
REFACTORING DIGITAL HARDWARE DESIGNS
WITH ASSERTION LIBRARIES

 Flavio M. De Paula1, Claudionor N. Coelho Jr.2, Harry Foster3, Jose A. Nacif2

 Joseph Tompkins1, Antonio O. Fernandes2, Diogenes C. da Silva Jr. 4

1Mindspeed Technologies Inc, USA, 2CS Department. UFMG, Brazil,
3Jasper Design Automation, USA, 4EE Department UFMG, Brazil

Abstract

Refactoring is the concept of restructuring software to
increase its readability and maintainability without changing
the observable behavior. To the best of our knowledge, the
concept of refactoring has only been applied to software
development. In this paper, we describe a methodology to
extend this concept into the Digital Hardware Design
process using the Open Verification Library. We present a
case of a network protocol bus functional model in which
we want to increase the design readability so that
maintenance and bug fixes are less costly.

Introduction

Meeting a time-to-market requirement has become one

of the most important goals in the telecommunications
industry. In order to achieve that requirement, a company
must maximize the reuse of old designs.

In practice, reuse translates into maintaining, extending,
and sometimes fixing legacy code. Based on the design life
cycle and employee turnover, we can say that the same
designer rarely reuses a design.

Consider that each new design, on average, enters the
market in two years[3]. Also, consider that during the peak
of the Internet bubble, an employee stayed at the same
company for an average of eighteen months[2]. Lay-offs
also affect employee turnover in the hi-tech industry[22],
[23],[24]. Therefore, an employee is unlikely to reuse a
previous design in a next-generation product in the same
company.

The documentation of a specific design is usually
written in a high-level descriptive language, such as pseudo-
algorithms and finite-state machines. However, because it is
not part of the design itself, this documentation loses its
accuracy.

Employee turnover, together with the lack of accurate
documentation on a specific design implementation,
imposes tremendous stress on the design schedule,
challenging the time-to-market requirement.

In this paper, we present a methodology to assist in the
reuse of existing designs, providing a mechanism to

document the design and preserve its consistency as the
design ages. This methodology is based on the Refactoring
concept and use of Assertion Libraries.

Refactoring is defined in [1] as a methodology of
cleaning up code while minimizing the chances of adding
bugs. It has been widely used in the software development
process, especially in Object-Oriented programming (OOP).
To the best of our knowledge, the concept of Refactoring
has never been applied to Digital Hardware Designs.

Extensive literature on OOP exists [4], [5], [6], [7] and
[8]. In addition, [20] presents an OOP view of digital
hardware designs. For these reasons, we do not present any
detailed information regarding OOP in this paper.

Here, we first present related works in the next section.
We then present Refactoring concepts focused on Digital
Hardware Designs followed by the case study of a network
protocol bus functional model in which we increase its
readability, scalability as well as its documentation, but
minimize the chances of bug insertions. Finally, in the last
section we conclude with our remarks and future work.

Related Work

Refactoring has been widely used to extend the

lifecycle of systems by providing ways to refine existing
designs. These systems may only have software
components as in [11] and [12], or both software and
hardware components as in [13]. As another example, [14]
demonstrates how to refactor distributed systems at the
architectural level. However, to the best of our knowledge,
no work has been published on Refactoring Digital
Hardware Designs.

In [14], the authors demonstrate that refactoring is not
confined to programming languages. They extend
refactoring to distributed systems at the architectural level.
We are going to describe this work in more detail since the
assumptions made in their work are conceptually similar to
the work presented in this paper.

The authors in [14] model a distributed system as a
network of components that communicate asynchronously
over buffered unidirectional channels. They describe the
behavior of a system component by the relation of its input
and output messages. The first assumption is that each

component is causally correct. In other words, a component
output may not depend on future component input.

Component1 Component3

Component2

Channel1

Channel2

Channel3

Channel7

Channel5

Channel4

Channel6

Figure 1. Message-passing System

Thus, a distributed system consists of I/O channels, a set

of components, and a connection structure. In Figure 1.,
Channel1 through Channel7 represent the I/O channels.
And, Component1, Component2 and Component3 are the set
of components.

The second assumption is a restriction on the connection
structure of the distributed system. A connection structure
should not allow different components to have common
outputs; each component input is either a system input or a
component output; and a system output is a component
output. In Figure 1., we show all possible combinations of
connections within the system.

