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Abstract  

 
 We present a new technique to support the simulation of processor cores in a 
hardware/software environment in absence of information. Current HW/SW 
simulation tools based on ternary logic will not tolerate absence of information for 
some of the processor’s registers. In order to overcome this problem, we combine 
symbolic simulation with ternary logic simulation techniques. We exemplify our 
technique by simulating an Application Specific Instruction Processor(ASIP) core 
with its embedded logic.  
 
1. Introduction 

 
One of the most important tasks during the design of a HW/SW system is its 

validation. In these systems, the hardware portion is usually validated with  simulators 
supporting conventional hardware description language (HDL) – such as VHDL[3] 
and Verilog HDL[4] – whereas the software portion is validated in a behavioral model 
of the processor core specified in the same HDL used to specify the hardware model. 
Due to the inherent complexity of such systems, it is impractical to simulate 
exhaustively all possible states. Therefore, the validation must be confined to some 
portions of the system. This is usually the reason for known bugs found in industry, 
such as the Pentium bug that was found in the Floating Point Unit, demanding Intel to 
replace millions of processors already in the market[12]; and the bug described by 
Fujita et al[7], where a network coprocessor presented anomalous behavior after the 
chip was manufactured. 

 
One of the techniques used to verify the behavior of a system is symbolic 

simulation[2][8]. In symbolic simulation, we uniquely represent the sets of values any 
variable may take. Examples of verification tools using symbolic simulation can be 
found in Murϕ[6], SMV[8] and COSMOS[11]. Because this technique has a 
prohibitive complexity, commercial tools for the validation HW/SW systems are 
based on ternary logic. 

 
Ternary logic means a third unknown or indeterminate logic value (usually 

named X) is added to the binary logic set {0,1}. The third value X can be used to 
reduce the number of cases of the system to be tested[1] by encapsulating values that 
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are unknown or indeterminate to the system. Commercial simulators based on the 
languages VHDL and Verilog HDL support ternary logic. Albeit its constant use for 
the validation of hardware and software systems, loosing information for some 
variables can invalidate completely the simulation. For example, consider the 
following skeleton for a processor behavioral model that may be used to simulate the 
SW portion of a HW/SW system, where branches are handled based on an external 
condition. 
 
IR = Mem[PC]; 
    .... 
        switch (IR) { 
    .... 
            case branch : 
 

        if (CC) 
           PC = PC +2; 
        else 
           PC = PC + offset; 

         ..... 
Figure 1. Handling branch with Condition Code 

 
 

Let us consider CC as a condition code dependent of an external value. 
Therefore, CC can have one of the three values {0,1,X}, as defined by ternary logic. 
Assume CC equals to X while the simulator fetches the next instruction. Since X 
represents an unknown value, the simulator cannot determine the next value for the 
PC register. As a result, the simulation will become invalid because the simulator will 
propagate X to the memory and to the all registers of the processor core, making the 
simulation results useless. 

 
 This paper presents a mechanism to support validation of HW/SW systems 
containing processor cores in presence of indeterminate states or input values, as 
defined in ternary logic. For such models, some registers of the processor core cannot 
tolerate the loss of information, such as the PC in the previous example. These 
registers will be treated symbolically.  As we are going to show later, this method can 
be very useful for simulating HW/SW systems, because the hardware may generate 
invalid states to the software during the simulation, and the software must process 
them appropriately.  
 

This paper  is organized as follows. In Section 2, we provide a mathematical 
background, important to understand the concepts used in the rest of the paper. We 
introduce a new technique that can be used to verify HW/SW systems in Section 3. 
An example is presented in Section 4 to illustrate the application of the proposed 
approach. Finally, Section 5 concludes the paper and suggests some future work. 
 
2. Mathematical Background 
 
 We present in this section a brief summary on the theory of posets and how 
they can be used for dealing with absence of information in HW/SW systems, 
according to the definitions presented in [1][5].  
 



 We denote sets by A and B and individual elements of the sets by a and b. The 
cartesian product A x B of the two sets A and B is the set of all ordered pairs (a, b), 
where a ∈ A and b ∈ B. A binary relation on a set B is any subset of B x B. Let R be 
a binary relation on B, i.e., R ⊆ B x B. We say that R is reflexive if and only if (iff) 
aRa for all a∈B. Similarly, R is antisymmetric iff aRb and bRa implies a = b for all 
a, b ∈ B. Finally, R is transitive iff aRb and bRc implies aRc for all a, b, c ∈ B. A 
binary relation on B which is reflexive, antisymmetric, and transitive is called a 
partial ordered on B. 
 
