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Abstract—Post-silicon debug is the problem of determining
what's wrong when the fabricated chip of a new design behaves
incorrectly. This problem now consumes over half of the oveall
verification effort on large designs, and the problem is groing
worse. We introduce a new paradigm for using formal analysis
augmented with some on-chip hardware support, to automatially
compute error traces that lead to an observed buggy state,
thereby greatly simplifying the post-silicon debug problen. Our
preliminary simulation experiments demonstrate the potetial
of our approach: we can “backspace” hundreds of cycles from
randomly selected states of some sample designs. Our prelimary
architectural studies propose some possible implementatns and
show that the on-chip overhead can be reasonable. We concled
by surveying future research directions.

|I. INTRODUCTION

Post-silicon debug (AKA post-silicon validation, silicon

debug, silicon validation) is the problem of determiningati

jin.yang@intel.com

of the formal tools. Increasingly many engineers,

from many different teams (pre-silicon verification,

design, test, architects, OS, drivers,...) get sucked
into the debugging effort. Yet debugging proceeds
painfully slowly, because everyone is flying blind,

trying to guess what happened.

Obviously, the fundamental problem is observability — to
debug a chip, we must know what is happening. With increas-
ing technology scaling, higher speeds, and greater irniegra
there is simply no longer enough 1/O to be able to debug
effectively: pin counts are limited; 1/0 pads are too costly
(area and power) and slow; and single-stepping and scanning
out the state every clock cycle is far too slow.

This paper introduces a novel paradigm for using techniques

wrong when the fabricated chip of a new design behavem formal verification, augmented with some on-chip sup-

incorrectly. The focus of post-silicon debugdssign errors
whereas VLSI test focuses on randadefectsntroduced dur-
ing the manufacturing process of each chip. Post-silicdiude

port logic, to greatly enhance observability of the exemuti
leading up to the observed buggy behavior. Specifically, we
allow the chip to run at full speed, yet provide the ability to

currently consumes more than half of the total verificatioipackspace” hundreds, perhaps thousands, of cycles from a
schedule on typical large designs, and the problem is ggwigrash state or a programmable breakpoint, to derive an error
worse! Even worse, the schedule variability is greatest podtace that led to the crash, which can then be replayed in a

silicon, creating unacceptable uncertainty in time-taket

simulator or waveform viewer to help understand the bug. In

The problem is easy to understand from a typical scenarf:nutshell, the basic framework consists of adding cirguitr

After a long development process, first silicon
(or second, or third...) comes back from the fab.
Yield is mediocre, but several “good” die pass the
manufacturing tests and make it to the bring-up lab.
Power-on reset and basic functionality tests work.
But 30 seconds into booting the OS, the chip crashes.
Worse yet, every single “good die” crashes in the
same way.

Scanning out the state of the crashed chips show
an internal data structure (e.g., a routing table or
a coherence directory) has been corrupted in an
inexplicable manner. The logic analyzer dumps from
just before the crash show routine traffic to/from
memory and I/O devices. The stimulus to generate
the crash (i.e., booting the OS for 30 seconds) is
far too deep to replay in simulation or by single-
stepping the die, and trying to hit the crash state with
full-chip formal verification exceeds the capacity

1Andreas Kuehlmann, personal communication, Septembe2@§. Ref-
erences [1], [6] also report a large fraction of total veafion cost occurring
post-silicon.

to monitor architecturally key operating points and recard
small signature of the monitored information. During debug
this signature, as well as the crash state, can be scanned
out using existing on-chip test access mechanisms. Byf,itsel
the signature provides insufficient information (lossy)dan
would be meaningless to a human, but we can combine this
information with formal analysis of what is possible in the
design (by computing pre-images) to determine the unique,
or nearly unique, predecessor states that led to the crash
state. Such an approach can backspace only a limited number
of cycles, so we also add circuitry to the chip to allow
programmable breakpoints. By setting a predecessor fae a
breakpoint, we can re-run the failing test on-chip (e.gathny

the OS), but crash some number of cycles earlier, then scan
out the new crash state and signature, and iterate the entire
process to compute arbitrarily long back traces.

This work can revolutionize post-silicon debug, but it il st
in its infancy and not yet practical. This paper presents the
basic framework and preliminary results demonstratindbot
potential and limitations. We conclude by surveying future
research directions.



A. Related Work

There is no closely related work to what is presented in this
paper. Under the broad rubric of using formal methods to aid
post-silicon debug, however, there are a few related papers

Ahlschlager and Wilkins [2] describe their experience dise

using a model checker for post-silicon debug: they write a
formal property to describe the observed buggy behavior and
ask the model checker to generate a trace. Such an approac'h
is ideal when the model checker can verify the entire chip or
when the debug engineer correctly maps the observed chip-

level buggy behavior onto a block-level formal specificatio

neither of which can be counted on. Safarpour et al. [17]
address the problem as rectification: they assume thatrdesig
errors/fixes can be modeled by injecting corrected values at
various points in the circuit and use a MAX-SAT solver to

find a smallest set of locations to inject values to correct
the behavior on a specific set of test cases. This work is

simultaneously much more limited than ours (simplistic elod
of design errors, limited test cases, scalability issugs},

also much more ambitious (attempting to correct the design
automatically). Several groups have proposed leveradieg t

intellectual investment into formapecificationgduring post-
silicon debug, by compiling the formal specifications into o
chip monitor circuits (e.g., [13], [8], [4]). Such an appcba

provides enhanced observability into what went wrong if an
on-chip monitor catches an assertion violation, but ddesn’

leverage formalerificationtechnology to aid debugging.