Under the above assumptions, the behavior of a system
is completely described by the intersection of the
components’ I/O relations.

By using existential quantification, one can hide the
channels within two or more system components. As a
result, the system can be composed hierarchically. For
example, if we hide Channel4, Channel5, and Channel6, we
get the hierarchical system shown in Figure 2., which can
then be regarded as a component.

Refactoring hierarchical systems, which can be defined
by the relations of its input and outputs, can be done by
refining the subset of the system’s I/O relations behavior.
The rules for refining such a system are formally presented in
[16].

Component1 Component3

Component2

Channel5

Channel4

Channel6

Channel3

Channel
7

Channel1

Channel2

Figure 2. Hierarchical Message-passing System

In [17], the authors introduce a set of refactoring rules

that can be applied directly to the graphical representation of
the system. These rules are:

· introduce and remove system components;
· introduce and remove component input channels;
· introduce and remove component output channels;
· replace a component by a subsystem and vice-versa and
· refine component behavior.

In the next section, we formalize the above concepts as
well as the refactoring definitions used in this paper.

Refactoring Concepts Applied To
Digital Hardware Designs

This paper focuses on applying Refactoring strategies

following its definition presented in [1]. As stated in [1],
“Refactoring explicitly preserves the observable behavior.
This demonstrates that although refactoring primarily deals
with structure, it cannot disregard behavior.”

Observable behavior can take many different shapes and
forms depending on to which domain it is applied.
Therefore, we need to define observable behavior for a
digital hardware design. In this paper, we define observable
behavior as follows:

Definition 1.:

Observable behavior of a design is described as a four tuple
M = (S0, I, O, B), where S0 is the design’s initial state, I is a
set of input sequences, O is as set of output sequences, B is a
canonical function I x O which uniquely expresses the
relationship between the design’s input and output histories.

We extend the definition of Behavioral Refinement

presented in [16] to prove that the use of a refactoring
strategy in a digital hardware design model does not change
its observable behavior. When refactoring a model ∆ into a
unit δ, the relation between the I/O’s of ∆ must be equivalent
of the I/O’s of δ. More formally:

Definition 2.:

A design specification D1 is a behavioral refinement of a
design specification D2, if both have the same syntactic
interface, and for each input history, any output history of D2
is also an output history of D1; where syntactic interface in a
digital hardware design model means the port list of the
model.

To use the above definitions, we need to capture the

design intent of the system to guarantee that any model
refactoring still complies with the original design. We then
introduce the definition of lifeguard.

Definition 3.:

Lifeguard is a set of assertions, which suffice on the
characterization of the properties of the interface of a digital
hardware design model.

Although assertions are commonly used in the
simulation and verification phases [19], [20], [21], of a
system’s design, they are valuable in capturing the design
intent. In this paper, the use of assertions focuses on this
capability.

Since refactoring is based on the re-writing of a model,
one may still ask why not simply apply equivalence checking
[27], [28], [29], [30] between the original and the refactored
models. The reason are two fold. First, by using a set of
assertions, that is the lifeguards, we desire to not only
characterize the original design but also document it. The use
of assertions to document a design is very powerful since it
resides in the design and being always validated during a
simulation. Second, once we deploy the refactored model
into a new environment, one can not guarantee that the
refactored model will respond properly to the new
environment. By deploying the refactored model along with
the lifeguards, the transition to a new environment will be
easier since any violation to the design specification captured
by the lifeguards will trigger a simulation error.

Case Study: A Network Protocol Bus
Functional Model

In this section, we present a network protocol bus

functional model (BFM) used at Mindspeed Technologies
[18] in which we apply refactoring techniques. We chose
this BFM because it is the perfect candidate for refactoring.
The design is more than five years old and yet, it is still used
for testing new products. This BFM was designed to be
compatible with the following telecommunication industry
standard protocols:

· Utopia Level 1 and Level 2;
· Utopia Level 1 and Level 2 extensions;
· Packet-extended mode of operation.

When the BFM was developed, there was not yet

agreement on a Utopia Level 3, which led us to extend the
Utopia levels 1 and 2 to support higher clock rates than what
the standard required. We refer to them as Utopia Level 1
registered and Utopia Level 2 registered.

Since there was no agreement on a packet standard at
that time, we implemented a packet-extended mode version

of the Utopia protocols. This mode of operation, although
very similar to the POS-PHY Level 2 [10] standard, it is not
fully compliant with it.

