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Abstract—Post-silicon debug is the problem of determining
what’s wrong when the fabricated chip of a new design behaves
incorrectly. This problem now consumes over half of the overall
verification effort on large designs, and the problem is growing
worse. We introduce a new paradigm for using formal analysis,
augmented with some on-chip hardware support, to automatically
compute error traces that lead to an observed buggy state,
thereby greatly simplifying the post-silicon debug problem. Our
preliminary simulation experiments demonstrate the potential
of our approach: we can “backspace” hundreds of cycles from
randomly selected states of some sample designs. Our preliminary
architectural studies propose some possible implementations and
show that the on-chip overhead can be reasonable. We conclude
by surveying future research directions.

I. I NTRODUCTION

Post-silicon debug (AKA post-silicon validation, silicon
debug, silicon validation) is the problem of determining what’s
wrong when the fabricated chip of a new design behaves
incorrectly. The focus of post-silicon debug isdesign errors,
whereas VLSI test focuses on randomdefectsintroduced dur-
ing the manufacturing process of each chip. Post-silicon debug
currently consumes more than half of the total verification
schedule on typical large designs, and the problem is growing
worse.1 Even worse, the schedule variability is greatest post-
silicon, creating unacceptable uncertainty in time-to-market.

The problem is easy to understand from a typical scenario:

After a long development process, first silicon
(or second, or third...) comes back from the fab.
Yield is mediocre, but several “good” die pass the
manufacturing tests and make it to the bring-up lab.
Power-on reset and basic functionality tests work.
But 30 seconds into booting the OS, the chip crashes.
Worse yet, every single “good die” crashes in the
same way.
Scanning out the state of the crashed chips show

an internal data structure (e.g., a routing table or
a coherence directory) has been corrupted in an
inexplicable manner. The logic analyzer dumps from
just before the crash show routine traffic to/from
memory and I/O devices. The stimulus to generate
the crash (i.e., booting the OS for 30 seconds) is
far too deep to replay in simulation or by single-
stepping the die, and trying to hit the crash state with
full-chip formal verification exceeds the capacity

1Andreas Kuehlmann, personal communication, September 21,2006. Ref-
erences [1], [6] also report a large fraction of total verification cost occurring
post-silicon.

of the formal tools. Increasingly many engineers,
from many different teams (pre-silicon verification,
design, test, architects, OS, drivers,...) get sucked
into the debugging effort. Yet debugging proceeds
painfully slowly, because everyone is flying blind,
trying to guess what happened.

Obviously, the fundamental problem is observability — to
debug a chip, we must know what is happening. With increas-
ing technology scaling, higher speeds, and greater integration,
there is simply no longer enough I/O to be able to debug
effectively: pin counts are limited; I/O pads are too costly
(area and power) and slow; and single-stepping and scanning
out the state every clock cycle is far too slow.

This paper introduces a novel paradigm for using techniques
from formal verification, augmented with some on-chip sup-
port logic, to greatly enhance observability of the execution
leading up to the observed buggy behavior. Specifically, we
allow the chip to run at full speed, yet provide the ability to
“backspace” hundreds, perhaps thousands, of cycles from a
crash state or a programmable breakpoint, to derive an error
trace that led to the crash, which can then be replayed in a
simulator or waveform viewer to help understand the bug. In
a nutshell, the basic framework consists of adding circuitry
to monitor architecturally key operating points and recorda
small signature of the monitored information. During debug,
this signature, as well as the crash state, can be scanned
out using existing on-chip test access mechanisms. By itself,
the signature provides insufficient information (lossy) and
would be meaningless to a human, but we can combine this
information with formal analysis of what is possible in the
design (by computing pre-images) to determine the unique,
or nearly unique, predecessor states that led to the crash
state. Such an approach can backspace only a limited number
of cycles, so we also add circuitry to the chip to allow
programmable breakpoints. By setting a predecessor state as a
breakpoint, we can re-run the failing test on-chip (e.g., booting
the OS), but crash some number of cycles earlier, then scan
out the new crash state and signature, and iterate the entire
process to compute arbitrarily long back traces.

This work can revolutionize post-silicon debug, but it is still
in its infancy and not yet practical. This paper presents the
basic framework and preliminary results demonstrating both
potential and limitations. We conclude by surveying future
research directions.