Of course, industry has been doing (and struggling with)
post-silicon debugging without the benefit of formal method
since the dawn of VLSI. Very little has been published about
current techniques and methodologies, although anetylotal
we know that practices vary enormously between companies,
e.g., a small company with a high-margin, low-volume prdduc

can't afford specialized high-end test equipment but céerto

ate more die area overhead for debugging support, whereas
a large company with a high-volume product might spend

enormous up-front NRE costs to shave on-chip overheads to
the bare minimum. On one extreme, some companies are not
even using existing on-chip test access mechanisms to aid
debugging, relying instead on manually modifying bring-up

programs and observing the results; on the other extreme,
some companies have purpose-built bring-up hardware and

sophisticated logic analyzers that allow interceptingording,

and replaying all traffic between the chip and its environtmen
(e.g., [18]). Despite this variation, our work and existing
methods share similarities, based on the common underlying

constraints:

« It is possible to get a fairly complete snapshot of the
internal state of a chip, albeit very slowly. The most basic
mechanism is the scan chains [19] present on almost all
chips to allow efficient manufacturing test. A chip with
scan can be configured into test mode, in which most or

all of the latches on the design are connected together

into a small number of very long shift registers. At any
point in time, the chip can be stopped, and the values

of the latches can be shifted in or out. With hold-scan
latches, it is even possible to scan out a snapshot of the
state of the chip at one point in time, while allowing the
chip to continue to execute during the scan-out process,
at the cost of substantial on-chip overhead [10]. In our
work, we assume the existence of full scan on the chip,
but do not require hold-scan latches.

A very limited history of some number of signals can be
recorded at full speed on-chip, and this history can be
read out (very slowly), e.g., via the scan chains. These
mechanisms (“on-chip logic analyzers”, “trace buffers”)
typically consist of a flexible mechanism to access desired
signals on-chip and some way to store the signals for later
read out (e.g., RAM or specialized cells [3]). The main
trade-off is that considerable die area overhead must be
used for each cycle’s worth of history for each signal
monitored, severely limiting how much history can be
stored.

The signhature generation in our method can be viewed
as a generalized, optimized trace buffer, using formal
verification techniques to enable reconstruction of a fully
detailed trace from compressed signatures. We rely on
prior work on access mechanisms to observe on-chip
signals. In this paper, we consider one efficient, flex-
ible, and reconfigurable architecture that provides this
access [15]. Abramovici et al. [1] propose a different
reconfigurable architecture, also with the goal of pro-
viding efficient signal access for debugging. Also, many
companies have their own, in-house access mechanisms
to help in debugging (e.g., [7]), but published details
are sparse. Nevertheless, the sort of on-chip access we
assume are clearly very realistic. For signature storage,
our area models assume SRAM (Section V).

« In many debugging scenarios, standard off-chip logic

analyzers are helpful. As mentioned above, in the extreme
case, specialized hardware and a great deal of high-end
test equipment can be used to record and replay/O
signals between the chip and its environment, allowing
deterministic repeatability of the stimulus that triggeee
bug on-chip. The main drawbacks are the high cost of the
test equipment, the extremely limited ratio of observable
I/O pins and pads versus the internal state of the chip,
the inability to debug internal IP blocks, and the ability to
debug the chip only in the specialized bring-up system —
sometimes, a bug will manifest itself only in some OEM
system but not in the original bring-up system. Note also
that even in the extreme case, the logic analyzer traces
alone do not allow us to reproduce the bug in a logic
simulator, since we don’t know the internal state of the
chip to start the simulation. Our method does not require
off-chip logic analyzer traces and hence does not suffer
the drawbacks. However, if such traces are available, we
could use them to reduce our on-chip overhead.

The only mechanism fast enough to run the actual bring-
up of the chip, in an actual system, on actual data, is the
chip itself. There is no way to simulate an extremely deep



trace (e.g., even 30 seconds of real execution time), andOur work is focused on design errors that escape pre-silicon
no way (without formal verification techniques, as in thigerification and end up on the actual chip. A complementary
paper) to go backwards from a state of interest on tip@st-silicon debug problem, for which there is also verydlit
actual silicon to determine what happened beforehandresearch, is to help identify and repair physical, eleatriand
The goal, of course, is to determine what happemefdrethe timing errors on-chip. Chang et al. [6] propose a methodolog
crash occurs, but we do not knaavpriori when that will be. ical framework for this class of problems. Park and Mitra][14
Accordingly, current methods typically attempt to find somalso focus on electrical bugs and propose a processorkgpeci
way to scan out a complete state snapshot some numbetéshnique using summaries of in-flight instructions in the
cycles before a crash state happens, and then use that §iE@eessor. A post-analysis over these summaries helpteloca
along with the recorded 1/O behavior to simulate the chiprfrothe source of the bug. The main similarity between their work
shortly before the crash up until the crash, e.g.,: and ours is the collection of information from the design via

« Periodic Sampling. The chip can be stopped at regu@,;mmaries _(signat_ures), and then using that informatiaghén
intervals to scan out a snapshot of the internal sta@@St-analysis. Their approach demonstrates very low @eeth
and then allowed to continue execution. With hold-scaPH! iS narrowly specific; our approach is not processoripec
latches, the chip need not even be stopped. When i currently has excessive overhead.
crash occurs, the most recent snapshot and the |Ogi(pne insight _behind our approach is that thg actua_l sili_con
analyzer traces of the I/0 can be used to recreate the Bag0 fast that it can be used to re-run some input stirabli
in simulation. An obvious problem is that stopping thdnitio repeatedly, to compute the state of the chip at different
chip disturbs system-level timing interactions, potdftia points in time. This insight echoes a similar computatioedus
changing the execution and hiding the bug. Furthermor@r “hardware modeling”, in which an actual chip is used in
because the scan-out process is so slow, the interd@agpecial modeling system to emulate its own behavior during
between snapshots must be long, meaning that the m&ggtem-level logic simulation [9].
recent snapshot might be too far in the past.

o Cycle Counters. If the chip’s behavior and the system
environment are both deterministic (or the 1/O behavigk. Intuition and Assumptions

has been recorded and can be replayed), then a Slmpl":rhe basic problem is that we have observed the chip in
cycle counter can be used. When a crash occurs, we

dwhen it h 4 and th h " me buggy state, and we have no idea how that could have
tr)ector w entl appeneh ,tanh e?hwe re]run etsys_ ppened. The goal is to explain the inexplicable buggy stat
ut scan out a snapshot when the cycle counter 1Syg reating a “backspace” capability — iteratively compagti

conven_lelnt ngmber of c.:ycle_s. prior to the_ crash. Nonﬁredecessor states in an execution that leads to the bug. The
determinism is the main difficulty for this approach

i : . . fesulting trace can be viewed like a simulation waveform, ex
obviously in the system environment (e.g., when a disk

d : : %rept it shows what actually happened just before the bugficra
network interrupt occurs), but also on-chip (e.g., mudnplon the real silicon.