The design of the BFM intended to capture all
foreseeable changes as well as configurations in one model.
Unfortunately, this flexibility has a cost of making the design
much more complex and expensive to maintain.

Maintaining such a design may also become a daunting
task when we consider the lack of up-to-date documentation
and that only one engineer out of the original contributors to
the design is still with the company. Scaling such design to
support other protocols is also very expensive since a
designer would need to go through thousands of lines of
code. The concentrated knowledge of the design, its
complexity, the desire of scaling it, and the lack of persistent
documentation are the compelling reasons why we should
refactor the design.

We chose [11] as our refactoring process because its
organized steps were very adequate for refactoring our BFM
design. Following is the step-by-step process we used:

· Analysis of the structure, flow-control and data-control

followed by a documentation process on this analysis;
· Selection of the targets to be refactored;
· Insertion of the lifeguards as well as choosing an existent

regression suite which fits the target selected to be
refactored;

· Refactoring step;
· Testing step

Analysis and Documentation Step

In this step, the goal is to make sure that the overall
understanding of the code is sufficient enough to create an
architectural view of the code. From this architectural view,
we can document each block, the functions, and the
parameters.

In our BFM, we have four Verilog modules as described
in the next figure. In Figure 3., the names in bold and italic
represents the instance names. The names in regular type are
the Verilog file and module names. As one can see, we have
the same module, utopia32_bfm, representing a utx and a urx.
Therefore, each phyN, where N is a number from 0 to 31,
contains transmit and receive interfaces. The adrs_poll
instance is responsible for polling the bus when the BFM is
configured to master the bus.

uni_phy.v

utopia32_bfm.v

utopia32_bfm.v
utx

phy0

phy31

urx

adr_poll.v

adr_poll

phy.v

c_qphy0
 Figure 3. BFM Block Diagram

The main module of this BFM is the utopia32_bfm.v file.

We start by identifying configurations, common code, and
non-common code that pertains to a specific configuration.
The utopia32_bfm has the following configurations
implemented in it:

· Master/Slave mode;
· Cell/Packet mode;
· Utopia Level 1 and 2, and extensions;
· Source of the traffic, and others.

The BFM configuration is done at the port level by

setting specific values. The utopia32_bfm then chooses
which code to execute based on Verilog case statements.
Figure 4 shows an excerpt of the implementation.

In other parts of the implementation, such as traffic
generators and traffic checkers the code behaves the same
way for all of the configurations.

Figure 4. Excerpt of the BFM implementation

Target Selection Step

In this step, we first apply OOP concepts to our design
environment so that target selections become easier to
extract. We then use the information in the previous section,
along with the refactoring concepts presented in [1], to select
potential targets to be refactored.

An object in OOP is anything that can be defined by its
properties [4], [5], [6]. In this paper, we use [4] as a
reference, “an object represents an individual, identifiable
item, unit or entity either real or abstract, with a well-defined
role in the problem domain”.
Consider a test bench as our problem domain. Also, consider

that a test bench comprises chips, third-party components,
bus functional models, and Verilog support tasks and
functions (test infrastructure). From an OOP point-of-view,
each component in a test bench can be regarded as an object.
In Figure 5., we represent a hierarchy structure of a test
bench, where Obj_1 through Obj_5 are the objects in this
hierarchy.

Product Family A

Chip Z Third-Party
Components BFMs

Test
Infrastructure

Obj_1

Obj_5Obj_4

Obj_2

Obj_3

Figure 5. Extending OOP to Test Bench Components

Seeing the BFM as an object leads us to regard each

supported protocol as a method or an attribute of the object
BFM. However, the implementation does not clearly provide
that notion. Rather, the implementation can be interpreted as
a single method capable of supporting all protocols and
configurations. This problem in refactoring terminology is
called long method. Clearly, this is one target that we want
to refactor.

One possible side-effect of having long methods is the
naming convention chosen in an implementation. For
example, in Figure 4, TX and RX mean different things if the
BFM is configured as master or slave. This is another target
that we want to refactor. Also, each Verilog case statement,
as exemplified in Figure 4, could require more than 50 lines
of code. This problem in refactoring terminology is called
switch statements; and this is another target we want to
refactor.

Having identified the targets, we want to make sure that
all transformations applied to the model do not change its
observable behavior.

