Mixing Ternary Logic with Symbolic Simulation in HS®W
Co-Simulation in Absence of Information

Flavio Miana® Patricia Nattrodt Julio Cezar de Meld
miana@cpdee.ufmg.br patty@dcc.ufmg.br demelo@cpdee.ufmg.br
Anténio O. Fernandés Claudionor N. Coelho Jr
otavio@dcc.ufmg.br coelho@dcc.ufmg.br

Abstract

We present a new technique to support the sinomaif processor cores in a
hardware/software environment in absence of inftona Current HW/SW
simulation tools based on ternary logic will notetate absence of information for
some of the processor’s registers. In order to amrae this problem, we combine
symbolic simulation with ternary logic simulatioechniques. We exemplify our
technique by simulating an Application Specific tinstion Processor(ASIP) core
with its embedded logic.

1. Introduction

One of the most important tasks during the desiga dW/SW system is its
validation. In these systems, the hardware poriarsually validated with simulators
supporting conventional hardware description lagguéHDL) — such a&HDL][3]
and \erilog HDL[4] — whereas the software portion is validated imehavioral model
of the processor core specified in the same HDId tigespecify the hardware model.
Due to the inherent complexity of such systemsjsitimpractical to simulate
exhaustively all possible states. Therefore, tHelation must be confined to some
portions of the system. This is usually the reaswrknown bugs found in industry,
such as th€entiumbug that was found in tHéoating Point Unit demanding Intel to
replace millions of processors already in the m§tRé and the bug described by
Fujita et d[7], where a network coprocessor presented anamdbehavior after the
chip was manufactured.

One of the techniques used to verify the behavioa aystem is symbolic
simulation[2][8]. In symbolic simulation, we unigyeepresent the sets of values any
variable may take. Examples of verification too8ng symbolic simulation can be
found in Mug[6], SMV[8] and COSMOS[11]. Because this technighas a
prohibitive complexity, commercial tools for the lidation HW/SW systems are
based on ternary logic.

Ternary logic means a thirdnknownor indeterminate logicvalue (usually
named X) is added to the binary logic set {0,1}.eTihird value X can be used to
reduce the number of cases of the system to bedfé$toy encapsulating values that

"! Electrical Engineering Department — Universidadéddtal de Minas Gerais, Brazil
"2 Computer Science Department — Universidade FederMinas Gerais, Brazil

are unknownor indeterminateto the system. Commercial simulators based on the
languages/HDL and \erilog HDL support ternary logic. Albeit its constant use for
the validation of hardware and software systemssitg information for some
variables can invalidate completely the simulatidfor example, consider the
following skeleton for a processor behavioral matiat may be used to simulate the
SW portion of a HW/SW system, where branches arelled based on an external
condition.

IR = Mem[PC];
" switch (IR) {
) case branch :

if (CC)

PC =PC +2;
else

PC = PC + offset;

Figure 1. Handlindgranchwith Condition Code

Let us consider CC as a condition code dependeranogxternal value.
Therefore, CC can have one of the three vaf0es X}, as defined by ternary logic
Assume CC equals to While the simulator fetches the next instructiomc® X
represents an unknown value, the simulator canetrshine the next value for the
PC register. As a result, the simulation will beeoimvalid because the simulator will
propagate X to the memory and to the all registéthe processor core, making the
simulation results useless.

This paper presents a mechanism to support vaidat HW/SW systems
containing processor cores in presence of indetext®istates or input values, as
defined in ternary logic. For such models, someéstegs of the processor core cannot
tolerate the loss of information, such as the PChim previous example. These
registers will be treated symbolically. As we gmeng to show later, this method can
be very useful for simulating HW/SW systems, beeatl® hardware may generate
invalid states to the software during the simulatiand the software must process
them appropriately.

This paper is organized as follows. In Section@,provide a mathematical
background, important to understand the concepd us the rest of the paper. We
introduce a new technique that can be used toywENY/SW systems in Section 3.
An example is presented in Section 4 to illustride application of the proposed
approach. Finally, Section 5 concludes the papeéisaggests some future work.

2. Mathematical Background

We present in this section a brief summary ontkte®ry of posets and how
they can be used for dealing with absence of in&tion in HW/SW systems,
according to the definitions presented in [1][5].

