
Mixing Ternary Logic with Symbolic Simulation in HW/SW
Co-Simulation in Absence of Information

Flávio Miana*1
miana@cpdee.ufmg.br

Patricia Nattrodt*2
patty@dcc.ufmg.br

Júlio Cezar de Melo*1

demelo@cpdee.ufmg.br

Antônio O. Fernandes*2

otavio@dcc.ufmg.br
Claudionor N. Coelho Jr*2

coelho@dcc.ufmg.br

Abstract

 We present a new technique to support the simulation of processor cores in a
hardware/software environment in absence of information. Current HW/SW
simulation tools based on ternary logic will not tolerate absence of information for
some of the processor’s registers. In order to overcome this problem, we combine
symbolic simulation with ternary logic simulation techniques. We exemplify our
technique by simulating an Application Specific Instruction Processor(ASIP) core
with its embedded logic.

1. Introduction

One of the most important tasks during the design of a HW/SW system is its

validation. In these systems, the hardware portion is usually validated with simulators
supporting conventional hardware description language (HDL) – such as VHDL[3]
and Verilog HDL[4] – whereas the software portion is validated in a behavioral model
of the processor core specified in the same HDL used to specify the hardware model.
Due to the inherent complexity of such systems, it is impractical to simulate
exhaustively all possible states. Therefore, the validation must be confined to some
portions of the system. This is usually the reason for known bugs found in industry,
such as the Pentium bug that was found in the Floating Point Unit, demanding Intel to
replace millions of processors already in the market[12]; and the bug described by
Fujita et al[7], where a network coprocessor presented anomalous behavior after the
chip was manufactured.

One of the techniques used to verify the behavior of a system is symbolic

simulation[2][8]. In symbolic simulation, we uniquely represent the sets of values any
variable may take. Examples of verification tools using symbolic simulation can be
found in Murϕ[6], SMV[8] and COSMOS[11]. Because this technique has a
prohibitive complexity, commercial tools for the validation HW/SW systems are
based on ternary logic.

Ternary logic means a third unknown or indeterminate logic value (usually

named X) is added to the binary logic set {0,1}. The third value X can be used to
reduce the number of cases of the system to be tested[1] by encapsulating values that

*1 Electrical Engineering Department – Universidade Federal de Minas Gerais, Brazil
*2 Computer Science Department – Universidade Federal de Minas Gerais, Brazil

are unknown or indeterminate to the system. Commercial simulators based on the
languages VHDL and Verilog HDL support ternary logic. Albeit its constant use for
the validation of hardware and software systems, loosing information for some
variables can invalidate completely the simulation. For example, consider the
following skeleton for a processor behavioral model that may be used to simulate the
SW portion of a HW/SW system, where branches are handled based on an external
condition.

IR = Mem[PC];

 switch (IR) {

 case branch :

 if (CC)
 PC = PC +2;
 else
 PC = PC + offset;

Figure 1. Handling branch with Condition Code

Let us consider CC as a condition code dependent of an external value.
Therefore, CC can have one of the three values {0,1,X}, as defined by ternary logic.
Assume CC equals to X while the simulator fetches the next instruction. Since X
represents an unknown value, the simulator cannot determine the next value for the
PC register. As a result, the simulation will become invalid because the simulator will
propagate X to the memory and to the all registers of the processor core, making the
simulation results useless.

 This paper presents a mechanism to support validation of HW/SW systems
containing processor cores in presence of indeterminate states or input values, as
defined in ternary logic. For such models, some registers of the processor core cannot
tolerate the loss of information, such as the PC in the previous example. These
registers will be treated symbolically. As we are going to show later, this method can
be very useful for simulating HW/SW systems, because the hardware may generate
invalid states to the software during the simulation, and the software must process
them appropriately.

This paper is organized as follows. In Section 2, we provide a mathematical
background, important to understand the concepts used in the rest of the paper. We
introduce a new technique that can be used to verify HW/SW systems in Section 3.
An example is presented in Section 4 to illustrate the application of the proposed
approach. Finally, Section 5 concludes the paper and suggests some future work.

2. Mathematical Background

 We present in this section a brief summary on the theory of posets and how
they can be used for dealing with absence of information in HW/SW systems,
according to the definitions presented in [1][5].