independent clock domains, arbitration, PLL lock times). Wi hat th bl depth and |
o For a system implemented on FPGAs, the problem qf c a;s_umet at the problem occurs ata depth an compiex-
! ﬂy not trivially solved by existing methods. For examplethie

system-level non-determinism can be eliminated by dj, chip can be handled in a model checker, we can simply
plicating the entire design [11]. One copy of the design

. i aﬁk the model checker to generate a trace to the observed
runs in the system as usual, the second copy has a"b% state. This solution is not realistic for complex dasi
its inputs delayed in a FIFO. When the first copy hits th 99y : P

L . Because of the capacity limits of model checkers. Alteveatj
bug, it triggers trace recording on the second copy. For. . .
S : . : . if"the bug occurs extremely shallowly during bring-up, we

non-FPGA design, it's obviously impractical to duplicate ; d y
. . . ) . . .~ could run the bring-up tests on the simulator, or via single-

the design on-chip, but if two identical dies are available

both of which are fully deterministic in an identicalslteplol.ng the chip (scanning in a state, pulsmg the_ ClO.Ck’
. . - o .~ scanning out the state). Such an approach is also not realist
manner, one could imagine building a specialized brin

: : : . %e roughly billion-to-one speedup of the actual silicomsus
up boa_rd. that |mp_lements this splut|6rAS|de from_the full-chip simulation means that one second of runtime oip-ch
determinism restriction, the obvious problems with this T ; s
aporoach are the cost of the purpose-built brnd-up svste: uals decades of run time in simulation, and within seconds
agg the likelihood that bu pbephavior wil beg di?fe?/ento first power-on, the silicon has executed more cycles than

9 months of simulation on vast server farms. Trying to repoedu
between that system and real OEM systems. e L . h
. the bugab initio in simulation is clearly not feasible. Similarly,
In contrast to the above methods, our method eliminates g, 1o monitor externally the full execution trace of tbigip
challenge of trying to determine when to take a snapshoteof tﬂmning full-speed is electrically impossible.
internal state just before the crash is about to happergadst
the formal analysis allows us to compute the predecesser sta

directly.

Il. BASIC FRAMEWORK

We start with a few simplifying assumptions:

« It must be possible to recover the state of the chip when
an error has occurred. For example, this could be done
2This idea was suggested to us by Igor Markov, June 30, 2008. with the chip in test mode, via the scan chain.



o The key assumption is that since we are focusing aan depend on the signature as well as the state and inputs,
design errors we will assume that manufacturing testbut the next state cannot depend on the signature.
ing has eliminated manufacturing defects. Therefore, weDefinition 1 (Backspaceable State): A stétg ') of aug-
assume that the silicon implements the RTL (or gate-levelented state machin®&/’ is backspaceable if its pre-image
or layout or any other model of the design that can h@ojected ont®® is unique, i.e.2
analyzed via formal tools). . . .

. Theybring—up tests can ge run repeatedly and the bug As3t,i[((s,4,8") € 8) A ((s,L,4,1") € 0')]
being targeted will be at least somewhat repeatable (omegeneral, a signature might contain enough information to
out of everyn tries, for a reasonably small value 0f.  allow computing multiple cycles of unique pre-images. latth

Later, we discuss how the framework changes when we relase, the theory changes in the obvious manner to backspace
these assumptions, e.g., partial scan, mixtures of desigrse Multiple cycles from each run of the chip. Currently, we
and defects, and non-deterministic errors due to margirfdlvision such multi-cycle signatures to be simply a series o
circuits, process variability, etc. Even without the relians, Single-cycle signatures, stored via pipelining in the aigne
though, the problem is real, and a solution would be valuabRollection circuitry or in efficient SRAM structures (Sety).

Our framework consists of adding some debug support 1® simplify the exposition in this paper, we describe baeksp
the chip: a signature that saves some history informatian B0g only a single cycle at a time.
otherwise has no functional effect on the chip's behaviod,a  Definition 2 (Backspaceable Machine): ~ An augmented
programmable breakpoint mechanism that allows us to “crasHate machineM’ is backspaceable iff all reachable states

the chip when it reaches a specified state. Given these, & backspaceable. A state machiie is backspaceable iff
approach repeats the following steps it can be augmented into a state machihg& for which all

1) Run the chip until it crashes or exhibits the bug. Thi%e‘?rchhab:e St_f‘;estare ba"kfp?ﬁea?"i' o the crach stat
could be an actual crash or a programmed breakpoint, € aigorithm to compute the states prior o the crash state

2) Scan out the full crash state, including the signature.StartS from a given crash state and then iteratively congpute
’ its predecessors, going backwards in time:

3) Using formal analysis of the corresponding RTL (o _ . S
other model), compute the predecessor of the crash statéo‘lgor'thm 1 (Crash State History Computation): Given a

The signature must provide enough information to alloﬁate(sg’ to) ]?_f f':: backspaceabl;:t argmer;ted state m?cMﬁe
only one (or a few) possible predecessor state. compute a finite sequence of stal@s, to), ..., (sk, t) as

4) Set the computed predecessor as the new breakpoin{.ouows:

. , . . i
until we have computed enough of a history trace to debugl) _SmceM IS bgckspaceable_, lat; 4, be the unique pre

i . : . o image state (in the state bits) of (s;, t;).
the design (or Step 3 fails). Each iteration of the loop ie lik 2) Run M’ (possibly repeatedly) until it reaches a state
hitting “backspace” on the designh — we go back one cycle. P y rep y

