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Abstract 
 

Refactoring is the concept of restructuring software to 
increase its readability and maintainability without changing 
the observable behavior. To the best of our knowledge, the 
concept of refactoring has only been applied to software 
development. In this paper, we describe a methodology to 
extend this concept into the Digital Hardware Design 
process using the Open Verification Library.  We present a 
case of a network protocol bus functional model in which 
we want to increase the design readability so that 
maintenance and bug fixes are less costly.   

 
 

Introduction 
 
Meeting a time-to-market requirement has become one 

of the most important goals in the telecommunications 
industry.  In order to achieve that requirement, a company 
must maximize the reuse of old designs.   

In practice, reuse translates into maintaining, extending, 
and sometimes fixing legacy code.  Based on the design life 
cycle and  employee turnover, we can say that the same 
designer rarely reuses a design.   

Consider that each new design, on average, enters the 
market in two years[3].  Also, consider that during the peak 
of the Internet bubble, an employee stayed at the same 
company for an average of eighteen months[2]. Lay-offs 
also affect employee turnover in the hi-tech industry[22], 
[23],[24]. Therefore, an employee is unlikely to reuse a 
previous design in a next-generation product in the same 
company.  

The documentation of a specific design is usually 
written in a high-level descriptive language, such as pseudo-
algorithms and finite-state machines. However, because it is 
not part of the design itself, this documentation loses its 
accuracy. 

Employee turnover, together with the lack of accurate 
documentation on a specific design implementation, 
imposes tremendous stress on the design schedule, 
challenging the time-to-market requirement. 

In this paper, we present a methodology to assist in the 
reuse of existing designs, providing a mechanism to 

document the design and preserve its consistency as the 
design ages. This methodology is based on the Refactoring 
concept and use of Assertion Libraries.  

Refactoring is defined in [1] as a methodology of 
cleaning up code while minimizing the chances of adding 
bugs. It has been widely used in the software development 
process, especially in Object-Oriented programming (OOP).  
To the best of our knowledge, the concept of Refactoring 
has never been applied to Digital Hardware Designs.   

Extensive literature on OOP exists [4], [5], [6], [7] and 
[8]. In addition, [20] presents an OOP view of digital 
hardware designs. For these reasons, we do not present any 
detailed information regarding OOP in this paper.   

Here, we first present related works in the next section. 
We then present Refactoring concepts focused on Digital 
Hardware Designs followed by the case study of a network 
protocol bus functional model in which we increase its 
readability, scalability as well as its documentation, but 
minimize the chances of bug insertions. Finally, in the last 
section we conclude with our remarks and future work.   

 
 

Related Work 
 
Refactoring has been widely used to extend the 

lifecycle of systems by providing ways to refine existing 
designs.  These systems may only have software 
components as in [11] and [12], or both software and 
hardware components as in [13].  As another example, [14] 
demonstrates how to refactor distributed systems at the 
architectural level.  However, to the best of our knowledge, 
no work has been published  on Refactoring Digital 
Hardware Designs. 

In [14], the authors demonstrate that refactoring is not 
confined to programming languages.  They extend 
refactoring to distributed systems at the architectural level.  
We are going to describe this work in more detail since the 
assumptions made in their work are conceptually similar to 
the work presented in this paper.  

The authors in [14] model a distributed system as a 
network of components that communicate asynchronously 
over buffered unidirectional channels.  They describe the 
behavior of  a system component  by the relation of its input 
and output messages.  The first assumption is that each 



component is causally correct.  In other words, a component 
output may not depend on future component input. 
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Figure 1. Message-passing System 

 
Thus, a distributed system consists of I/O channels, a set 

of components, and a connection structure.  In Figure 1., 
Channel1 through Channel7 represent the I/O channels.  
And, Component1, Component2 and Component3 are the set 
of components.   

The second assumption is a restriction on the connection 
structure of the distributed system.  A connection structure 
should not allow different components to have common 
outputs; each component input is either a system input or a 
component output; and a system output is a component 
output.   In Figure 1., we show all possible combinations of 
connections within the system. 

Under the above assumptions, the behavior of a system 
is completely described by the intersection of the 
components’ I/O relations.   

By using existential quantification, one can hide the 
channels within two or more system components.  As a 
result, the system can be composed hierarchically.  For 
example, if we hide Channel4, Channel5, and Channel6, we 
get the hierarchical system shown in Figure 2., which can 
then be regarded as a component. 