 We denote sets by A and B and individual elements of the sets by a and b. The
cartesian product A x B of the two sets A and B is the set of all ordered pairs (a, b),
where a ∈ A and b ∈ B. A binary relation on a set B is any subset of B x B. Let R be
a binary relation on B, i.e., R ⊆ B x B. We say that R is reflexive if and only if (iff)
aRa for all a∈B. Similarly, R is antisymmetric iff aRb and bRa implies a = b for all
a, b ∈ B. Finally, R is transitive iff aRb and bRc implies aRc for all a, b, c ∈ B. A
binary relation on B which is reflexive, antisymmetric, and transitive is called a
partial ordered on B.

 A poset (partially ordered-set) is an ordered pair �S, �, where S is a set and

 is a partial order on S. Intuitively, we will view a partial order as ordering the
values by their “information content”. That is, elements less than others “contain less
information”.

 If �S, � is a poset, A S, and b ∈ S, then b is a lower bound of A iff b a
for all a ∈ A. A lower bound a of A is called greatest lower bound of A, written
glb(A), iff b a for every lower bound b of A. The concept of upper bound and least
upper bound of A , written lub(A), are defined dually. If A = {a,b}, we will write
glb(a,b)(lub(a,b)) rather than glb({a,b})(lub({ a,b})). Clearly, if glb(A) exists, it is
unique, and the same holds for lub(A).

 Mapping f: A→B consists of a function f assigning an element b from the
codomain B to each element a of its domain A, written as b = f(a).

 Given a poset �S, � and mapping f : S→S, we say that f is monotone iff

a b � f(a) f(b)

This monotonicity definition is consistent with our use of information content.
If a mapping is monotone, we cannot “gain” any information by reducing the
information content of the arguments to the function.

 We can apply the concept of partial ordered set to Γ={0,1,X} in order to
formalize the concept of unknown value. Assuming the partial order ≤ on Γ as a≤a for
all a∈Γ, X ≤0 and X ≤ 1, we can show in Fig. 2 the Hasse diagram of partial order.

Figure 2. The ≤ partial order

We can extend the theory of ternary logic in digital circuits to word-level
systems by the following definitions.

 0 1

 X

Definition 1 : Assume a word can take the values in the set A = {α0, α1, α2,... αn-1},
where n is the number of the elements on A. A partial ordering representing the
absence of information can be defined in the following way. For all αi ∈ A, αi ≤ αi
and X ≤ αi.

Figure 3. The ≤ partial order on A

In Figure 3, we present the partial order for A = {0, 1, 2,..., n}. In this figure,
we can see that glb(αi, αj) = X if i ≠ j, implying that if two different values are
possible for a single variable, the variable looses its information content. The accuracy
for information loss can be improved by the following definition.

Definition 2 : Consider a set B = {β0, β1, β2,... βn-1} where n is the number of the
elements on B and each βi can be represented by the binary encoding rm,irm-1,i...r0,i,
rk,i ∈ {0,1}. For each rk,i , rk,i ≤ rk,i and X ≤rk,i, for k ∈ [0,m].

For example, assume we represent each number of the set B = {0, 1, 2, 3} with
two bits, i.e, β0 = 00, β1 = 01, β2 = 10, β3 = 11.

 0 1 2 3
 00 01 10 11

 0X X0 X1 1X

 XX

Figure 4. The ≤ partial order on B

 In Figure 4, we can see that the greatest lower bound of B is given as
following:

 glb(βi, βj) = glb(rmi,rmj). glb(rmi-1,rmj-1)... glb(r0i,r0j)

 In Definition 2, the concept of partial-order applied to elements in set B on bit-
level generates new elements containing less information than original numbers. We
can see that in some elements there are some bits with less information than others. In
this case, the “content information” of the elements diminishes gradually.

 These definitions are useful when modeling incompletely-specified systems. In
the next section, we show an approach in order to allow symbolic simulation of
portions of HW/SW systems in ternary based simulators.

 0 1 2 .. 5 6 7 8......n

 X

3. HW/SW Co-Simulation with Symbolic Simulation and Ternary
Logic

In the first section, we presented two known approaches used to simulate
HW/SW systems. The symbolic simulation is very powerful because each symbolic
variable represents a set of different conditions to the HW/SW system. However, it
becomes prohibitive due to its complexity for larger systems.

On the other hand, ternary logic simulation can cover many conditions of the

system, though it becomes impractical in some cases because the simulator cannot
tolerate loss of information for some of the variables during the simulation. Once
there is a loss of information, the system monotonically propagates this loss.

