
An Assertion Library for On-Chip White-Box
Verification at Run-Time

José Augusto Nacif1, Flávio Miana de Paula2, Harry Foster4, Claudionor N. Coelho Jr.1, Fernando
Cortez Sica1,5, Diogenes Cecílio da Silva Jr.3, Antônio Otávio Fernandes1

1 &RPSXWHU�6FLHQFH�'HSDUWPHQW, Universidade Federal de Minas Gerais, Brazil
2 0LQGVSHHG�7HFKQRORJLHV���USA

3 (OHFWULFDO�(QJLQHHULQJ�'HSDUWPHQW, Universidade Federal de Minas Gerais, Brazil
4�Verplex Systems, USA

5 Computer Science Department, Universidade Federal de Ouro Preto, Brazil

$EVWUDFW

:KLWH�%R[� 9HULILFDWLRQ� LV� D� WHFKQLTXH� WKDW� ORFDWHV� D

IDLOXUH� GXULQJ� D� GHVLJQ� VLPXODWLRQ� ZLWKRXW� WKH� QHHG� WR
SURSDJDWH�WKH�IDLOXUH�WR�WKH�,�2�SLQV���8VLQJ�DVVHUWLRQV�LQ

WKH� :KLWH�%R[� 9HULILFDWLRQ� SURYLGHV� WKH� PHFKDQLVP

QHHGHG�WR�ORFDWH� WKH� IDLOXUH�� �7KLV� WHFKQLTXH�KDV�JDLQHG

VWUHQJWK� LQ� WKH� SDVW� IHZ� \HDUV�� KDYH� EHHQ� XVHG� LQ

VLPXODWLRQ�� HPXODWLRQ�� IRUPDO� YHULILFDWLRQ� DQG� VHPL�

IRUPDO� YHULILFDWLRQ�� ,Q� WKLV� SDSHU�� ZH� SUHVHQW� D� QRYHO
WHFKQLTXH� WKDW� H[WHQGV� WKH� XVDJH� RI� :KLWH�%R[

9HULILFDWLRQ� WR� WKH� UHOHDVHG� SURGXFW�� � :H� FDOO� WKLV

WHFKQLTXH� UXQ�WLPH� YHULILFDWLRQ� ZLWK� DVVHUWLRQV�� � :H

SUHVHQW� WKH� UHVXOWV� RI� FUHDWLQJ� D� OLEUDU\� IRU� UXQ�WLPH

YHULILFDWLRQ��DQG�VKRZ�WKDW�WKH�RYHUKHDG�RI�WKLV�OLEUDU\�LV
UHODWLYHO\�VPDOO�IRU�DQ�RYHUDOO�)3*$�FKLS�

���,QWURGXFWLRQ

In the past few years, with the improvement of
synthesis techniques, RTL-based design from hardware
description languages has settled as the designer’s choice
for design entry and methodology.

RTL-based designs have enabled more aggressive
design validation techniques based on :KLWH�%R[

9HULILFDWLRQ� as opposed to %ODFN�%R[� 9HULILFDWLRQ.
%ODFN�%R[� 9HULILFDWLRQ refers to the approach of
providing stimulus to the input pins of a design and
checking the results in its output pins. This approach
offers very poor observability and controllability since a
failure inside the design has to propagate to the output
pins to be observable. Further, the failure may be
noticed several hundreds of cycles after it actually
happened, making it difficult to reproduce the failure.

:KLWH�%R[� verification is a technique to improve
observability of a design by embedding assertion
monitor, which we call assertions in this paper. Using
:KLWH� %R[� 9HULILFDWLRQ, a designer can locate a failure

internal to the design because assertions can trigger
immediately after an error occurs.

Assertions are inserted into a design based on the
knowledge about legal and illegal behavior of internal
design structures [1][2]. Usually, the assertions are
inferred by a designer according to interface rules or
unwanted corner cases of the design.

