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Abstract  

 
 We present a new technique to support processor validation and verification in 
absence of information when modeling reactive systems. Current processor validation 
techniques will not tolerate absence of information for some of its registers. In order to 
overcome this problem we combine symbolic simulation with ternary logic simulation 
techniques. We exemplify our technique by simulating an Application Specific 
Instruction Processor(ASIP) core with its embedded logic.  
 
1. Introduction 

 
One of the most important tasks during the design of a processor is its 

validation. Processors are becoming so complex that exhaustively verifying its 

implementation is impractical. Therefore, it is only feasible to test exhaustively a 

processor when the number of possible states is small. For larger systems, the validation 

must be confined to some portions of the system. This is usually the reason for known 

bugs found in industry, such as the Pentium bug that was found in the Floating Point 

Unit, demanding Intel to replace millions of processors already in the market[12]; and 

the bug described by Fujita et al[7], where a network coprocessor presented anomalous 

behavior after the chip was manufactured. 

One of the techniques used to verify a processor behavior is symbolic 

simulation[2][8]. In symbolic simulation, we uniquely represent the sets of values any 

variable may take. Examples of verification tools using symbolic simulation can be 

found in Murϕ[6], SMV[8] and COSMOS[11], and more recently in conjunction with 

process algebras[13][14] such as Circal[15] and CSP[16]. Because this technique has a 

prohibitive complexity, commercial tools for processor validation and verification are 

based on ternary logic instead. 
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Ternary logic means a third unknown or indeterminate logic value (usually 

named X) is added to the binary logic set {0,1}.  The  third  value  X  can  be  used  to 

reduce the number of cases of the system to be tested[1] by encapsulating values that 

are unknown or indeterminate to the processor. Commercial simulators based on the 

languages VHDL[3] and Verilog HDL[4] support ternary logic. Albeit its constant use 

for processor validation and verification, loosing information for some variables can 

invalidate completely the simulation. For example, consider the following skeleton for a 

processor behavioral simulator, where branches are handled based on an external 

condition. 

 
IR = Mem[PC]; 
    .... 
        switch (IR) { 
    .... 
            case branch : 
 

        if (CC) 
           PC = PC +2; 
        else 
           PC = PC + offset; 

         ..... 
Figure 1. Handling branch with Condition Code 

 
 

In Figure 1, let us consider CC as a condition code dependent of an external 

value. Therefore, CC can have one of the three values {0,1,X}, defined in the ternary 

logic. Assume CC equals to X while the simulator fetches the next instruction. Since X 

represents an unknown value, the simulator cannot determine the next value for the PC 

register. As a result, the simulation will become invalid because the simulator will 

propagate X to the memory and to the all registers of the processor, making the 

simulation results useless.  

 This paper presents a mechanism to support processor validation in presence of 

indeterminate states or input values, as defined in ternary logic. For such models, some 

registers of the processor cannot tolerate the loss of information, such as the PC in the 

previous example. These registers will be treated symbolically. As we are going to show 

later, this method can be very useful for the simulation of reactive systems implemented 

by processor cores with surrounding logic, where the logic simulation may generate 

indeterminate states to the processor during the simulation, and the processor must 

process them appropriately. 



 Figure 2 presents one of the properties of reactive systems that we want to 

verify. Given a state S1, the system stays in this state until the occurrence of an event 

ev, which changes the system’s state to S2. For such systems, we are going to show that 

the simulation converges to a valid state even in absence of information for some time. 
 

Figure 2. Reactive System Model 

 

This paper  is organized as follows. In Section 2, we provide a mathematical 

background, important to understand the concepts used in the rest of the paper. We 

introduce a new technique that can be used to verify processor-based systems in Section 

3. An example is presented in Section 4 to illustrate the application of the proposed 

approach. Finally, Section 5 concludes the paper and suggests some future work. 

 
2. Mathematical Background 
 
 We present in this section a brief summary on the theory of posets and how they 

can be used for dealing with absence of information in processor-based systems 

according to  definitions presented in [1][5].  