Considering the advantages of these techniques, we developed a simulator for

the validation of HW/SW systems mixing symbolic simulation with ternary logic. The
registers and the memory are simulated according to the ternary logic that makes the
simulation feasible by allowing loss of information. The Program Counter (PC) is
simulated using symbolic techniques, since it is a critical register and the simulation
cannot tolerate the loss of information for the PC. Thus, the state of the program
being executed is dependent on the PC, i.e. we must maintain the current state of the
program being simulated in terms of its internal registers and memory for each PC.

In order to exemplify the simulator behavior, assume the following assembly

code for some hypothetical RISC core:

PC Assembly Code
100 ld r1,0(r2)
... ...

110 jf.ext 120
111 add r1,r2,r3
112 ldi r3,#4
...

120 sub r2,r4,r1
...

Table 1. Assembly Sample Code

On address 110, the jf.ext represents a branch if an external condition ext is
false. The other instructions belong to common RISC instruction sets, as given by[10].
When PC =110, we find the branch instruction defined previously. If the condition ext
is unknown, the simulator forks its state into two parts as follows.

PC = 110 (jf.ext 120)

 value
... ...

regs[1] -3
regs[2] X

... ...
regs[4] 2

... ...
ext X

PC = 111 (add r1,r2,r3)
 value

... ...
regs[1] X
regs[2] X

... ...
regs[4] 2

... ...

PC = 120 (sub r2,r4,r1)
 value

... ...
regs[1] -3
regs[2] 5

... ...
regs[4] 2

... ...

Figure 5. Forking States

Figure 5 presents a partial snapshot of the state following the execution of the
code when PC = 110. Assume that regs represents the set of general-purpose registers
of the processor core and that the external input ext has an undefined value prior the
execution of the branch instruction. In addition, below each box labeled by the PC, we
present the partial state after the instruction was executed. In this figure, we see that
when the instruction labeled by PC = 111 is executed, the values for regs[1] and
regs[2] become undefined. Nonetheless, when the instruction labeled by PC = 120 is
executed, regs[1] and regs[2] have defined values.

 The simulation continues in these two ways regardless of each other. The
forking situation can occur whenever the decision to be made by the processor is
indeterminate. The simulation system increases its reliability since more information
about each possible state is available. We discuss how this information can affect the
behavior of the system in the next two subsections.

3.1 Visibility of Symbolic Simulations in Ternary Environments

 Symbolic simulations in ternary environments means that the system behaves
as a ternary model externally. However, in the core simulator, there may be many
states being simulated. The Figure 6 illustrates this model.

ext = 1 ext = 0

Figure 6. Simulation Environment

In this way, symbolic simulation is transparent to the ternary environment. In

the previous example, a snapshot of the processor core simulation can be found in
Figure 7.

In this simulation, we can maintain the external visibility of each processor

state by reducing the information content of the state for all PCs being simulated in
any cycle. This can be achieved if we apply glb(state[PC1],...,state[PCn]).

Let us consider Figure 7, for example. The processor flags is externally

indeterminate since it assumes different values for flagsPC=111 and flagsPC=120. Note
also that the value for regs[2] is determinate, since it has a value 5 regardless of the
PC value. From this external visibility, we can obtain information of the state of the
system tracing the simulation step by step and verifying its correctness.

PC = 111
 value

... ...
regs[2] 5

... ...
flags 3

PC = 120
 value

... ...
regs[2] 5

... ...
flags 8

 value

... ...
regs[2] 5

... ...
flags X

Figure 7. Snapshot and External Visibility

Symbolic & Ternary
 Simulation

Ternary Environment

 External visibility

 Internal state Internal state

 As mentioned before, internally we have a symbolic simulation for the PC.
This approach has a constraint when considering the possible number of forks that
may be generated by the third unknown logic value. In the next subsection, we show a
mechanism used to overcome this problem.

3.2 Limiting the Exponential Complexity of Symbolic Simulations

 Symbolic simulation is based on unique coding for variables rather than on
actual values for the design under simulation. Thus, it is possible to simulate entire
classes of values in a single run. In large systems, this approach may be expensive due
to its exponential complexity. In such cases, it would be important to find a way to
reduce this complexity.

 We can minimize the number of cases to simulate by reducing the information
content when different states exist for a single PC. In this case, we internally use the
glb function to collapse the states. Figure 8 presents a snapshot where two different
states appear for a single PC.

PC = 111
...

PC = 112
...

PC = 113
 value

... ...
regs[2] X

... ...
mem[100] 2

flags 3

PC = 120
...