 A poset (partially ordered-set) is an ordered pair �S, �, where S is a set and 

 is a partial order on S. Intuitively, we will view a partial order as ordering the 
values by their “information content”. That is, elements less than others “contain less 
information”. 
 
 If �S, � is a poset, A  S, and b ∈ S, then b is a lower bound of A iff b a 
for all a ∈ A. A lower bound a of A is called greatest lower bound of A, written 
glb(A), iff b a for every lower bound b of A. The concept of upper bound and least 
upper bound of A , written lub(A), are defined dually. If A = {a,b}, we will write 
glb(a,b)(lub(a,b)) rather than glb({a,b})(lub({ a,b})). Clearly, if  glb(A) exists, it is 
unique, and the same holds for lub(A). 
 
 Mapping f: A→B consists of a function f assigning an element b from the 
codomain B to each element a of its domain A, written as b = f(a). 
 
 Given a poset �S, � and mapping f : S→S, we say that f is monotone iff 
 

a b �  f(a)  f(b) 
 

This monotonicity definition is consistent with our use of information content. 
If a mapping is monotone, we cannot “gain” any information by reducing the 
information content of the arguments to the function. 
 
 We can apply the concept of partial ordered set to Γ={0,1,X} in order to 
formalize the concept of unknown value. Assuming the partial order ≤ on Γ as a≤a for 
all a∈Γ, X ≤0 and X ≤ 1, we can show in Fig. 2 the Hasse diagram of partial order. 
 
 
 
 
 

 
 

Figure 2. The ≤ partial order 
 

We can extend the theory of ternary logic in digital circuits to word-level 
systems by the following definitions. 
 

                     0                   1 
 
 
 
                                X 



Definition 1 : Assume a word can take the values in the set A = {α0, α1, α2,... αn-1},  
where n is the number of the elements on A. A partial ordering representing the 
absence of information can be defined in the following way. For all αi ∈ A, αi ≤ αi 
and X ≤ αi.  
 
 
 
 
 
 

Figure 3. The ≤ partial order on A  
 

In Figure 3, we present the partial order for A = {0, 1, 2,..., n}. In this figure,  
we can see that glb(αi, αj) = X if i ≠ j, implying that if two different values are 
possible for a single variable, the variable looses its information content. The accuracy 
for information loss can be improved by the following definition. 
 
Definition 2 : Consider a set B = {β0, β1, β2,... βn-1} where n is the number of the 
elements on B and each βi can be represented by  the  binary  encoding  rm,irm-1,i...r0,i, 
rk,i ∈ {0,1}. For each rk,i , rk,i ≤ rk,i and X ≤rk,i, for k ∈ [0,m]. 
 

For example, assume we represent each number of the set B = {0, 1, 2, 3} with 
two bits, i.e, β0 = 00, β1 = 01, β2 = 10, β3 = 11.  

 
 
                                                       0         1             2            3 
                                                      00       01            10          11 
          
                      
                                                         0X     X0          X1        1X 
  
 
                                                                        XX                  

Figure 4. The ≤ partial order on B  
 
 In Figure 4, we can see that the greatest lower bound of B is given as 
following: 
 
                       glb(βi, βj) = glb(rmi,rmj). glb(rmi-1,rmj-1)... glb(r0i,r0j) 
 
 In Definition 2, the concept of partial-order applied to elements in set B on bit-
level generates new elements containing less information than original numbers. We 
can see that in some elements there are some bits with less information than others. In 
this case, the  “content information” of the elements diminishes gradually.  
 
 These definitions are useful when modeling incompletely-specified systems. In 
the next section, we show an approach in order to allow symbolic simulation of 
portions of HW/SW systems in ternary based simulators.  
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3. HW/SW Co-Simulation with Symbolic Simulation and Ternary 
Logic  
 

In the first section, we presented two known approaches used to simulate 
HW/SW systems. The symbolic simulation is very powerful because each symbolic 
variable represents a set of different conditions to the HW/SW system. However, it 
becomes prohibitive due to its complexity for larger systems.  