Assertions can be built from hardware description
languages[3], from some pragmas of a specific tool such
as [4], or from a testbench written using a testbench
language, such as OpenVera [5]. :KLWH�ER[�YHULILFDWLRQ

has become a popular design validation technique,
improving the confidence level in a design because
assertion monitors, acting like probes inserted into a
chip, solve the observability problem of testing chip
designs [6][7].

To the best of our knowledge,� :KLWH�%R[

9HULILFDWLRQ has only been applied during the simulation,
formal analysis and emulation[8][9][10][11] phases of a
design. Its use has been limited to the validation phase
because of its initial goals, which were to capture the
design bugs as the design progresses. However, because
of the complexity of current designs, exhaustive test or
verification can not be accomplished. As a result, using
:KLWH�%R[9HULILFDWLRQ does not guarantee a bug-free
design.

In the context of chip-level designs implemented in
field-programmable gate arrays (FPGAs), assertion
monitors enable the monitoring of reconfigurable designs
at run-time after deployment of the design. If a bug is
found in the design, an assertion engine stores the error
information and later notifies the designer. Because the
error information is directly linked to an RTL design, the
designer can more easily locate the problem, and is then
able to provide a new version in a very short time.

In this paper, we propose an assertion engine
architecture to be used in reconfigurable designs by
extending the use of the :KLWH�%R[� 9HULILFDWLRQ

technique beyond the simulation/emulation phases of a
design. This technique is based on the %RXQGDU\�VFDQ
[12] concept, along with synthesizable assertions. We
suggest that the overhead caused by these synthesizable
assertions is minimal and all design assertions can be
implemented in the design. Therefore, without
compromising power, area and package costs one can
debug a taped-out design in run-time during its normal
operation.

This paper is outlined as follows. We describe the
use of assertion libraries as an engine in Section 2. We
discuss work related to ours in Section 3. In Section 4,
we present an implementation of assertions for run-time
debugging. In Section 5, we present the results. Finally,
in Section 6 we conclude with our remarks and present
future work.

���:KLWH�%R[�9HULILFDWLRQ�(QJLQH

White-box verification is based on the notion of
adding monitors to a design described by a hardware
description language. White-box verification adds
greater flexibility to hardware design validation, because
it allows designers to observe unwanted conditions
specified by the assertions. During simulation, as soon as
an assertion fails, the simulation stops. In this paper, we
are interested in assertions that are actually used in the
design process, and more specifically assertions that can
be synthesized. As a result, we use the assertions from
the Open Verification Library (OVL)[3].

Table 1 lists the assertions defined from the OVL.
Assertions can be classified as either deterministic or
non-deterministic. Deterministic assertions will trigger
after a fixed number of cycles if a design failure is
detected. On the other hand, non-deterministic assertions
will be tested only after an initial (or triggering) event
occurs, and as a result, may never be tested (if the
triggering event never occurs).

���5HODWHG�:RUN

The existing work on assertions has focused mainly
on white-box verification for simulation, formal
verification or semi-formal verification
[4][13][14][15][16][17].

To the best of our knowledge, the only published
work related to using synthesizable assertions as a tool to
support debugging a design beyond the simulation phase
is presented as $VVHUWLRQ�3URFHVVRU in [8].

The $VVHUWLRQ� 3URFHVVRU has been leveraged from
Axis ReConfigurable Computing (RCC) technology. By
definition, the RCC runs all assertions at the hardware
speed. Whenever an assertion fires, the RCC generates
an interrupt to a software component, which then

processes the assertions using behavioral code such as
PLI calls.

Although this approach is powerful, it is focused on
bringing the assertion-based verification to the emulation
phase of a design.