PC = 121
...

PC = 113
 value

... ...
regs[2] 5

... ...
mem[100] 2

flags 8

PC = 113
 value

... ...
regs[2] X

... ...
mem[100] 2

flags X

Figure8. Snapshot and Internal Visibility

By restricting the number of cases to be simulated to the different PCs that may
be alive at any time, we constrain the simulation time to at most the ROM(code) size on
each cycle.

 In the next section we provide an example of applications running on a
simulator which uses the techniques proposed earlier.

4. Simulation of Application-Specific Instruction Processors (ASIPs)

 We developed a prototype using a 16-bit RISC core to test the ideas presented in
this paper. We present an ASIP in which a data-acquisition system is embedded into the
architecture as follows.

Figure 9. Co-Simulation of HW/SW for ASIP

 In Figure 9, we can see that the simulator controls the data-acquisition by setting
the ready port in the A/D converter. The core reads and process the value on Data port
when In port is set by the A/D converter. As a result, the Out port is set or not
depending on the data processing performed by the simulator.

 Allowing the presence of undefined values, e.g X, we can verify and validate the
HW/SW and propagate accordingly X value from the logic simulation into the
processor using our technique. For example, assume the RISC assembly sample used to
process data from the data acquisition module is given by the code on the left portion of
Figure 9, and that PC is set initially to Lo. Also, consider the address of Out port as
8000 initially set to 0 and a value X coming into the core via the In port for 3 cycles
(representing for example that it may take from 1 to 3 cycles to complete a data
conversion). Applying symbolic simulation to the PC register according to the ideas
presented in Section 3, we can see that the simulation continues normally and after
some time, the value on the Out port will have a defined value again. Thus, we can
verify and validate the HW/SW system in absence of information, regardless of the
value that is propagated to the PC register in the processor core.

A/D
Converter

ready

 Data

 In

 16-bit RISC
Core

 Out

Analog
System

Lo : jf.In Lo
 ldi R1, 8000
 ldi R2,1
 sw R2,(R1)
 ...
 ldi R2,0
 sw R2,(R1)
 jmp Lo

Assembly
code

XXX00...0111...

done

Data acquisition module

5. Conclusions

Due to its complexity, the validation of HW/SW systems with core processors is
a hard task and may demand as much effort as the design itself. Usual techniques for
validation are based on symbolic simulation or ternary logic simulation. The former is
prohibitive in larger systems due to its complexity. The later easily propagates wrong
values in absence of information.

 We proposed a new technique useful for validating a processor core

architectures where additional logic is added to the processor. This approach takes
advantage of mixing symbolic simulation and ternary logic techniques to improve the
accuracy of simulation results in absence of information.

For future work, we intend to extend this technique to verify quantified

temporal assertions on a specification. Also, we intend to investigate mechanisms to
automatically identify variables in HW/SW system that must be symbolically simulated.

6. References

[1] C. H. Seger and R. E. Bryant. Formal Verification by Symbolic Evaluation of Partially-Ordered
Trajectories. Technical Report 93-08, Department of Computer Science, University of British Columbia,
July 1993.
[2] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys, pages 293-318, September 1992.
[3] R. Lipsett, C. Schaefer and C. Ussery. VHDL : Hardware Description and Design. Kluwer Academic
Publishers, 1989.
[4] D. E. Thomas and P. R. Moorby. The Verilog hardware description language. Kluwer Academic
Publishers, 1991.
[5] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order Cambridge University Press,
1994.
[6] D. L. Dill, A. J. Drexler, A. J. Hu and C. H Yang. Protocol Verification as a Hardware Design Aid.
ICCD,1992.
[7] Fujita et al. Bug Identification of a Real Chip Design by Symbolic Model Checking. EDAC, 1994.
[8] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan and D. L. Dill. Symbolic Model Checking for
Sequential Circuit Verification. IEEE Transaction on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 13. No. 4, April 1994.
[9] D. L. Beatty. A Methodology for Formal Hardware Verification with Application to Micropocessors.
PhD thesis, Carnegie-Mellon University, 1993.
[10] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc.,1996.
[11] D. L. Beatty, K. Brace, R. E. Randal, Kyeongsoon Cho, and Lawrence Huang. User’s guide to
COSMOS: a compiled simulator for MOS circuits. Computer Science Department, Carnegie-Mellon
University, October, 1987
[12] V. R. Pratt, Pentium Report # bug1, Department of Computer Science, Stanford University, 1994.