Refactoring hierarchical systems, which can be defined 
by the relations of its input and outputs, can be done by 
refining the subset of the system’s I/O relations behavior.  
The rules for refining such a system are formally presented in 
[16]. 
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Figure 2. Hierarchical Message-passing System 

 
In [17], the authors introduce a set of refactoring rules 

that can be applied directly to the graphical representation of 
the system. These rules are: 

· introduce and remove system components; 
· introduce and remove component input channels; 
· introduce and remove component output channels; 
· replace a component by a subsystem and vice-versa and 
· refine component behavior. 

In the next section, we formalize the above concepts as 
well as the refactoring definitions used in this paper. 

 
 

Refactoring Concepts Applied To  
Digital Hardware Designs 

 
This paper focuses on applying Refactoring strategies 

following its definition presented in [1].  As stated in [1], 
“Refactoring explicitly preserves the observable behavior.  
This demonstrates that although refactoring primarily deals 
with structure, it cannot disregard behavior.”  

Observable behavior can take many different shapes and 
forms depending on to which domain it is applied.  
Therefore, we need to define observable behavior for a 
digital hardware design.  In this paper, we define observable 
behavior as follows: 

 

Definition 1.:  

Observable behavior of a design is  described as a four tuple 
M = (S0, I, O, B), where S0 is the design’s initial state, I is a 
set of input sequences, O is as set of output sequences, B is a 
canonical function I x O which uniquely expresses the 
relationship between the design’s input and output histories. 

  
We extend the definition of Behavioral Refinement 

presented in [16] to prove that the use of a refactoring 
strategy in a digital hardware design model does not change 
its observable behavior.  When refactoring a model ∆ into a 
unit δ, the relation between the I/O’s of ∆ must be equivalent 
of the I/O’s of δ.  More formally: 

 

Definition 2.:  

A design specification D1 is a behavioral refinement of a 
design specification D2, if both have the same syntactic 
interface, and for each input history, any output history of D2 
is also an output history of D1; where syntactic interface in a 
digital hardware design model means the port list of the 
model. 

 
To use the above definitions, we need to capture the 

design intent of the system to guarantee that any model 
refactoring still complies with the original design.  We then 
introduce the definition of lifeguard.  



 

Definition 3.:  

Lifeguard is a set of assertions, which suffice on the 
characterization of the properties of the interface of a digital 
hardware design model. 
 

Although assertions are commonly used in the 
simulation and verification phases [19], [20], [21], of a 
system’s design, they are valuable in capturing the design 
intent.  In this paper, the use of assertions focuses on this 
capability. 

Since refactoring is based on the re-writing of a model, 
one may still ask why not simply apply equivalence checking 
[27], [28], [29], [30] between the original and the refactored 
models. The reason are two fold. First, by using a set of 
assertions, that is the lifeguards, we desire to not only 
characterize the original design but also document it. The use 
of assertions to document a design is very powerful since it 
resides in the design and being always validated during a 
simulation. Second, once we deploy the refactored model 
into a new environment, one can not guarantee that the 
refactored model will respond  properly to the new 
environment. By deploying the refactored model along with 
the lifeguards, the transition to a new environment will be 
easier since any violation to the design specification captured 
by the lifeguards will trigger a simulation error. 

 
 

Case Study:  A Network Protocol Bus 
Functional Model  

 
In this section, we present a network protocol bus 

functional model (BFM) used at Mindspeed Technologies 
[18] in which we apply refactoring techniques.  We chose 
this BFM because it is the perfect candidate for refactoring.  
The design is more than five years old and yet, it is still used 
for testing new products. This BFM was designed to be 
compatible with the following telecommunication industry 
standard protocols: 

 
· Utopia Level 1 and Level 2; 
· Utopia Level 1 and Level 2 extensions; 
· Packet-extended mode of operation. 

 
When the BFM was developed, there was not yet 

agreement on a Utopia Level 3, which led us to extend the 
Utopia levels 1 and 2 to support higher clock rates than what 
the standard required. We refer to them as Utopia Level 1 
registered and Utopia Level 2 registered.  

Since there was no agreement  on a packet standard at 
that time, we implemented a packet-extended mode version 

of the Utopia protocols.  This mode of operation, although 
very similar to the POS-PHY Level 2 [10] standard, it is not 
fully compliant with it.  

The design of the BFM intended to capture all 
foreseeable changes as well as configurations in one model.  
Unfortunately, this flexibility has a cost of making the design 
much more complex and expensive to maintain.    

Maintaining such a design may also become a daunting 
task when we  consider the lack of up-to-date documentation 
and that only one engineer out of the original contributors to 
the design is still with the company. Scaling such design to 
support other protocols is also very expensive since a 
designer would need to go through thousands of lines of 
code.  The concentrated knowledge of the design, its 
complexity, the desire of scaling it, and the lack of persistent 
documentation are the compelling reasons why we should 
refactor the design.  