 
On the other hand, ternary logic simulation can cover many conditions of the 

system, though it becomes impractical in some cases because the simulator cannot 
tolerate loss of information for some of the variables during the simulation. Once 
there is a loss of information, the system monotonically propagates this loss. 

 
Considering the advantages of these techniques, we developed a simulator for 

the validation of HW/SW systems mixing symbolic simulation with ternary logic. The 
registers and the memory are simulated according to the ternary logic that makes the 
simulation feasible by allowing loss of information. The Program Counter (PC) is 
simulated using symbolic techniques, since it is a critical register and the simulation 
cannot tolerate the loss of information for the PC.   Thus, the state of the program 
being executed is dependent on the PC, i.e. we must maintain the current state of the 
program being simulated in terms of  its internal registers and memory for each PC. 

 
In order to exemplify the simulator behavior, assume the following assembly 

code for some hypothetical RISC core: 
 

PC Assembly Code 
100 ld r1,0(r2) 
... ... 

110 jf.ext 120 
111 add r1,r2,r3 
112  ldi r3,#4 
... .... 

120 sub r2,r4,r1 
... .... 

Table 1. Assembly Sample Code 
 
 

On address 110, the jf.ext represents a branch if an external condition ext is 
false. The other instructions belong to common RISC instruction sets, as given by[10]. 
When PC =110, we find the branch instruction defined previously. If the condition ext 
is unknown, the simulator forks its state into two parts as follows. 



 
PC = 110 (jf.ext 120) 

 value 
... ... 

regs[1] -3 
regs[2] X 

... ... 
regs[4] 2 

... ... 
ext X 

 
 
 

PC = 111 (add r1,r2,r3) 
 value 

... ... 
regs[1] X 
regs[2] X 

... ... 
regs[4] 2 

... ... 

 

PC = 120 (sub r2,r4,r1) 
 value 

... ... 
regs[1] -3 
regs[2] 5 

... ... 
regs[4] 2 

... ... 

Figure 5. Forking  States 
 

Figure 5 presents a partial snapshot of the state  following the execution of the 
code when PC = 110.  Assume that regs represents the set of general-purpose registers 
of the  processor core and that the external input ext has an undefined value prior the 
execution of the branch instruction. In addition, below each box labeled by the PC, we 
present the partial state after the instruction was executed.  In this figure, we see that 
when the instruction labeled by PC = 111 is executed, the values for regs[1] and 
regs[2] become undefined. Nonetheless, when the instruction labeled by PC = 120 is 
executed, regs[1] and regs[2] have defined values.  

 
 The simulation continues in these two ways regardless of each other. The 
forking situation can occur whenever the decision to be made by the processor is 
indeterminate. The simulation system increases its reliability since more information 
about each possible state is available. We discuss how this information can affect the 
behavior of the system in the next two subsections.  
 
3.1 Visibility of Symbolic Simulations in Ternary Environments 
 
 Symbolic simulations in ternary environments means that the system behaves 
as a ternary model externally. However, in the core simulator, there may be many 
states being simulated. The Figure 6 illustrates this model.  

ext = 1 ext = 0 



 

                                 

 
Figure 6. Simulation Environment 

 
In this way, symbolic simulation is transparent to the ternary environment. In 

the previous example, a snapshot of the processor core simulation can be found in 
Figure 7. 

 
In this simulation, we can maintain the external visibility of each processor 

state by reducing the information content of the state for all PCs being simulated in 
any cycle. This can be achieved if we apply glb(state[PC1],...,state[PCn]).  

 
Let us consider Figure 7, for example. The processor flags is externally 

indeterminate since it assumes different values for  flagsPC=111 and flagsPC=120. Note 
also that the value for regs[2] is determinate, since it has a value 5 regardless of the 
PC value.  From this external visibility, we can obtain information of the state of the 
system tracing the simulation step by step and verifying its correctness. 

 
 
            

PC = 111 
 value 

... ... 
regs[2] 5 

... ... 
flags 3 

 

PC = 120 
 value 

... ... 
regs[2] 5 

... ... 
flags 8 

 
 
 

 
 value 

... ... 
regs[2] 5 

... ... 
flags X 

 
Figure 7. Snapshot and External Visibility 
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 As mentioned before, internally we have a symbolic simulation for the PC. 
This approach has a constraint when considering the possible number of forks that 
may be generated by the third unknown logic value. In the next subsection, we show a 
mechanism used to overcome this problem. 
 