'HWHUPLQLVWLF�$VVHUWLRQV 1RQ�'HWHUPLQLVWLF�$VVHUWLRQV

Assert_always Assert_change
Assert_always_on_edge Assert_cycle_sequence
assert_decrement Assert_frame
assert_delta Assert_handshake
assert_even_parity Assert_next
assert_implication Assert_range
assert_increment Assert_time
assert_never Assert_unchanged
assert_no_overflow Assert_width
assert_no_underflow Assert_win_change
assert_odd_parity Assert_win_unchange
Assert_one_cold Assert_window
assert_one_hot
assert_proposition
Assert_quiescent_state
Assert_transition
Assert_zero_one_hot

Table 1. OVL assertions by category

���,PSOHPHQWDWLRQ�RI�DVVHUWLRQ�IRU�UXQ�WLPH

GHEXJJLQJ

The basic idea of an assertion engine targeted at run-
time debugging of a live design is based on the IEEE-
1149 standard [12], which defines test logic that can be
included in an integrated circuit for testing.

Figure 1. a) Typical OVL assertion; b) OVL
assertion modified for scan-chain architecture

DVVHUWBPRGXOH$

UHVHWBQ

FON
WHVWBH[S

U

DVVHUWBPRGXOH$

UHVHWBQ

FON

WHVWBH[S

UHVFHQBQ
HVFON

HVFL

HL

HR

(a)

(b)

HVFR

In Figure 1.a, we present a typical assertion module
from the OVL. In order to use it in a VFDQ�FKDLQ
architecture we need to define extra pins, three inputs
and two outputs, as shown in Figure 1.b. Table 2.
contains descriptions of each signal.

6LJQDO 'HVFULSWLRQ ,�2

reset_n Reset active low Input
clk System clock Input

test_expr Any HDL test
expression

Input

escen Error Scan Enable Input
esclk Error clock Input

esci Error Scan Input Input
esco Error Scan Output Output
eo Error Output Output
ei Error Input Input

Table 2. Signal descriptions for Figure 1.b

The run-time version of the assertion library is
extended with signals HR��HVFR��HL��HVFL��HVFON�and HVFHQ.
Signal HR stands for the error output, which is the
conjunction of all possible errors, and it signals that an
internal error triggered by a failed assertion has occurred
inside the chip. Signal eVFHQ disables the test expression
evaluation in the assertion, enabling the scan-chain to be
exercised. Signals HL�� HVFL�� HVFR� and HVFON are error in,
normal scan input, output, and clock signals.

A chip’s interface will be enlarged with signals HR�
HVFR��HVFHQ�and HVFON� Figure 3 presents a typical timing
diagram showing how to debug a chip after an assertion
fails in our assertion engine. After the chip lowers the
error output signal HR, a monitor starts investigating
which assertion has triggered HR by first enabling the
error scan chain (by asserting HVFHQ). At this time, the
first assertion result appears in the error scan output
(HVFR). Then, at subsequent cycles, by pulsing HVFON, a
new assertion result appears at HVFR until all assertions
have been scanned. For a design with Q�assertions, after Q
cycles, all assertion violations will appear as zeros in the
output of HVFR.

Figure 3. Behavior of the eo, escen, esco and
esclk pins

In the next figure (Figure 4), we present how the
design hierarchy can be chained in the design to be used
by an assertion engine.

In this figure, each dark circle represents an
assertion instantiation, and each clear circle represents a
module. As one can see, each HVFL input of one assertion
is linked to the HVFR output from the previous assertion.
It is important to note that for proper debugging
functionality, the designer must know the chain order of
the assertions.

Figure 4. Design hierarchy with the addition of
assertion blocks

By adding these assertion blocks to the original
design, it is possible to detect an error in real time, even
after testing stages.

It is important to note that deterministic assertions
behave differently than non-deterministic ones for
debugging purposes. Because timing information is
precise in deterministic assertions, they trigger at the
exact moment when a bug is observed in the design.
Non-deterministic assertions, on the other hand, do not
trigger at the exact time when a problem occurs because
the assertion failure can occur several cycles after a
triggering event has enabled the assertion.

���5HVXOWV

We implemented a representative number of
assertions to obtain a run-time debug version of OVL.
The synthesis was made using FPGA Express Tool for a
Xilinx XCV 300E FPGA. Table 3 shows the area used
by assertion modules.

The area used by assertions varies from 3 LUTs to
149 LUTs depending on the type of the assertion and
how many bits are being asserted. The FPGA used has a
total of 6,912 LUTs, so 3 and 149 LUTs are 0.04% and
0.46%.