We chose [11] as our refactoring process because its 
organized steps were very adequate for refactoring our BFM 
design. Following is the step-by-step process we used: 

 
· Analysis of the structure, flow-control and data-control 

followed by a documentation process on this analysis;  
· Selection of the targets to be refactored; 
· Insertion of the lifeguards as well as choosing an existent 

regression suite which fits the target selected to be 
refactored; 

· Refactoring step; 
· Testing step 

 

Analysis and Documentation Step 

In this step, the goal is to make sure that the overall 
understanding of the code is sufficient enough to create an 
architectural view of the code.  From this architectural view, 
we can document each block, the functions, and the 
parameters. 

In our BFM, we have four Verilog modules as described 
in the next figure.  In Figure 3., the names in bold and italic 
represents the instance names.  The names in regular type are 
the Verilog file and module names.   As one can see, we have 
the same module, utopia32_bfm, representing a utx and a urx.  
Therefore, each phyN, where N is a number from 0 to 31, 
contains transmit and receive interfaces.  The adrs_poll 
instance is responsible for polling the bus when the BFM is 
configured to master the bus. 
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 Figure 3. BFM Block Diagram 

 
The main module of this BFM is the utopia32_bfm.v file.   

We start by identifying configurations, common code, and 
non-common code that pertains to a specific configuration. 
The utopia32_bfm has the following configurations 
implemented in it: 

 
· Master/Slave mode; 
· Cell/Packet mode; 
· Utopia Level 1 and 2, and extensions; 
·      Source of the traffic, and others. 

 
The BFM configuration is done at the port level by 

setting specific values.  The utopia32_bfm then chooses 
which code to execute based on Verilog case statements.  
Figure 4 shows an excerpt of the implementation.  

In other parts of the implementation, such as traffic 
generators and traffic checkers the code behaves the same 
way for all of the configurations. 

 

 
 
 
 
 

 

 

 

 

 

Figure 4. Excerpt of the BFM implementation 

 

Target Selection Step 

In this step, we first apply OOP concepts to our design 
environment so that target selections become easier to 
extract.  We then use the information in the previous section, 
along with the refactoring concepts presented in [1], to select 
potential targets to be refactored.  

An object in OOP is anything that can be defined by its 
properties [4], [5], [6].  In this paper, we use [4] as a 
reference, “an object represents an individual, identifiable 
item, unit or entity either real or abstract, with a well-defined 
role in the problem domain”.   
Consider a test bench as our problem domain. Also, consider 

that a test bench comprises chips, third-party components, 
bus functional models, and Verilog support tasks and 
functions (test infrastructure).  From an OOP point-of-view, 
each component in a test bench can be regarded as an object.  
In Figure 5., we represent a hierarchy structure of a test 
bench, where Obj_1 through Obj_5 are the objects in this 
hierarchy. 
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Figure 5. Extending OOP to Test Bench Components 

  
Seeing the BFM as an object leads us to regard each 

supported protocol as a method or an attribute of the object 
BFM. However, the implementation  does not clearly provide 
that notion.  Rather, the implementation can be interpreted as 
a single method capable of supporting all protocols and 
configurations.  This problem in refactoring terminology is 
called long method.  Clearly, this is one target that we want 
to refactor.   

One possible side-effect of having long methods is the 
naming convention chosen in an implementation.  For 
example, in Figure 4, TX and RX mean different things if the 
BFM is configured as master or slave.  This is another target 
that we want to refactor.  Also, each Verilog case statement, 
as exemplified in Figure 4, could require more than 50 lines 
of code.  This problem in refactoring terminology is called 
switch statements; and this is another target we want to 
refactor.   

Having identified the targets,  we want to make sure that 
all transformations applied to the model do not change its 
observable behavior. 

Life Guard Step 

In this step, we need to add a mechanism that guarantees 
any transformation internal to the design does not affect the 

.case (MODE) 
CELL   : 
               case (LAYER) 
 PHY: case (DIRECT) 
          TX: case (LEVEL) 
                                    LEVEL1: begin ... end 
                                            LEVEL2 :begin ... end 
                     LEVEL2R:begin ... end  
         RX:case (LEVEL) 
                                    LEVEL1: begin ... end 
                                            LEVEL2: begin ... end 
                     LEVEL2R:begin ... end 
 ATM: case (DIRECT) 
          TX: case (LEVEL) 
                         RX:case (LEVEL) 

                                    
PACKET: ....    



observable behavior, which is everything outside the c_qphy0 
module in Figure 3. 