Life Guard Step

In this step, we need to add a mechanism that guarantees
any transformation internal to the design does not affect the

.case (MODE)
CELL :
 case (LAYER)
 PHY: case (DIRECT)
 TX: case (LEVEL)
 LEVEL1: begin ... end
 LEVEL2 :begin ... end
 LEVEL2R:begin ... end
 RX:case (LEVEL)
 LEVEL1: begin ... end
 LEVEL2: begin ... end
 LEVEL2R:begin ... end
 ATM: case (DIRECT)
 TX: case (LEVEL)
 RX:case (LEVEL)

PACKET:

observable behavior, which is everything outside the c_qphy0
module in Figure 3.

 In order to lifeguard the BFM’s internal
transformations, we use the Open Verification Library,
which is an open-source library of assertions. We use the
assertions at the interface level and for some internal flow-
control signals. The assertions need to cover each specific
protocol. Therefore, each protocol has its own lifeguard or a
set of assertions.

 The Utopia Protocol specifications can be found in [9].
The registered version of those protocols should behave the
same way as it is specified in the protocols. The only
difference is that the sampling of the signals occur at the
clock edges. Table 1 presents the number of assertions added
per protocol.

Table 1. Number of Assertions per Protocol

of Assertions Protocol

48 (54) Utopia Level 1 (Utopia L. 1 registered)

49 (55) Utopia Level 2 (Utopia L. 2 registered)

The assertions increase the confidence that we are really

life guarding the BFM. However, we cannot guarantee we
covered all possible scenarios with this set of assertions. This
is a known problem when simulating a design [26].

Refactoring Step
In this step, we choose which refactoring concept to use

and apply it to the original design iteratively until we get the
expected result. The refactoring concept that fits the
problems described in the Target Selection Step section is the
Extract Method.

The Extract Method is a technique used to shorten a
long, confused method. To solve the problems of having
misleading naming conventions and the long method, we
start by extracting each protocol along with the code that is
responsible for the BFM behavior as master modes and as
slave modes. We then take into account the implementation
of the transmit and receive sides for each of the above modes.

By iteratively applying the above methodology to each
section of the BFM code, we extract twelve Verilog modules.
The reason for twelve modules stems from having three
protocols, –actually, the Utopia Level 1 registered is the
Utopia Level 2 registered configured as a single phy– two
directions and two mastership modes. These modules are
then instantiated in the utopia32_bfm.v file. Although it
seems we are replicating code, those twelve modules have
distinct protocol implementations. As a result, one needs only
to look at a specific module to debug a problem or
understand a behavior. We solve the naming convention

problem by assigning a more meaningful name to each of
these modules. This methodology, although simple, generates
very clear code, which is easier to debug and to interact.

Testing Step

To validate the refactored BFM we chose an existing
regression suite. This regression suite consists of tests for
Utopia Level 1 (UL1), Utopia Level 2 (UL2) and extensions
(ULr), where extensions are different bus widths and
different bus clocks. The following table summarizes the
results of the regression suite against the refactored BFM.

Table 2. Testing Step Results Summary

I # of Errors Protocol Description

a 1 All Bad refactorization

b 6 UL1, UL2 Protocol violation (En_)

c 6 ULr Protocol violation (En_)

d 2 UL1 Protocol violation (Addr)

e 8 All Utopia unrelated signals

In Table 2., index b refers to the RxEn_ and TxEn_

ATM Layer signals being de-asserted before the end of the
transmission while the ATM Layer is still reading data from
the bus. Index c refers to the same errors as in b. However,
these might be regarded as feature of these extended protocol
versions. Index d refers to the PHY Layer behavior being
affected by the address lines in the bus. Index e refers to
existing signals on the BFM to support a proprietary packet
protocol.

Since this design is more than five years old, we
anticipated that some implementation details were lost over
time. We believe the majority of the errors reported in Table
2 are the result of loosing that knowledge. These results
show the value of this technique, which guarantees the
portability of the design by capturing the intended behavior
of the design’s interface via the use of lifeguards. On the
other hand, if we have used equivalence checking to validate
the refactored design we would not catch the protocol
violations cited in Table 2. Moreover, we would not be able
to guarantee a portable design. The reason stems from the
fact the equivalence checking would be only validating the
design itself.

Conclusions

Refactoring is a transformational methodology of

existing code. To the best of our knowledge, this

methodology has only been applied to software development.
We presented a methodology of using assertion libraries as a
mechanism to ensure that the observable behavior is not
affected. We presented a case-study of a refactored bus
functional model.