3.2 Limiting the Exponential Complexity of Symbolic Simulations 
 
  Symbolic simulation is based on unique coding for variables rather than on 
actual values for the design under simulation. Thus, it is possible to simulate entire 
classes of values in a single run. In large systems, this approach may be expensive due 
to its exponential complexity. In such cases, it would be important to find a way to 
reduce this complexity. 
 
 We can minimize the number of cases to simulate by reducing the information 
content when different states exist for a single PC. In this case, we internally use the 
glb function to collapse the states. Figure 8 presents a snapshot where two different 
states appear for a single PC. 
 

 

PC = 111 
... 

 

PC = 112 
... 

 

PC = 113 
 value 

... ... 
regs[2] X 

... ... 
mem[100] 2 

flags 3 

 

 

 

PC = 120 
... 

 

PC = 121 
... 

 

PC = 113 
 value 

... ... 
regs[2] 5 

... ... 
mem[100] 2 

flags 8 

 

 

 
PC = 113 
 value 

... ... 
regs[2] X 

... ... 
mem[100] 2 

flags X 

 
 

Figure8. Snapshot and Internal Visibility 
 



By restricting the number of cases to be simulated to the different PCs that may 
be alive at any time, we constrain the simulation time to at most the ROM(code) size on 
each cycle. 

 
 In the next section we provide an example of applications running on a 
simulator which uses the techniques proposed earlier. 
 
4. Simulation of Application-Specific Instruction Processors (ASIPs) 
 
 We developed a prototype using a 16-bit RISC core to test the ideas presented in 
this paper. We present an ASIP in which a data-acquisition system is embedded into the 
architecture as follows. 
 
 

 

 

  

 

 

 

  

 

Figure 9. Co-Simulation of HW/SW for ASIP 

  

 In Figure 9, we can see that the simulator controls the data-acquisition by setting 
the ready port in the A/D converter. The core reads and process the value on Data port 
when In port is set by the A/D converter. As a result, the Out port is set or not 
depending on the data processing performed by the simulator.  
 
 Allowing the presence of undefined values, e.g X, we can verify and validate the 
HW/SW and propagate accordingly X value from the logic simulation into the 
processor using our technique. For example, assume the RISC assembly sample used to 
process data from the data acquisition module is given by the code on the left portion of 
Figure 9, and that PC is set initially to Lo. Also, consider the address of Out port as 
8000 initially set to 0 and a value X coming into the core via the In port for 3 cycles 
(representing for example that it may take from 1 to 3 cycles to complete a data 
conversion). Applying symbolic simulation to the PC register according to the ideas 
presented in Section 3, we can see that the simulation continues normally and after 
some time, the value on the Out port will have a defined value again. Thus, we can 
verify and validate the HW/SW system in absence of information,  regardless of the 
value that is propagated to the PC register in the processor core. 
 

 
 

A/D 
Converter 

 
ready 

                        Data 
                         
                            In   
 
 

   16-bit RISC  
Core  

 
 
                         Out                  

Analog 
System 

Lo : jf.In Lo 
       ldi R1, 8000 
       ldi R2,1 
       sw R2,(R1) 
       ... 
       ldi R2,0 
       sw R2,(R1) 
       jmp Lo 

Assembly 
code 

 

XXX00...0111... 

done 

Data acquisition module 



5. Conclusions 

Due to its complexity, the validation of HW/SW systems with core processors is 
a hard task and may demand as much effort as the design itself. Usual techniques for 
validation are based on symbolic simulation or ternary logic simulation. The former is 
prohibitive in larger systems due to its complexity. The later easily propagates wrong 
values in absence of information. 

 
 We proposed a new technique useful for validating a processor core 

architectures where additional logic is added to the processor. This approach takes 
advantage of mixing symbolic simulation and ternary logic techniques to improve the 
accuracy of simulation results in absence of information.  

 
For future work, we intend to extend this technique to verify quantified 

temporal assertions on a specification. Also, we intend to investigate mechanisms to 
automatically identify variables in HW/SW system that must be symbolically simulated. 
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