1 2 3 4 5 n...

HR

HVFHQBQ

HVFR

HVFON

$VVHUWLRQV /87V))V

0LQ 0D[0LQ 0D[

assert_always 3 3 1 1
Assert_never 3 3 1 1
assert_add_parity 3 13 1 1
assert_range 3 15 1 1
assert_decrement 12 76 5 33
assert_increment 12 76 5 33
Assert_proposition 3 3 2 2
Assert_transition 5 53 2 2
assert_no_transition 5 53 2 2
assert_delta 4 131 3 33
assert_window 5 5 2 2
assert_underflow 4 15 2 2
assert_overflow 4 15 2 2
assert_one_hot 3 107 1 1
assert_win_change 8 54 4 35
assert_win_unchanged 8 70 4 35
assert_time 79 79 34 34
assert_change 87 133 36 67
assert_unchanged 87 149 36 67

Table 3. Area used by assertions

���&RQFOXVLRQV

:KLWH�%R[� 9HULILFDWLRQ has been used as a better
choice than %ODFN�%R[� 9HULILFDWLRQ� for validating
designs. However, the :KLWH�%R[�9HULILFDWLRQ has only
been used for the simulation and emulation phases of a
design.

In this paper, we described a technique to extend the
:KLWH�%R[9HULILFDWLRQ to the final product into what we
call assertion engine for :KLWH�%R[� 9HULILFDWLRQ. We
presented the results of creating a library of assertions for
run-time verification. This library adds minimal
overhead to any design. In the future, we will develop a
tool that adds run-time verification capability to an
existing design, and we intend to apply this design
technique to several designs. �

���$FNQRZOHGJPHQWV

This paper is partially supported by CNPq.

���5HIHUHQFHV

[1] Bergeron, J., “Writing Testbenches Functional Verification
of HDL Models”, Kluwer Academic Publishers, 2000.

[2] 0-In Design Automation, Inc. “Assertion-Based
Verification for Complex Designs”, The Verification Monitor,
January 2002.

[3] www.verificationlib.org

[4] 0-In Design Automation, Inc., "Black & White Assertion-
Based Verification Flow", The Verification Monitor, May
2002.

[5] Synopsys, Inc., "Assertion-Based Verification", May 2002.

[6]Gupta, A. “Assertion-Based Verification Turns the Corner”,
IEEE Design & Test of Computers, vol. 19, no. 4, p. 131-132,
2002,.

[7] Kazmierczak, M. “White-Box Verification Techniques in a
Networking ASIC Design”, Technical Report, Departament of
Information Technology, Lund Institute of Technology, 2001.

[8] Axis Systems, “Assertion Processor”, August 2002.

[9] McMillan, K. L., “Symbolic Model Checking”, Kluwer
Academic Publishers, 1993.

[10] Shimizu, K., Dill, D., Hu, A., “Monitor-Based Formal
Specification of PCI”, Proc. Formal Methods in Computer
Aided Design, pp 335-353, 2000.

[11] Switzer, S., Landoll, D., Anderson, T., “Functional
Verification with Embedded Checkers”, 9th Annual
International HDL Conference Proceedings, March 2000.

[12] IEEE Standard 1149.1-2001, ISBN 0-7381-2944-5.

[13] H. Foster, "Improving Verification through Property
Specification", D&R Industry Articles.

[14] L. Bening, H. Foster, Principles of Verifiable RTL Design,
Kluwer Academic Publishers, 2001.

[15] Foster, H. and Coelho, C., “Assertions Targeting a Diverse
Set of Tools” International HDL Conference, 2001.

[16] Kantrowitz, M. and Noack, L. M., “I am Done Simulating:
Now What? Verification Coverage Analysis and Correctness of
the DECchip 21164 Alpha microprocessor,” 33rd. Design
Automation Conference, 1996.

[17] Foster, H. et al, “Assertion-Based Design” , Kluwer
Academic Publishers, to be released on 2003.