The approach exploits the capabilities of different angdys (si41,). Definet;y; = 2. s
formal analysis is very slow with limited capacity, but cam g Theorem 1 (Correctness of Trace Computation): If started

forward or backwards equally well; simulation is too slow t&t @ reachable statéso, to), the sequence of states, .. ., so
run in a real system with actual software, but the visibility®MmpPuted by Algorithm 1 is the suffix of a valid execution of

of a simulation trace is user-friendly and well-accepted fo -

design understanding and debugging; the actual silicos rfp00f Sketch: For any statd(s;, ¢;) in the sequence, we must
rove that two properties hold for;yq: first, thats;;; is a

full-speed, rapidly hitting bugs that may have escaped pre. _ .
silicon validation, but offers very poor visibility and noay Predecessor of; in M, and second, that;,, is a reachable
to backspace to see how the chip arrived in some state. State inM. By the definition of pre-image, there existsuch
that (s;+1,x) is a predecessor ofs;,t;). By the definition
B. Theory of the augmented state maching,cannot depend o, so
. - therefores;,.; must be a predecessor ef. That establishes
We.model the system in the u_sual manner as a f|n|Fe St%% first ;rgberty. For thz second property, becabse is
rr;achmeM, W.'t.h S Iatches andTSmpu}s, |n|St|aI states Init backspaceable;, ; is the same for all predecessor states of
27, a_n_d transition relation C 2 x 2 x 27 We aIIow_ the (ss,ti). Therefore, any executiarf of M’ that reacheds,, t;)
transition relation to be non-deterministic, so the forisral ml;st have gone through a state. 1, ) for somex Becéluse
can handle randomness in the bring-up tests as well aséransj, . signatures cannot affect the+slt:e1te latches th.e pimjeat
errors, race conditions, efc. o’ onto the state latches is a valid execution)Mfand goes

Given a state machiné/, we can build an augmented ;
. . ' ; through the state; ;. Hence,s;; is a reachable state af.
state machiné//’ which has the same behavior a§ (when g o o

projected onto the originad latches), but has an additioril
latches of signature. ThE& signature latches are not allowe
to affect the behavior of\f, so the transition relation af/’
is a pair of relations: the original C 2° x 2! x 25 as well as
ad C 2% x 27 x 21 x 2T In other words, the next signature 3The notation3! denotes “There exists a unique....”

If the state machine as well as the environment/testbench
dare deterministic, then Algorithm 1 not only givesvalid
execution, buthe execution ofM that led to the crash state,



because the executiarl will be the same when computing . ' R
each state in the sequence. In the presence of randomness, th .

algorithm still works, but with a constant factor expecttxhs

down: if the bug appears i out of n runs, then we expect @

to need to repeat times step 2 per iteration of Algorithm 1. \

Similarly, if the pre-image is not unique, but there &rstates C@< /

in the pre-image, we can try step 2 for each of thpossible @

pre-image state, resulting in a constant fadtg® expected

slow-down. There is no combinatorial blow-up, as there woufig- 1. State Machine Requirings| Extra State Bits to Be Backspaceable

be for backward reachability. Definitions 1 and 2 generalize
naturally to ‘%k-backspaceable” for a given bouid i . o )
An important caveat is that, under the assumption Hpen we add just one blocking clause to eliminate that smiuti
true non-determinism, termination of the algorithm is ngind run the SAT solver a second time, to see if the first salutio
guaranteed. For example, it is conceivable that setting tH&S unique. o . . o
programmable breakpoint hardware to target statewill To scale to full-size industrial designs, it is likely that
result in an execution, that reachegs,,t,) from a state NOt all state bits will be scannable and breakpointable. In
(s, ), but if we reprogram the breakpoint hardware to targéiat case, the above theory generalizes exactly as alfistract

states,, subtle electrical effects might cause the chip to follo@PPlies to model checking. Algorithm 1 will compute an
a different execution, that reachegs,, ¢,) from some state abstract execution, over the subset of the state bits tleat ar

(sa,y). In this case, Algorithm 1 will still compute a valid Scannable/breakpointable. This execution will be the suffi

execution ofM/, as indicated by the theorem, but this executiodf @ valid execution of the conservative abstraction Mdf
won't make any progress toward the initial states. Fortigat ONt0 the subset of state bits. Hence, there will be the same
if non-determinism in the model is really randomness, witfisk of false abstract execution paths, exactly as in atistra
non-zero probability of choosing all legal transitionsethwe Model checking. Standard concretization heuristics frdm a
can prove termination with probability 1: stract model checking may help. It is also likely that the
Theorem 2 (Probabilistic Termination of Algorithm 1): Ifabstract trace may be suggestive enough of what actually
we terminate Algorithm 1 when the computed sequen@appened on-chip to help the debug engineer understand what
reaches an initial state oM, and if the executions’ of M/’ caused the crash/error, even if the trace can't be or hasatt b
are chosen randomly such that all valid transitions have-nogoncretized. For example, an abstract trace might inditate
zero probability, then termination occurs with probahilit. ~ the error occurs when a certain type of transaction encesinte
Proof Sketch: At all times, the state being considered i Specific exception condition at the exact cycle that amothe
the algorithm is reachable. Hence, there is an execution €vent occurs, but without indicating the specific data \aine
of length ! that reaches the target state, and this executiBiie trace.
occurs with non-zero probability. If this execution get®sén
repeatedlyl times (an event that also occurs with non-zerly- Backspace Coverage
probability), then the algorithm will terminate afteiterations. Is it always possible to augment any state machine to make
Otherwise, the algorithm continues from another state.cdenit backspaceable? The answer is yes. We can simply make
the algorithm is a random walk backwards on the sta{&| = |S| and set up)’ to copy the values in the latches §f
space, where the initial states are sink states and allsstatethe latches of’. In other words, we can always backspace
are reachable from the initial states. With probability e t to a unique predecessor state because we have stored that sta
random walk must terminate in a sink state. Is it possible to do better, to make any state machine
| backspaceable using fewer tha$i additional latches? Un-
In practice, we do not expect these issues of non-determjnigortunately, in the worst case, the answer is no. For a simple
randomness and termination to be a problem. The main difixample, consider the state machine in Figure 1. This exampl
culty with randomness will be the number of trials required tis a simplen-bit counter, with a single input. If the input is
hit a breakpoint state when the chip runs — if the probabilityw, the counter transitions to the O state; otherwise, itnte
is low, many runs will be needed for each backspace step.up. Almost all states have only a single predecessor, making
Algorithm 1 performs repeated pre-image computatiothem backspaceable with no additional signature. However,

which can be expensive. We encountered problems in ate 0 state has every state as a predecessor. To make the
initial experiments with BDDs and All-SAT. A key insight machine backspaceable, we must add the fulhdditional
greatly improved efficiency: state bits, just to handle one particularly bad state. Wesaah

We need compute only whether a state has a unique states “convergence states” because many incoming farssit

pre-image state or not (or whether it has more than converge on them.

k pre-image states fdt-backspaceability). Figure 1 shows that in the worst case, we can do no
This insight means we can use a state-of-the-art, off-tiedfs better than by storing a copy of all the state bits. However,
SAT solver to search foany pre-image state. If one is found,it also suggests that we might be able to do much better



for most states. Is it good enough if we make most states 10000

backspaceable?