 We denote sets by A and B and individual elements of the sets by a and b. The 

cartesian product A x B of the two sets A and B is the set of all ordered pairs (a, b), 

where a ∈ A and b ∈ B. A binary relation on a set B is any subset of B x B. Let R be a 

binary relation on B, i.e., R ⊆ B x B. We say that R is reflexive if and only if (iff) aRa 

for all a∈B. Similarly, R is antisymmetric iff aRb and bRa implies a = b for all a, b ∈ 

B. Finally, R is transitive iff aRb and bRc implies aRc for all a, b, c ∈ B. A binary 

relation on B which is reflexive, antisymmetric, and transitive is called a partial ordered 

on B. 

 A poset (partially ordered-set) is an ordered pair 〈S, 〉, where S is a set and  

is a partial order on S. Intuitively, we will view a partial order as ordering the values by 



their “information content”. That is, elements less than others “contain less 

information”. 

 If 〈S, 〉 is a poset, A  S, and b ∈ S, then b is a lower bound of A iff b a for 

all a ∈ A. A lower bound a of A is called greatest lower bound of A, written glb(A), iff 

b a for every lower bound b of A. The concept of upper bound and least upper bound 

of A , written lub(A), are defined dually. If A = {a,b}, we will write glb(a,b)(lub(a,b)) 

rather than glb({a,b})(lub({a,b})). Clearly, if  glb(A) exists, it is unique, and the same 

holds for lub(A). 

 Mapping f: A→B consists of a function f assigning an element b from the 

codomain B to each element a of its domain A, written as b = f(a). 

 Given a poset 〈S, 〉 and mapping f : S→S, we say that f is monotone iff 

 

a b ⇒  f(a)  f(b) 

This monotonicity definition is consistent with our use of information content. If 

a mapping is monotone, we cannot “gain” any information by reducing the information 

content of the arguments to the function. 

 We can apply the concept of partial ordered set to Γ={0,1,X} in order to 

formalize the concept of unknown value. Assuming the partial order ≤ on Γ as a≤a for 

all a∈Γ, X ≤0 and X ≤ 1, we can show in Fig. 3 the Hasse diagram of partial order. 

 
 
 
 

 
 

                     0                   1 
 
 
 
                                 X 

Figure 3. The ≤ partial order 
 

 

We can extend the theory of ternary logic in digital circuits to word-level 

systems by the following definitions. 

 

Definition 1 : Assume a word can take the values in the set A = {α0, α1, α2,... αn-1},  

where n is the number of the elements on A. A partial ordering representing the absence 

of information can be defined in the following way. For all αi ∈ A, αi ≤ αi and X ≤ αi.  



 
 
 
 
 
 
 
 

Figure 4. The ≤ partial order on A  
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In Figure 4, we present the partial order for A = {0, 1, 2,..., n}. In this figure,  we 

can see that glb(αi, αj) = X if i ≠ j, implying that if two different values are possible for 

a single variable, the variable looses its information content. The accuracy for 

information loss can be improved by the following definition. 

 

Definition 2 : Consider a set B = {β0, β1, β2,... βn-1} where n is the number of the 

elements on B and each βi can be represented by  the  binary  encoding  rm,irm-1,i...r0,i, rk,i 

∈ {0,1}. For each rk,i , rk,i ≤ rk,i and X ≤rk,i, for k ∈ [0,m]. 

For example, assume we represent each number of the set B = {0, 1, 2, 3} with 

two bits, i.e, β0 = 00, β1 = 01, β2 = 10, β3 = 11.  

 
                                                       0         1             2            3 
                                                      00       01            10          11 
          
                      
                                                         0X     X0          X1        1X 
  
 
                                                                          XX                  

Figure 5. The ≤ partial order on B  
 
 In Figure 5, we can see that the greatest lower bound of B is given as following: 
                        

glb(βi, βj) = glb(rmi,rmj). glb(rmi-1,rmj-1)... glb(r0i,r0j) 
 

 In Definition 2, the concept of partial-order applied to elements in set B on bit-

level generates new elements containing less information than original numbers. We can 

see that in some elements there are some bits with less information than others. In this 

case, the  “content information” of the elements diminishes gradually.  



 These definitions are useful when modeling incompletely-specified systems. In 

the next section, we show an approach in order to allow symbolic simulation of portions 

of processors in ternary based simulators.  

 

3. Processor Symbolic Simulation with Ternary Logic 

 

In the first section, we presented two known approaches used to simulate 

processors. The symbolic simulation is very powerful because each symbolic variable 

represents a set of different conditions to the processor. However, it becomes 

prohibitive due to its complexity for larger systems.  