We denote sets by andB and individual elements of the setsébgndb. The
cartesian producA x B of the two set®\ andB is the set of all ordered pairg, @),
wherea [0 A andb [0 B. A binary relation ona setB is any subset d@ x B. LetR be
a binary relation o, i.e.,R [0 B x B. We say thaR is reflexiveif and only if (iff)
aRa for all alIB. Similarly, R is antisymmetriaff aRb andbRa impliesa = b for all
a, b 0 B. Finally, R is transitive iff aRb andbRc impliesaRc for all a, b, c 0 B. A
binary relation onB which is reflexive antisymmetric and transitive is called a
partial orderedonB.

A poset(partially ordered-set) is an ordered pé@ =), whereSis a set and
L is a partial order ors. Intuitively, we will view a partial order as onileg the
values by their “information content”. That is, mlents less than others “contain less
information”.

If (S, &) is aposetA £ S, andb O S, thenb is alower boundof A iff bEa
for all a 0 A. A lower bounda of A is calledgreatest lower bounadf A, written
glb(A), iff b= a for everylower boundb of A. The concept ofipper boundandleast
upper boundof A , written lub@), are defined dually. IA = {a,b}, we will write
glb(a,b)(lub(a,b)) rather than glb@b})(lub({ a,b})). Clearly, if glb(A) exists, it is
unique, and the same holds for l&(

Mappingf: A B consists of a functiof assigning an elemetut from the
codomainB to each elemera of its domairA, written ash = f(a).

Given aposet(S, £) and mappind : S— S, we say that is monotonéff

aEb= @ E ()

This monotonicity definition is consistent with ouse of information content.
If a mapping is monotone, we cannot “gain” any mmation by reducing the
information content of the arguments to the funttio

We can apply the concept phrtial ordered setto '={0,1,X} in order to
formalize the concept afnknown valueAssuming the partial orderonl” asa<a for
all aldl, X <0 and X< 1, we can show in Fig. 2 the Hasse diagram ofgdamtder.

N/

Figure 2. The< partial order

We can extend the theory of ternary logic in digitacuits to word-level
systems by the following definitions.

Definition 1: Assume a word can take the values in theAset{ao, a1, Oz,... On.1},
wheren is the number of the elements #n A partial ordering representing the
absence of information can be defined in the follgwvay. For allo; O A, a; < a;
and X< a;.

WY 2/7/8”

Figure 3. The< partial order orA

In Figure 3, we present the partial order Ao {0, 1, 2,..., n}. In this figure,
we can see that giis(o) = X if i # j, implying that if two different values are
possible for a single variable, the variable loatemformation content. The accuracy
for information loss can be improved by the follagidefinition.

Definition 2 : Consider a seéB = {Bo, B1, B2,... Bn-1} Where n is the number of the
elements orB and eacl§; can be represented by the binary encodiR@msi...lo
r«i 0{0,1}. For eachy;, Ki< rej and X<ry;, for kO [0,m].

For example, assume we represent each number sétBe= {0, 1, 2, 3} with
two bits, i.e 3o = 00,3, = 01,3, = 10,33 = 11.

DIl

N4

Figure 4. The partial order orB

In Figure 4, we can see that tlgeeatest lower bounaf B is given as
following:

gl Bj) = glb(mi,Mmj). 9Ib(fi-1,Mmj-1)-.. glb(ii, o)

In Definition 2 the concept of partial-order applied to elementseitB on bit-
level generates new elements containing less irdtbom than original numbers. We
can see that in some elements there are someitiittess information than others. In
this case, the “content information” of the eletsetiminishes gradually.

These definitions are useful when modeling incatgty-specified systems. In
the next section, we show an approach in orderlltavasymbolic simulation of
portions of HW/SW systems in ternary based simuato

3. HW/SW Co-Simulation with Symbolic Simulation and Ternary
Logic

In the first section, we presented two known apghea used to simulate
HW/SW systems. The symbolic simulation is very pdulebecause each symbolic
variable represents a set of different conditionshe HW/SW system. However, it
becomes prohibitive due to its complexity for larggstems.

On the other hand, ternary logic simulation canecawany conditions of the
system, though it becomes impractical in some chseause the simulator cannot
tolerate loss of information for some of the valggbduring the simulation. Once
there is a loss of information, the system monatalhi propagates this loss.

Considering the advantages of these techniquesleweloped a simulator for
the validation of HW/SW systems mixing symbolic alation with ternary logic. The
registers and the memory are simulated accordirigedernary logic that makes the
simulation feasible by allowing loss of informatiohhe Program Counter (PC) is
simulated using symbolic techniques, since it giical register and the simulation
cannot tolerate the loss of information for the PQhus, the state of the program
being executed is dependent on the PC, i.e. we masttain the current state of the
program being simulated in terms of its interrgisters and memory for each PC.