 In order to lifeguard the BFM’s internal 
transformations, we  use  the Open Verification Library, 
which is an open-source library of assertions.  We use the 
assertions at the interface level and for some internal flow-
control signals.  The assertions need to cover each specific 
protocol.  Therefore, each protocol has its own lifeguard or a 
set of assertions. 

 The Utopia Protocol specifications can be found in [9]. 
The registered version of those protocols should behave the 
same way as it is specified in the protocols.  The only 
difference is that the sampling of the signals occur at the 
clock edges. Table 1 presents the number of assertions added 
per protocol.   

 
Table 1. Number of Assertions per Protocol 

# of Assertions Protocol 

48 (54) Utopia Level 1 (Utopia L. 1 registered) 

49 (55) Utopia Level 2 (Utopia L. 2 registered) 
 
The assertions increase the confidence that we are really 

life guarding the BFM. However, we cannot guarantee we 
covered all possible scenarios with this set of assertions. This 
is a known problem when simulating a design [26]. 

 

Refactoring Step 
In this step, we choose which refactoring concept to use 

and apply it to the original design iteratively until we get the 
expected result.  The refactoring concept that fits the 
problems described in the Target Selection Step section is the 
Extract Method.   

The Extract Method is a technique used to shorten a 
long, confused method. To solve the problems of having 
misleading naming conventions and the long method, we 
start by extracting each protocol along with the code that is 
responsible for the BFM behavior as master modes and as 
slave modes. We then take into account the implementation 
of the transmit and receive sides for each of the above modes.   

By iteratively applying the above methodology to each 
section of the BFM code, we extract twelve Verilog modules. 
The reason for twelve modules stems from having three 
protocols, –actually, the Utopia Level 1 registered is the 
Utopia Level 2 registered configured as a single phy– two 
directions and two mastership modes. These modules are 
then instantiated in the utopia32_bfm.v file.  Although it 
seems we are replicating code, those twelve modules have 
distinct protocol implementations. As a result, one needs only 
to look at a specific module to debug a problem or 
understand a behavior. We solve the naming convention 

problem by assigning a more meaningful name to each of 
these modules. This methodology, although simple, generates 
very clear code, which is easier to debug and to interact.  

 

Testing Step 

To validate the refactored BFM we chose an existing 
regression suite. This regression suite consists of  tests for 
Utopia Level 1 (UL1), Utopia Level 2 (UL2) and extensions 
(ULr), where extensions are different bus widths and 
different bus clocks.  The following table summarizes the 
results of the regression suite against the refactored BFM. 

 
Table 2. Testing Step Results Summary 

I # of Errors Protocol Description 

a 1 All Bad refactorization 

b 6 UL1, UL2 Protocol violation  (En_) 

c 6 ULr Protocol violation  (En_) 

d 2 UL1 Protocol violation  (Addr) 

e 8 All Utopia unrelated signals 

 
In  Table 2., index b refers to the RxEn_ and TxEn_ 

ATM Layer signals being de-asserted before the end of the 
transmission while the ATM Layer is still reading data from 
the bus. Index c refers to the same errors as in b. However, 
these might be regarded as feature of these extended protocol 
versions. Index d refers to the PHY Layer behavior being 
affected by the address lines in the bus. Index e refers to 
existing signals on the BFM to support a proprietary packet 
protocol.   

Since this design is more than five years old, we 
anticipated that some implementation details were lost over 
time. We believe the majority of the errors reported in Table 
2 are the result of loosing that knowledge.  These results 
show the value of this technique, which guarantees the 
portability of the design by capturing the intended behavior 
of the design’s interface via the use of lifeguards. On the 
other hand, if we have used equivalence checking to validate 
the refactored  design we would not catch the protocol 
violations cited in Table 2. Moreover, we would not be able 
to guarantee a portable design. The reason stems from the 
fact the equivalence checking would be only validating the 
design itself. 

 
 

Conclusions 
 
Refactoring is a transformational methodology of 

existing code.  To the best of our knowledge, this 



methodology has only been applied to software development. 
We presented a methodology of using assertion libraries as a 
mechanism to ensure that the observable behavior is not 
affected.  We presented a case-study of a refactored bus 
functional model. 

 By refactoring that model, we provided a more readable 
and maintainable model. We also improved its scalability.  In 
addition, we uncovered twenty-two bugs in the original 
design.  We also shown the value of this technique compared 
to other transformational coding methodologies such as 
equivalence checking. However, we found that this technique 
has a limitation. We cannot guarantee total coverage when 
adding the lifeguards. To solve this limitation, in future 
work, we will add functional coverage [25] using the 
lifeguards as a starting point to provide means of measuring 
how much more lifeguarding is needed.  Also, we will pursue 
the refactoring of the other protocols of this bus functional 
model.  
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