On the other hand, ternary logic simulation can cover many conditions of the 

system, though it becomes impractical in some cases because the simulator cannot 

tolerate loss of information for some of the variables during the simulation. Once there 

is a loss of information, the system monotonically propagates this loss. 

Considering the advantages of these techniques, we developed a simulator for 

the validation of processor-based systems mixing symbolic simulation with ternary 

logic. The registers and the memory are simulated according to the ternary logic that 

makes the simulation feasible by allowing loss of information. The Program Counter 

(PC) is simulated using symbolic techniques, since it is a critical register and cannot 

tolerate the loss of information. Thus, the state of the program being executed is 

dependent on the PC, i.e. we must maintain the current state of the program being 

simulated in terms of its internal registers and memory for each PC.  

In order to exemplify the simulator behavior, assume the following assembly 

code for some hypothetical RISC machine: 

PC Assembly Code 
100 ld r1,0(r2) 
... ... 

110 jf.ext 120 
111 add r1,r2,r3 
112  ldi r3,#4 
... .... 

120 sub r2,r4,r1 
... .... 

Table 1. Assembly Sample Code 
 
On address 110, the jf.ext represents a branch if an external condition ext is 

false. The other instructions belong to common RISC instruction sets, as given by[10]. 



 When PC =110, we find the branch instruction defined previously. If the 

condition ext is unknown, the simulator forks its state into two parts as follows. 

 

 

PC = 110 (jf.ext 120) 
 value 

... ... 
regs[1] -3 
regs[2] X 

... ... 
regs[4] 2 

... ... 
ext X 

 
ext = 1 ext = 0 

 
 

PC = 111 (add r1,r2,r3) PC = 120 (sub r2,r4,r1) 
 value value  

... ... ... ... 
regs[1] X regs[1] -3 
regs[2] X regs[2] 5 

... ... ... ... 
regs[4] 2 regs[4] 2 

... ... ... ... 
 

 
Figure 6. Forking States 

 

Figure 6 presents a partial snapshot of the state following the execution of the 

code when PC = 110. Assume that regs represents the set of general-purpose registers of 

the processor core and that the external input ext has an undefined value prior the 

execution of the branch instruction. In addition, below each box labeled by the PC, we 

present the partial state after the instruction was executed. In this figure, we see that 

when instruction labeled by PC = 111 is executed, the values for regs[1] and regs[2] 

becomes undefined. Nonetheless, when the instruction labeled by PC = 120 is executed, 

regs[1] and regs[2]  have defined values.  

 The simulation continues in these two ways regardless of each other. The 

forking situation can occur whenever the decision to be made by the processor is 

indeterminate. The simulation system increases its reliability since more information  



about each possible state is available. We discuss how this information can affect the 

behavior of the system in the next two subsections.  

 

3.1Visibility of Symbolic Simulations in Ternary Environments 

 

 Symbolic simulations in ternary environments means that the system behaves as 

a ternary model externally. However, in the core simulator there may be many states 

being simulated. The Figure 7 illustrates this model.  

 

                                

 
Symbolic & Ternary
     Simulation 
 

Ternary Environment 

 
 

Figure 7. Simulation Environment 
 

In this way, symbolic simulation is transparent to the ternary environment. In the 

previous example, a snapshot of the processor simulation can be found in Figure 7. 

In this simulation, we can maintain the external visibility of each processor state 

by reducing the information content of the state for all PCs being simulated in any 

cycle. . This can be achieved if we apply glb(state[PC ],...,state[PC ]).  1 n

Let us consider Figure 8, for example. The processor flags is externally 

indeterminate since it assumes different values for  flagsPC=111 and flagsPC=120. Note also 

that the value for regs[4] is determinate, since it has a value 2 regardless of the PC 

value. From this external visibility, we can obtain information of the state of the system 

tracing the simulation step by step and verifying its correctness. 