Definition 3 (Backspace Coverage): Given state machine
M augmented intaM’, the backspace coverage o8f’ for
M is the fraction of the reachable states &f’ that are
backspaceable.

Can we get good backspace coverage with much fewer
than | S| bits in the signature, or more to the point, can we
backspace a long enough trace to be useful before hitting a
convergence state? The convergence states are likely to be
states that are easy to get to and easy to understand (like L -~ |
reset or idle states); backspacing to a convergence state ma © 10 2 3 40 5 6 70 8 9 100
be sufficient for debugging purposes. In the next section, rashing Size as of Percentage of e 63HCOS Latches
we explore whether we can make this theory work on some
sample open-source designs.
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IIl. PRELIMINARY EXPERIMENTS

A. Experimental Setup 60

We present our experiments on two small proces-
sors/microcontrollers. The research is still highly exatory,
so we have chosen to focus on a small number of design
examples: we often needed detailed understanding of the
designs to generate good research hypotheses. The designs
also had to be small enough so that repeated experiments were 0 o B -

0 10 20 30 40 50 60 70 80 90 100
feasible, and so that the supporting algorithms and toals th Hashing Size as of Percentage of the 68HCOS Latches
are not germane to this research did not need to be highly. 2. Results for Compressed Signatures Based on Artlniggdnsight.
optimized. On the other hand, the designs must be realistic,
to capture characteristics of real designs.

The two processors are a 68HCO5 and an 8051. These apgroach fared poorly: 90% of the state bits were needed in
both open-source designs from opencores.org that ardaebuthe signature before the median size of the pre-image was 1,
from datasheets of the respective classic 8-bit microotlats and even with 95% of the state bits in the signature, only 7
from Motorola and Intel. The 68HCO5 is smaller, with 10®ut of 10 of our test states had unique pre-image states.
latches. The 8051 implementation has 702 latches. In bothin real life, the designers understand their design, and
cases, we developed a simulation testbench based on arghitectural insight might allow selecting a particwagood
testbenches supplied with the designs: the 68HCO5 ran rédbset of the state bits to use as a signature. Based on a
LED and LCD controller applications, and the 8051 ran sone@reful study of the 68HCO5, we identified 38 latches (35%
small software routines. of the design) to use as the signature. This approach was

For our experiments, we treated the design running onvary successful, yielding unique pre-image states for @ll 1
commercial logic simulator as if it were the actual chip ringn test cases.
on silicon. We simulated the designs for an arbitrary numberSpurred by that success, we tried some simple checksums
of cycles and randomly selected 10 states each to serveoashose 38 bits, reducing the number of bits used to 6, then
“crashed” states for our analysis. In addition, our testhenl12, and then 19. These results were not very successful at
also recorded the immediate predecessor state beforeabie cgetting unique pre-image states, but the plot suggested tha
state (which wouldn't be possible in silicon); this predesmr better compression would be promising.
state is the correct answer that our backspace analysigrigtr ~ Accordingly, we tried a perfect hash function — universal
to recover. Thus, we have 10 pairs of states per design te sémashing [5] (essentially the same as X-Compact [12], which
as testcases. is easier to implement on-chip) to compress the 38 bits to 6,
19, and 25 bits. These results demonstrated the promise of
universal hashing.

As a first step, we needed to find some plausible signaturen all of these experiments, computations were fast, and the
functions. We concentrated on the 68HCOS5 and tried a varie€3AT solver had no problem computing pre-image states.

of approaches. Fig. 2 summarizes the results of our experi- ]
ments. C. BackSpacing

40 -

20 | i
}\

Frequency of a Single State in the Pre-Image

bz e i

B. Signature Functions

Our first idea was to try a quick experimental upper bound With some promising ideas for signature functions, we
on the size of the signature. We created the signature apraceeded to the real test: can we backspace for hundreds of
randomly selected subset of all state bits. Unfortunatbig, cycles from the random crash states? We created an automatic



( B Crash || # of Cycles | Max States| Sim Sat | Manager

— State || BackSpaced| in Prelmg Time Time Time

— s1 54 4096 63.44 | 0.93| 20442

s2 1 65536 1.45 | 86.61 4.38

s3 37 4096 62.65| 0.71 139.67

s4 7 4096 37.76 0.52 27.11

Synthesized BackSpace s5 53 4096 116.16 | 0.92 200.34
Design j> Mana s6 500 1| 1261.48| 3.24 | 1884.31

ger

s7 500 1| 2384.29| 3.15| 1890.91

s8 500 1| 4575.41| 3.01 | 1893.89

s9 2 4096 22.93 0.51 22.93

N s10 9 65536 | 2424.55| OL.18 | 34.86

8 J “Sim Time” is the time spent in the logic simulator. This timeould be

replaced by time running on the actual silicon. “Sat Timethis time spent in
the SAT solver. “Manager Time” is the time spent by the Bac®pManager
to supervise the framework and connect the various tools. BxekSpace
Manager implementation is very preliminary and can be ogtihextensively.