 By refactoring that model, we provided a more readable
and maintainable model. We also improved its scalability. In
addition, we uncovered twenty-two bugs in the original
design. We also shown the value of this technique compared
to other transformational coding methodologies such as
equivalence checking. However, we found that this technique
has a limitation. We cannot guarantee total coverage when
adding the lifeguards. To solve this limitation, in future
work, we will add functional coverage [25] using the
lifeguards as a starting point to provide means of measuring
how much more lifeguarding is needed. Also, we will pursue
the refactoring of the other protocols of this bus functional
model.

References

[1] Fowler, M. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Object Technology Series,
Printing July 2002.

[2] From the world-wide-web:
http://news.com/2100-1017-241914.html?legacy=cnet

[3] From the world-wide-web:
http://zdnet.com/2100-1103-942688.html

[4] Grady Booch. Object-Oriented Analysis And Design
With Applications, 2nd Ed. Benjamin Cummings. ISBN 0-
8053-5340-2.

[5] Cox, Brad J. Object-Oriented Programming, An
Evolutionary Approach. Addison Wesley.

[6] James Martin and James J. Odell. Object-Oriented
Analysis and Design, Prentice-Hall, Englewood Cliffs, NJ.

[7] Stroustrup, B. The C++ Programming Language (3rd
edition). ISBN 0-201-88954-4

[8] Rumbaugh James, et al. Object-Oriented Modeling and
Design. Prentice Hall

[9] From the world-wide-web: http://www.atmforum.com/

[10] From the world-wide-web: http://www.oiforum.com.

[11] Lee, Jong-Ho et al. Object-Oriented Refactoring Process
Design for The Software Reuse, ISIE 2001, Korea

[12] Mehta, A., Heineman, G. T., Evolving Legacy System
Features into Fine-Grained Components, ICSE 2002, USA

[13] Mancl, D. Refactoring for Software Migration. IEEE
Communications Magazine, October 2001

[14] Philipps, J., Rumpe, B. Roots of Refactoring, 10th
OOPSLA Workshop on Behavioral Semantics, 2001, USA

[15] Gamma, E., et al, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1994

[16] Broy. M., St∅len, K, Specification and Development of
Interactive Systems – Focus on Streams, Interfaces and
Refinement, Springer-Verlag New York, Inc. – 2001

[17] Philipps, J. Rumpe, B., Refinement of Pipe and Filter
Architectures, FM’99, LNCS 1708, pages 96-115, 1999

[18] From the world-wide-web: http://www.mindspeed.com

[19] H. Foster, "Improving Verification through Property
Specification", D&R Industry Articles

[20] L. Bening, H. Foster, Principles of Verifiable RTL
Design, Kluwer Academic Publishers, 2001

[21] Foster, H. and Coelho, C., “Assertions Targeting a
Diverse Set of Tools” International HDL Conference, 2000

[22] From the world-wide-web: http://
www.ecommercetimes.com/perl/story/20434.html

[23] From the world-wide-web: http://
www.ecommercetimes.com/perl/story/21226.html

[24] From the world-wide-web: http://
money.cnn.com/2003/07/02/news/economy/jobs_walkup/
index.htm

[25] Foster, H., Krolnik A., Lacey D., Assertion-Based
Design, Kluwer Academics Pub. 2003

[26] M. Kantrowitz and L. Noack. I’m done simulating; now
what? Verification coverage analysis and correct-ness
checking of the dec chip 21164 alpha microprocessor. In
Proceedings of Design Automation Conference, pages 325-
330,1996

[27] Pixley, C., Introduction to a Computational Theory and
Implementation of Sequential Hardware Equivalence. In
Proceedings of Computer-Aided Verification, pages 54-64,
1991

[28] Madre, J.C, Bilon, J.P, Proving Circuit Correctness
Using Formal Comparison between Expected and Extracted
Behavior, In Design Automation Conference, Pages 205-
210, 1988

[29] Matsunaga, Y., An Efficient Equivalence Checker for
Combinational Circuits. In Proceedings of Design
Automation, pages 629-634, 1996

[30] Zhou, Z., Burleson W., Equivalence Checking of Data
paths Based on Canonical Arithmetic Expressions. In
Proceedings of Design Automation Conference, pages 546-
551, 199

