system

tracing the simulation step by step and verifying its correctness.

PC = 111

 value
... ...

regs[4] 2
... ...

flags 3

PC = 120
 value

... ...
regs[4] 2

... ...
flags 2

 value

... ...
regs[4] 2

... ...
flags X

 Internal state Internal state

 External visibility

Figure 8. Snapshot and External Visibility

 As mentioned before, internally we have a symbolic simulation for the PC. This

approach has a constraint when considering the possible number of forks that may be

generated by the third unknown logic value. In the next subsection, we show a

mechanism used to overcome this problem.

3.2 Limiting the Exponential Complexity of Symbolic Simulations

 Symbolic simulation is based on unique coding for variables rather than on

actual values for the design under simulation. Thus, it is possible to simulate entire

classes of values in a single run. In large systems, this approach may be expensive due

to its exponential complexity. In such cases, it would be important to find a way to

reduce this complexity.

 We can minimize the number of cases to simulate by reducing the information

content when different states exist for a single PC. In this case, we use internally the glb

function to collapse the states. Figure 9 presents a snapshot where two different states

appear for a single PC.

PC = 111 PC = 120
... ...

PC = 112 PC = 121
... ...

PC = 113 PC = 113

 value value
...

regs[2] X regs[2] 5
...

mem[100] 2 mem[100] 2
flags 3 flags 8

PC = 113

value
... ...

regs[2] X
... ...

mem[100] 2
flags X

Figure 9. Snapshot and Internal Visibility

By restricting the number of cases to be simulated to the different PCs that may

be alive at any time, we constrain the simulation time to at most the ROM (code) size on

each cycle.

 In the next section we provide an example of applications running on a simulator

which uses the techniques proposed earlier.

4. Simulation of Application-Specific Instruction Processors (ASIPs)

 We developed a prototype using a 16-bit RISC core to test the ideas presented in

this paper. We present an ASIP in which a data-acquisition system is embedded into the

architecture as follows.

Figure 10. Co-Simulation of HW/SW for ASIP

 In Figure 10, we can see that the simulator controls the data-acquisition by

setting the ready port in the A/D converter. The core reads and process the value on

Data port when In port is set by A/D converter. As a result, the Out port is set or not

depending on the data processing performed by the simulator.

 Allowing the presence of undefined values, e.g X, we can verify and validate the

HW/SW and propagate accordingly X value from the logic simulation into the processor

using our technique. For example, assume the RISC assembly sample used to process

data from the data acquisition module is given by the code on the left portion of Figure

10, and that PC is set initially to Lo. Also, consider the address of Out port as 8000

initially set to 0 and a value X coming into the core via the external input In port for 3

cycles (representing for example that it may take from 1 to 3 cycles to complete a data

conversion). Applying symbolic simulation to the PC register according to the ideas

presented in Section 3, we can see that the simulation continues normally and after

some time, the value on the Out port will have a defined value again. Thus, we can

verify and validate the processor in absence of information regardless of the value that

is propagated to the PC register in the processor core.

5. Conclusions

Due to its complexity, the validation of processors is a hard task and may

demand as much effort as the design itself. Usual techniques for validation are based on

 Data
A/D

Converter

ready

 In

 16-bit RISC
Core

 Out

Analog
System

Lo : jf.In Lo
 ldi R1, 8000
 ldi R2,1
 sw R2,(R1)
 ...
 ldi R2,0
 sw R2,(R1)
 jmp Lo Assembly

code

XXX00...0111...

done

Data acquisition module

symbolic simulation or ternary logic simulation. The former is prohibitive in larger

systems due to its complexity. The later easily propagates wrong values in absence of

information.

 We proposed a new technique useful for validating a processor core

architectures where additional logic is added to the processor. This approach takes

advantage of mixing symbolic simulation and ternary logic techniques to improve the

accuracy of simulation results in absence of information.

For future work, we intend to extend this technique to verify quantified temporal

assertions on a specification. Also, we intend to investigate a mechanism to

automatically identify variables that must be symbolically simulated.

6. References

[1] C. H. Seger and R. E. Bryant. Formal Verification by Symbolic Evaluation of Partially-Ordered Trajectories. Technical Report
93-08, Department of Computer Science, University of British Columbia, July 1993.

[2] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys, pages 293-
318, September 1992.
[3] R. Lipsett, C. Schaefer and C. Ussery. VHDL : Hardware Description and Design. Kluwer Academic Publishers, 1989.

[4] D. E. Thomas and P. R. Moorby. The Verilog hardware description language. Kluwer Academic Publishers, 1991.

[5] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order Cambridge University Press, 1994.

[6] D. L. Dill, A. J. Drexler, A. J. Hu and C. H Yang. Protocol Verification as a Hardware Design Aid. ICCD,1992.

[7] Fujita et al. Bug Identification of a Real Chip Design by Symbolic Model Checking. EDAC, 1994.

[8] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan and D. L. Dill. Symbolic Model Checking for Sequential Circuit
Verification. IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, Vol. 13. No. 4, April 1994.

[9] D. L. Beatty. A Methodology for Formal Hardware Verification with Application to Micropocessors. PhD thesis, Carnegie-
Mellon University, 1993.

[10] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers,
Inc.,1996.

[11] D. L. Beatty, K. Brace, R. E. Randal, Kyeongsoon Cho, and Lawrence Huang. User’s guide to COSMOS: a compiled simulator
for MOS circuits. Computer Science Department, Carnegie-Mellon University, October, 1987

[12] V. R. Pratt, Pentium Report # bug1, Department of Computer Science, Stanford University, 1994.

[13] Mine, G., Formal Specification and verification of digital systems, McGraw-Hill, 1994

[14] A. Gupta, Formal Hardware Verification Methods: A Survey, Formal Methods in System Design, Vol 1., No 2/3, 1992,
pp.151-238

[15] G. J. Milne, Circal and the representation of communication, concurrency and time. ACM Trans. on Programming Languages
and Systems, 7(2), 1985.

[16] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall International Series in Computer Science, 1985.