Fig. 3. BackSpace Framework

framework to experiment and explore the BackSpace paradigm TABLE |

(Fig. 3). The components of the framework are the BackSpace ~ 68HCO5W/ 38-BIT SUBSETHAND-CHOSENSIGNATURE
Manager, a commercial logic simulator, and a SAT solver.
The input to the framework is a synthesized design (gatetley—=rsn

i e N # of Cycles | Max States Sim Sat | Manager
netlist). The logic simulator plays the role of the silicome State || BackSpaced| in Prelmg Time Time Time
use it to run our testbench, exactly as the real silicon Woulcﬁg 288 g ;8?131-(2)2 ig?gz ggg?-ég
run brmg up tests. The SAT solver is the engine to comp a3 =00 73715 17157 833545
the required pre-image states. The core of the frameworkfigz 500 5 | 298838 242.89 | 8477.88
the BackSpace Manager. s5 500 2 | 335840 216.81| 8398.14

The BackSpace Manager coordinates the logic simulati J@? 288 i Z;Zg'g‘l‘ gi'gg g;;g'gg
and the SAT solving tasks by dispatching each task andg 500 1 12207491 3858 | 8297.21
processing their intermediate results (shown as the deuble9 500 2 | 15280.79| 42.31| 8173.19
headed arrow in Fig. 3). For logic simulation, the BackSpac¢es19 500 1] 34084.53| 36.63 | 8125.62
Manager automatically generates a testbench instancd base TABLE Il
the synthesized design, dispatches the logic simulativaits 68HCO5W/ 38-BIT UNIVERSAL HASHING SIGNATURE

its termination, and captures the crash state and signature
For SAT solving, given the crash state and the signature,
the BackSpace Manager generates a SAT problem instance.
When the SAT solver finds a solution, it means there Bor the 68HCO05, we reused the signature consisting of a hand-
one (more) state in the pre-image of the crash state. Témlected subset of 38 of the 109 total state bits, chosembase
BackSpace Manager generates a blocking clause basedoonrour insight into the design. We also tried a 38-bit hash
this solution and asks the SAT solver for another solutiogenerated via universal hashing over the 109 state bits. For
If another solution is found, this process repeats untitehethe 8051, we hand-selected a 281 bit subset of the 702 total
are no more solutions. At that point, a single state or sate bits to be the “human architectural insight” signatiive
set of states is available as candidate states prior to #ieo tried to use a 281 bit universal hash of the 702 state bits
crash state. The task now is to find which candidate stateln these experiments, we used thévackspaceable compu-
is the actual one. The BackSpace Manager dispatches logition (i.e., pre-image sets are allowed to have up states),
simulation, setting a candidate state as a simulation paak with & set to 300 states. To keep our experiments manageable,
If simulation reaches the breakpoint, it means we have a new also set an upper limit of 500 cycles of backspacing per
crash state and a signature. This process continues until t&¢'st crash state.
have “backspaced” some pre-determined number of cycles. Iffables | and Il show the results for the 68HCO05. With the
simulation does not reach the breakpoint, it means we negahd-chosen subset of bits, we hit our 500 cycle limit on 3
to try another candidate. For our logic simulator, we usasf the 10 test crash states. But on 4 of the 10, we cannot
Synopsys VCS (version 7.2), and for our SAT solver, we uséckspace more than a handful of cycles. With a universél has
Minisat (version 2.0). Due to VCS licensing issues and GCgf the same size, all 10 test crash states can be backspaced
compatibility problems, we had to run these tools on différeto our limit, and all of the pre-images are very small. In
machines: logic simulation was run on a Sun Fire V880 servBection 1V, we will see that a hand-chosen subset of bits is
(UltraSPARC 11l at 900Mhz); SAT solving was run on an Inteh very low-overhead signature, whereas universal hasHing a
Xeon at 3.00GHz. bits of a large design appears to be prohibitively expensive
We ran experiments for both the 68HCO05 and the 8051. Pdfe can see the trade-off between quality and cost.
each, the goal was to see how far we could backspace befor&able Il presents the results for the 8051 using the hand-
the pre-image set got too large or the computation blew-ughosen subset of the state bits as the signature. The rasalts



Crash || # of Cycles | Max States Sim Sat Manager P
State || BackSpaced| in Prelmg Time Time Time A. Support Circuitry
g ggg gég Zi‘;gé-gz g-?g lj%g-‘;? Figure 4 shows how a Circuit Under Debug (CUD) can be
3 500 557 | 8326.66 | 1084 | 1474610| Instrumented with a Breakpoint Circuit, a Signature Crzati
4 500 257 | 10342.40| 10.77 | 14772.03| circuit, and a Signature Collection circuit.
5 500 256 | 11587.21] 11.26 | 14742.81 During debugging, as the circuit operates, the Signature
16 500 256 | 11581.93| 8.72 | 14735.07 . o : 2
7 500 555 T 55767 401 854 | 1474260 Creation circuit monitorsV,,,,, of the N State bits in
18 500 256 | 13561.20| 11.57 | 14759.73] the CUD. In generalN,,on < Nsiaze, but in this analysis,
t9 500 257 | 22493.04| 10.62 | 1473548 we assume that all state bits are collected and used to form
0 500 257 | 2479342] 10.81 | 14759.77] g signature, SQVymon = Nsate. Each cycle, the Signature
TABLE Il Creation circuit uses these state bits to construct a sigmaf
8051w/ 281-BIT SUBSETHAND-CHOSENSIGNATURE sizeSyiqtn; the construction of the signature will be described
below. The signature is then stored in a memory within the
Signature Collection circuit. The memory is arranged as a
Crash || # of Cycles | Max States Sim Sat Manager | FIFO buffer composed of an SRAM block and read/write
State || BackSpaced| in Prelmg | _ Time Time | _Time__| circuitry. The depth of this FIFO buffer dictates how many
tl 500 8 | 138616.15| 1379.21 | 55389.29 : : .
o 500 7T 49790592 1350 15 | 55104 32] consecutive states can be stored. Meanwhile, the Breakpoin
i3 500 4 | 101655.42| 1378.15 | 55462.20| Circuit also monitors the state bits. When the state bitchat
4 500 4 | 183283.27| 1383.10 | 55642.82| predetermined state (the target state), a signal is setdpdise
LS 500 8 | 431057.79] 1377.87| 55039.00) oq|ection of signatures. The signature(s) stored in thiéebu
16 500 4| 151950.65| 1399.62 | 55601.11 ) . :
7 500 2 150678753 1388.94 | 5563958 can then be read out and processed as described in Section 1.
[ 500 8 | 506229.79] 136852 55512.44] The heart of the architecture is the Signature Collection
9 500 4 | 488157.90] 1379.14] 55049311 circyit. The simplest way to construct a signature is to gimp
10 500 4 | 534870.14| 1378.37 | 55448.52 o )
use the state bits directly. W,,,o, = Swian, then the history
TABLE IV of all flip flops is stored, and the circuit becomes trivially
8051w/ 281-BIT UNIVERSAL HASHING SIGNATURE backspaceable. IN,,or, > Swiatn, then missing bits must be