 

            
PC = 111 

 value 
... ... 

regs[4] 2 
... ... 

flags 3 
 

PC = 120 
 value 

... ... 
regs[4] 2 

... ... 
flags 2 

 
 
 

 
 value 

... ... 
regs[4] 2 

... ... 
flags X 

 
 

  Internal state    Internal state  

  External visibility 

Figure 8. Snapshot and External Visibility 
 

 As mentioned before, internally we have a symbolic simulation for the PC. This 

approach has a constraint when considering the possible number of forks that may be 

generated by the third unknown logic value. In the next subsection, we show a 

mechanism used to overcome this problem. 

 

3.2 Limiting the Exponential Complexity of Symbolic Simulations 

 

  Symbolic simulation is based on unique coding for variables rather than on 

actual values for the design under simulation. Thus, it is possible to simulate entire 

classes of values in a single run. In large systems, this approach may be expensive due 

to its exponential complexity. In such cases, it would be important to find a way to 

reduce this complexity. 

 We can minimize the number of cases to simulate by reducing the information 

content when different states exist for a single PC. In this case, we use internally the glb 

function to collapse the states. Figure 9 presents a snapshot where two different states 

appear for a single PC. 

 



  

PC = 111 PC = 120 
... ... 

  

PC = 112 PC = 121 
... ... 

  
PC = 113 PC = 113 

 value value  
... ... ... ... 

regs[2] X regs[2] 5 
... ... ... ... 

mem[100] 2 mem[100] 2 
flags 3 flags 8 

  

  

 
PC = 113 

value  
... ... 

regs[2] X 
... ... 

mem[100] 2 
flags X 

 
 

Figure 9. Snapshot and Internal Visibility 
 

 

By restricting the number of cases to be simulated to the different PCs that may 

be alive at any time, we constrain the simulation time to at most the ROM (code) size on 

each cycle. 

 In the next section we provide an example of applications running on a simulator 

which uses the techniques proposed earlier. 

 

4. Simulation of Application-Specific Instruction Processors (ASIPs) 
 

 We developed a prototype using a 16-bit RISC core to test the ideas presented in 

this paper. We present an ASIP in which a data-acquisition system is embedded into the 

architecture as follows. 



 

 
  

 

  

 

 

 
  

 
Figure 10. Co-Simulation of HW/SW for ASIP 

  

 In Figure 10, we can see that the simulator controls the data-acquisition by 

setting the ready port in the A/D converter. The core reads and process the value on 

Data port when In port is set by A/D converter. As a result, the Out port is set or not 

depending on the data processing performed by the simulator.  

 Allowing the presence of undefined values, e.g X, we can verify and validate the 

HW/SW and propagate accordingly X value from the logic simulation into the processor 

using our technique. For example, assume the RISC assembly sample used to process 

data from the data acquisition module is given by the code on the left portion of Figure 

10, and that PC is set initially to Lo. Also, consider the address of Out port as 8000 

initially set to 0 and a value X coming into the core via the external input In port for 3 

cycles (representing for example that it may take from 1 to 3 cycles to complete a data 

conversion). Applying symbolic simulation to the PC register according to the ideas 

presented in Section 3, we can see that the simulation continues normally and after 

some time, the value on the Out port will have a defined value again. Thus, we can 

verify and validate the processor in absence of information regardless of the value that 

is propagated to the PC register in the processor core. 

 

5. Conclusions 
 

Due to its complexity, the validation of processors is a hard task and may 

demand as much effort as the design itself. Usual techniques for validation are based on  

                         Data 
A/D 

Converter 
 
ready 

                         
                            In  
 
 

   16-bit RISC  
Core  

 
 
                  Out           

Analog 
System 

Lo : jf.In Lo 
       ldi R1, 8000 
       ldi R2,1 
       sw R2,(R1) 
       ... 
       ldi R2,0 
       sw R2,(R1) 
       jmp Lo Assembly 

code 

XXX00...0111... 

done

Data acquisition module 



symbolic simulation or ternary logic simulation. The former is prohibitive in larger 

systems due to its complexity. The later easily propagates wrong values in absence of 

information. 

 We proposed a new technique useful for validating a processor core 

architectures where additional logic is added to the processor. This approach takes 

advantage of mixing symbolic simulation and ternary logic techniques to improve the 

accuracy of simulation results in absence of information.  

For future work, we intend to extend this technique to verify quantified temporal 

assertions on a specification. Also, we intend to investigate a mechanism to 

automatically identify variables that must be symbolically simulated. 
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