In order to exemplify the simulator behavior, assutime followingassembly
codefor some hypothetical RISC core:

PC Assembly Code
100 Id r1,0(r2)
110 jf.ext 120
111 add r1,r2,r3
112 Idi r3,#4
120 sub r2,r4,rl1

Table 1. Assembly Sample Code

On address 110, the jf.ext represents a branch dxséernal conditiorextis
false. The other instructions belong to common Ril&@ruction sets, as given by[10].
When PC =110, we find the branch instruction defipeeviously. If the conditioext
is unknown the simulator forks its state into two parts @ofvs.

PC =110 (jf.ext 120)
value

regs[1] -3

regs[2] X

regs[4] 2

ext X

extm = (

PC=111(addr1,r2,r3) PC=120(subr2,r4r1)
value value
regs[1] X regs[1] -3
regs[2] X regs[2] 5
regs[4] 2 regs[4] 2

Figure 5. Forking States

Figure 5 presents a partial snapshot of the dtaitewing the execution of the
code when PC = 110. Assume thegsrepresents the set of general-purpose registers
of the processor core and that the external iegthas an undefined value prior the
execution of the branch instruction. In additioaldw each box labeled by the PC, we
present the partial state after the instruction eeecuted. In this figure, we see that
when the instruction labeled by PC = 111 is exatutke values foregs[1l] and
regs[2] become undefined. Nonetheless, when the instrutioeled by PC = 120 is
executedregs[1] andregs[2] have defined values.

The simulation continues in these two ways regasllof each other. The
forking situation can occur whenever the decisiorbé made by the processor is
indeterminate. The simulation system increasegeliability since more information
about each possible state is available. We didooasthis information can affect the
behavior of the system in the next two subsections.

3.1 Vishbility of Symbolic Simulationsin Ternary Environments
Symbolic simulations in ternary environments metuad the system behaves

as a ternary model externally. However, in the cgireulator, there may be many
states being simulated. The Figure 6 illustratesrtiodel.

(i

Symbolic & Ternary|
— | Simulation

L1

v -
Ternary Enwronment
—

—
&

Figure 6. Simulation Environment

In this way, symbolic simulation is transparenthe ternary environment. In

the previous example, a snapshot of the processer gimulation can be found in
Figure 7.

In this simulation, we can maintain the externalibility of each processor
state by reducing the information content of thetesfor all PCs being simulated in
any cycle. This can be achieved if we apply glt€¢$RG]....,state[PG)).

Let us consider Figure 7, for example. The proacedlsgs is externally
indeterminate since it assumes different valuesffagsc-111 andflagsc=120 Note
also that the value faegs[2] is determinate, since it has a value 5 regardaiésise
PC value. From this external visibility, we cartab information of the state of the
system tracing the simulation step by step andyieg its correctness.

Internal state Internal state

PC =111 PC =120
value value
regs[2] 5 regs[2] 5
flags 3 flags 8

\/

External visibility

value
regs(2] 5
flags X

Figure 7. Snapshot and External Visibility

As mentioned before, internally we have a symbesimulation for the PC.
This approach has a constraint when consideringptssible number of forks that
may be generated by the third unknown logic valu¢he next subsection, we show a
mechanism used to overcome this problem.

3.2 Limiting the Exponential Complexity of Symbolic Simulations

Symbolic simulation is based on unique codingVfariables rather than on
actual values for the design under simulation. Thiuis possible to simulate entire
classes of values in a single run. In large systémsapproach may be expensive due
to its exponential complexity. In such cases, iuldobe important to find a way to
reduce this complexity.

We can minimize the number of cases to simulateetiycing the information
content when different states exist for a single PGhis case, we internally use the
glb function to collapse the states. Figure 8 prtssa snapshot where two different
states appear for a single PC.

PC =111 PC =120
PC =112 PC =121
PC =113 PC =113
value value
regs[2] X regs(2] 5
mem[100] 2 mem[100] 2
flags 3 flags 8
PC =113
value
regs[2] X
mem[100] 2
flags X

Figure8. Snapshot and Internal Visibility

By restricting the number of cases to be simul&etthe different PCs that may
be alive at any time, we constrain the simulatioretto at most the ROM(code) size on
each cycle.