reconstructed using off-chip analysis as described ini@edt
If the set of N,,,,,, sighals cannot be determined at fabri-

cation time, the selection of these signals can be made pro-
excellent: we can backspace up to our 500 cycle limit in 9 ogtammable at debug-time using a concentrator network [15].
of the 10 test crash states. Initially, we were unable to detep Such a network would programmably connect a subset of
results for the 8051 with a 281-bit universal hash. The SAhe N,,,, monitored signals for use in the signature. On-
solver blew up (1 hour timeout and 1GB memory limit) orthip SRAM bits (similar to configuration bits in an FPGA)
all 10 test cases. The universal hash function is essgntialln be used to store the configuration of the concentrator. As
a matrix-multiplication over GF(2), with a random matrixdebugging proceeds, the configuration can be changed, o tha
S0 it's not surprising that large instances are challenimg a different set ofN,,., bits can be used in the signature.
current SAT solvers. However, with some more thought anch example of the use of a concentrator in a debugging
experimentation, we were successful with this experiment application can be found in [16]. Unlike the concentrators
well. The key is that any full-rank matrix provides correctiescribed in previous work in which each bit can be switched
universal hashing, but a sparse matrix will be easier for thedependently, we assume that the concentrator switches 8-
SAT solver, and also reduce area overhead, too. If we genetsit wide words; this reduces the area of the concentrator by
the random hash matrix with a 0.985 probability of each entgpproximately 50%, while suffering only a small decrease in
being 0, we can backspace up to our set limit for all 10 teféxibility.
crash states. Furthermore, the number of states in the pre-
image is 2 orders of magnitude smaller for all crash states.

Table IV gives these results. Co bits [TTI] Sional [EETEEE sianatures
To summarize, the overall framework works. We can com- B G |
pute hundreds of cycles of error trace backwards from a crash Swidth
state. Additional research will need to explore what softs o Nstate
signature functions work well, and at what hardware cost. fNmon
IV. ARCHITECTURE ANDON-CHIP OVERHEAD Circuit Under Debug

This section describes the circuity that must be added to
the integrated circuit to implement the framework. It also
estimates the area overhead of this circuitry. Fig. 4. Debugging Architecture




140 - 140 1

With Concentrator

120 A 120 A With Concentrator

100 4 100

80 80 1

60 1 Without Concentrator 60 A Without Concentrator

40 40 4

% AreaOverhead
% Area Overhead

20 4 20 4
0 T T T T T T T T 0 T T T T ]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 20 40 60 80 100
Swidth as a fraction of Nmon Depth of FIFO
a) As a function of stored bits b) As a function of FIFO depth

Fig. 5. Area overhead for instrumented LEON3 processor

As described in Section II, a Universal Hash Function catifference between the two lines in Figure 5(a) indicates th
be used to compress the signature. This can be implementedr@a cost of this post-fabrication flexibility.
an array of XOR gates within the Signature Creation Circuit, Figure 5(b) shows the area overhead results as a function
and can be used with or without a concentrator network. of the depth of the FIFO, assumirffl,;q;n = 0.3Nmon. The
larger the depth, the higher the area overhead, but the more
B. Area Overhead cycles that can be backspaced per run of the CUD.
In this subsection, we estimate the area overhead of ouMuch of the area overhead in our architecture is due to
circuitry. To make our results concrete, we present an estimthe Breakpoint Circuit. This circuit requires storing eduh
of the area required to instrument a specific processor. dfthe target state. As described in Section Il, we could use
Section Ill, we used implementations of 68HC05 and 805bstraction and match only a subset of the flip flops. Doing
processors to illustrate the technique, but these processs could greatly reduce the size of the circuit, at the cost of
are too small to give meaningful area overhead estimatéssing precision in the debug traces.
Instead, in this section, we focus on a typical instantiatio Adding the universal hash circuitry to the Signature Creati
of the LEON3 open source procesédrecause it represents acircuit increases the overhead dramatically. For smaligthas
typical small-but-modern RISC processor, which is the ratu (such as the 68HCO05 described earlier), such circuitry neay b
next step beyond the small microcontrollers of our initisfleasible. However, the size of a straightforward impleraent
experiments. The LEON3 is a synthesizable, pipelined 3fen of the hash circuit grows quadratically with the number
processor that is certified SPARC V8 conformant. It is highlgf inputs. For the LEONS, if we use a hash circuit similar to
configurable, including support for multiprocessing, nmakit what we used for the 8051, the estimated area overhead would
an attractive testbed as we scale this research to incghasirbe unacceptable (almost 1508verhead. By intelligently
challenging designs. In this subsection, our LEON3 configombining signals (such that the number of XOR gates grows
uration has an area equivalent of 40,000 2-input nand-galiegarly with respect to the number of inputs), we might be
and 2,500 flip flops (SONgtate = Nmon = 2500). This able to reduce the area overhead of this structure conbigera
area estimate does not include any RAM used by the LEON3More generally, we believe that signatures can be made
(but we will include the area of the SRAM used to store thewuch smaller, likely by exploiting architectural insightca
signatures when computing the overhead of our method). design-specific characteristics. For example, Park and Mi-
We first present results assuming that the Universal Hagh [14] produce information-rich signatures with only 2¢éa
function is not used, and then discuss the overhead of twerhead, but narrowly tuned for an Alpha-like processar. W
hash function. are hopeful we will be able to achieve similarly low overhgad
Figure 5(a) shows the area overhead as a function of timefuture research.
ratio betweenSy,;q:, and N,,..,, for an architecture without
the Universal Hash function. Intuitively, if this ratio is all V. EXTENSIONS AND RESEARCHDIRECTIONS
state bits are stored as a signature, and so the area is nmaximu ] . ]
As the ratio drops, the size of the memory decreases, reglucin This paper introduces a novel paradigm for using formal
the area overhead. The figure shows results for an archigect@nalysis in post-silicon debug and demonstrates its patent
with and without a concentrator; as described above, if owWever, it is only a start. As with any new paradigm,
concentrator is not present, the decision of whiéh,,, bits considerable further research remains to be done.
must be fixed before fabrication, while if a concentrator is The primary direction for further research is scalabilida