In the next section we provide an example of a&ppilbns running on a
simulator which uses the techniques proposed earlie

4. Simulation of Application-Specific I nstruction Processors (ASI Ps)

We developed a prototype using a 16-bit RISC tmtest the ideas presented in
this paperWe present an ASIP in which a data-acquisitionesyss embedded into the
architecture as follows.

Lo :jf.In Lo Datae A/D

:g: 22,18000 Inle Converter

' XXX00...0111...

sw R2,(R1) ready

e 1 /\

Idi R2.0 1 bltrEISC 4 T

SW R2,(R1) Analog

Jmp Lo Assembly System
— code Out| dore

Data acquisition module

Figure 9. Co-Simulation of HW/SW for ASIP

In Figure 9, we can see that the simulator costiteé data-acquisition by setting
the ready port in the A/D converter. The core reaut$ process the value on Data port
when In port is set by the A/D converter. As a lestihe Out port is set or not
depending on the data processing performed byitidator.

Allowing the presence of undefined values, e.gv¥,can verify and validate the
HW/SW and propagate accordingly X value from thgidosimulation into the
processor using our technique. For example, assiumBISC assembly sample used to
process data from the data acquisition modulevisrgby the code on the left portion of
Figure 9, and that PC is set initially km. Also, consider the address of Out port as
8000 initially set to 0 and a value X coming inke tcore via the In port for 3 cycles
(representing for example that it may take fromol3tcycles to complete a data
conversion). Applying symbolic simulation to the P€Yister according to the ideas
presented in Section 3, we can see that the siimimilabntinues normally and after
some time, the value on the Out port will have &nee value again. Thus, we can
verify and validate the HW/SW system in absencénfifrmation, regardless of the
value that is propagated to the PC register irptbeessor core.

5. Conclusions

Due to its complexity, the validation of HW/SW syists with core processors is
a hard task and may demand as much effort as gigndiself. Usual techniques for
validation are based on symbolic simulation or aeyrlogic simulation. The former is
prohibitive in larger systems due to its complexifhe later easily propagates wrong
values in absence of information.

We proposed a new technique useful for validatengprocessor core
architectures where additional logic is added te pinocessor. This approach takes
advantage of mixing symbolic simulation and ternlagic techniques to improve the
accuracy of simulation results in absence of inftram.

For future work, we intend to extend this technique verify quantified
temporal assertions on a specification. Also, werid to investigate mechanisms to
automatically identify variables in HW/SW systemattimust be symbolically simulated.

6. References

[1] C. H. Seger and R. E. Bryarftormal Verification by Symbolic Evaluation of Paity-Ordered
Trajectories Technical Report 93-08, Department of Computéerge, University of British Columbia,
July 1993.

[2] R. E. Bryant. Symbolic boolean manipulation with ordered binapcidion diagrams.ACM
Computing Surveys, pages 293-318, September 1992.

[3] R. Lipsett, C. Schaefer and C. UssafiDL : Hardware Description and DesigKluwer Academic
Publishers, 1989.

[4] D. E. Thomas and P. R. MoorbYhe Verilog hardware description languag€luwer Academic
Publishers, 1991.

[5] B. A. Davey and H. A. Priestleyntroduction to Lattices and Orde€ambridge University Press,
1994,

[6] D. L. Dill, A. J. Drexler, A. J. Hu and C. H Yg. Protocol Verification as a Hardware Design Aid
ICCD,1992.

[7] Fujita et al.Bug Identification of a Real Chip Design by Synmbdlodel CheckingEDAC, 1994.

[8] J. R. Burch, E. M. Clarke, D. E. Long, K. L. Mdlan and D. L. Dill. Symbolic Model Checking for
Sequential Circuit VerificationEEE Transaction on Computer-Aided Design of dgnéged Circuits and
Systems, Vol. 13. No. 4, April 1994.

[9] D. L. Beatty.A Methodology for Formal Hardware Verification wigpplication to Micropocessors
PhD thesis, Carnegie-Mellon University, 1993.

[10] D. A. Patterson and J. L. Hennes§omputer Architecture: A Quantitative Approadiiorgan
Kaufmann Publishers, Inc.,1996.

[11] D. L. Beatty, K. Brace, R. E. Randal, KyeongsoCho, and Lawrence Huangser's guide to
COSMOS: a compiled simulator for MOS circui@omputer Science Department, Carnegie-Mellon
University, October, 1987

[12] V. R. PrattPentium Report # bugDepartment of Computer Science, Stanford Unitgr$b94.