present, this decision can be made during debugging. Tieglucing overhead. As mentioned, we have started work on
implementing the BackSpace paradigm on physical hardware,
“4http://www.gaisler.com with a multi-thousand latch design. As the idea scales to



larger designs, new research challenges will reveal then# T. Glskler, J. Baumgartner, D. Shanmugam, R. SeiglerVéh Huben,
selves. Some ideas already mentioned include abstraction B- Ramanandray, H. Mony, and P. Roessler, “Enabling LaiggeSPer-

ith h . f findi fecti b iod vasive Logic Verification through Multi-Algorithmic Forrh&easoning,”
(with research questions of finding effective abstractiod a i r;mal Methods in Computer-Aided Design (FMCADIEEE, 2006,

concretization techniques), better signature functionat @are pp. 3-10.
effective at constraining the pre-images, scalably sidvala [8] A.J.Hu,J.Casas, and J. Yang, “Efficient Generation ohktw Circuits

- . . . for GSTE Assertion Graphs,” imternational Conference on Computer-
SAT, and efficiently realizable in hardware), and reconfig-  aiged pesign IEEE/ACFI)\/I 2003, pp. 154-159. P

urable BackSpace architectures (how much smaller can th® N.F. Kelly and H. E. Stump, “Software Architecture of Warsal Hard-

signatures be if they are tailored to a specific target state) nare '\gggle;)’; igs;f%g‘;a” Design Automation Conference (EDAC)
A specific idea, which we have yet to explore but which Weo] R Kuppuswamy, P. DesRosier, D. Feltham, R. Sheikh, and

believe can greatly reduce signature size, is to use extterna P. Thadikaran, “Full Hold-Scan Systems in Microprocessors

constraints to prune the pre-images. For example, on toy ggsgg_e;‘;fi;eﬁrfgjiszggze' Technology Journal vol. 8, no. 1,
benchmark circuits, constraining the pre-image by thehreagi1; M. Larouche, Infusing  Speed and  Visibilty  into

able states of the circuit results in vastly smaller pregesa ASIC  Verification ~ January ~ 2007.  [Online].  Available:
(equivalently, allows a smaller signature size). Obviguil www.synplicity.com/literature/whitepapers/pdf/tatatall wp_1206.pdf

12] S. Mitra and K. S. Kim, “X-Compact: An Efficient Respons&om-
we could compute the exact reachable state set, then [Wel paction Technique for Test Cost Reduction,” International Test

would use pure formal verification to hit the target state, Conference (ITC) IEEE, 2002, pp. 311-320. _
obviating the need for the BackSpace approach. But a crUdf@ J- A M. Nacif, F. M. de Paula, C. N. Coelho, Jr., F. C. Sitl Foster,

. . . . A. O. Fernandes, and D. C. da Silva, “The Chip is Ready, Am |
over-approximation of the reachable states might be efffiigie done? On-chip Verification using Assertion Processorsifriernational

computable even for a large design, yet provide useful pgini Conference on Very Large Scale Integration of System-ap-GHLSI-
of the pre-images. Similarly, we are not currently using  SoC) IFIP WG 10.5, 2003, pp. 111-116.

. . . . . [14] S.-B. Park and S. Mitra, “IFRA: Instruction FootprinteBording and
constraints on the primary inputs to reduce pre-image size. Analysis for Post-Silicon Bug Localization in Processoris, 45th

For example, logic analyzer traces or knowledge about the Design Automation Conference ACM/IEEE, 2008, pp. 373-378.

bring-up tests could be used to constrain the primary inpdt8] B. Quinton and S. Wilton, “Concentrator Access Netv@ror Pro-
g-up P y inp grammable Logic Cores on SoCs,” IREE International Symposium

when computing pre-ir_naggs. _ on Circuits and System&@005, pp. 45-48.
The other main direction for further research is befi6] —, “Programmable Logic Core Based Post-Silicon Debog SoCs,”
ter handling of realistic designs: partial state monitgrin g‘og;h IEEE Silicon Debug and Diagnosis Workshdpermany, May

randomness/non-determinism, multiple clock domains, apd; s. safarpour, H. Mangassarian, A. Veneris, M. H. Lifiitand K. A.
circuit marginality and faults. For each of these, there is Sakallah, “Improved Design Debugging Using Maximum Satsifity,”
a straightforward, brute-force attack (partial states aod- in Fcig”ﬁ'g'\"ethc’ds in Computer-Aided Design (FMCADIEEE, 2007,
determinism were described already, multiple clock domaipg; E?'Singha{, K. S. Venkatraman, E. R. Cohn, J. G. Holm, DKAufaty,

can be conservatively approximated by a single state machin  M.-J. Lin, M. J. Madhav, M. Mattwandel, N. Nidhi, J. D. Pearesd

; ; inali M. Seshadri, “Performance Analysis and Validation of thiellfPentium
and CI!’CUIt marglnallty/faults can be h{.jmdl.ed anaIOgouely 4 Processor on 90nm Technologyyitel Technology Journalvol. 8,
fault S|_mulat|on. for each postulated circuit fault, we eap no. 1, pp. 34-42, February 2004.
the entire BackSpace framework), but much more elegant dael M. J. Y. Wiliams and J. B. Angell, “Enhancing Testalyliof Large-
efficient approaches are Iikely necessary and possible. Scale Integrated Circuits via Test Points and Additionagicg IEEE

Transactions on Computersol. C-22, no. 1, pp. 46-60, January 1973.
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