A. Related Work

There is no closely related work to what is presented in this
paper. Under the broad rubric of using formal methods to aid
post-silicon debug, however, there are a few related papers.
Ahlschlager and Wilkins [2] describe their experience directly
using a model checker for post-silicon debug: they write a
formal property to describe the observed buggy behavior and
ask the model checker to generate a trace. Such an approach
is ideal when the model checker can verify the entire chip or
when the debug engineer correctly maps the observed chip-
level buggy behavior onto a block-level formal specification,
neither of which can be counted on. Safarpour et al. [17]
address the problem as rectification: they assume that design
errors/fixes can be modeled by injecting corrected values at
various points in the circuit and use a MAX-SAT solver to
find a smallest set of locations to inject values to correct
the behavior on a specific set of test cases. This work is
simultaneously much more limited than ours (simplistic model
of design errors, limited test cases, scalability issues),yet
also much more ambitious (attempting to correct the design
automatically). Several groups have proposed leveraging the
intellectual investment into formalspecificationsduring post-
silicon debug, by compiling the formal specifications into on-
chip monitor circuits (e.g., [13], [8], [4]). Such an approach
provides enhanced observability into what went wrong if an
on-chip monitor catches an assertion violation, but doesn’t
leverage formalverification technology to aid debugging.

Of course, industry has been doing (and struggling with)
post-silicon debugging without the benefit of formal methods
since the dawn of VLSI. Very little has been published about
current techniques and methodologies, although anecdotally,
we know that practices vary enormously between companies,
e.g., a small company with a high-margin, low-volume product
can’t afford specialized high-end test equipment but can toler-
ate more die area overhead for debugging support, whereas
a large company with a high-volume product might spend
enormous up-front NRE costs to shave on-chip overheads to
the bare minimum. On one extreme, some companies are not
even using existing on-chip test access mechanisms to aid
debugging, relying instead on manually modifying bring-up
programs and observing the results; on the other extreme,
some companies have purpose-built bring-up hardware and
sophisticated logic analyzers that allow intercepting, recording,
and replaying all traffic between the chip and its environment
(e.g., [18]). Despite this variation, our work and existing
methods share similarities, based on the common underlying
constraints:

• It is possible to get a fairly complete snapshot of the
internal state of a chip, albeit very slowly. The most basic
mechanism is the scan chains [19] present on almost all
chips to allow efficient manufacturing test. A chip with
scan can be configured into test mode, in which most or
all of the latches on the design are connected together
into a small number of very long shift registers. At any
point in time, the chip can be stopped, and the values

of the latches can be shifted in or out. With hold-scan
latches, it is even possible to scan out a snapshot of the
state of the chip at one point in time, while allowing the
chip to continue to execute during the scan-out process,
at the cost of substantial on-chip overhead [10]. In our
work, we assume the existence of full scan on the chip,
but do not require hold-scan latches.

• A very limited history of some number of signals can be
recorded at full speed on-chip, and this history can be
read out (very slowly), e.g., via the scan chains. These
mechanisms (“on-chip logic analyzers”, “trace buffers”)
typically consist of a flexible mechanism to access desired
signals on-chip and some way to store the signals for later
read out (e.g., RAM or specialized cells [3]). The main
trade-off is that considerable die area overhead must be
used for each cycle’s worth of history for each signal
monitored, severely limiting how much history can be
stored.
The signature generation in our method can be viewed
as a generalized, optimized trace buffer, using formal
verification techniques to enable reconstruction of a fully
detailed trace from compressed signatures. We rely on
prior work on access mechanisms to observe on-chip
signals. In this paper, we consider one efficient, flex-
ible, and reconfigurable architecture that provides this
access [15]. Abramovici et al. [1] propose a different
reconfigurable architecture, also with the goal of pro-
viding efficient signal access for debugging. Also, many
companies have their own, in-house access mechanisms
to help in debugging (e.g., [7]), but published details
are sparse. Nevertheless, the sort of on-chip access we
assume are clearly very realistic. For signature storage,
our area models assume SRAM (Section IV).

• In many debugging scenarios, standard off-chip logic
analyzers are helpful. As mentioned above, in the extreme
case, specialized hardware and a great deal of high-end
test equipment can be used to record and replayall I/O
signals between the chip and its environment, allowing
deterministic repeatability of the stimulus that triggered a
bug on-chip. The main drawbacks are the high cost of the
test equipment, the extremely limited ratio of observable
I/O pins and pads versus the internal state of the chip,
the inability to debug internal IP blocks, and the ability to
debug the chip only in the specialized bring-up system —
sometimes, a bug will manifest itself only in some OEM
system but not in the original bring-up system. Note also
that even in the extreme case, the logic analyzer traces
alone do not allow us to reproduce the bug in a logic
simulator, since we don’t know the internal state of the
chip to start the simulation. Our method does not require
off-chip logic analyzer traces and hence does not suffer
the drawbacks. However, if such traces are available, we
could use them to reduce our on-chip overhead.

• The only mechanism fast enough to run the actual bring-
up of the chip, in an actual system, on actual data, is the
chip itself. There is no way to simulate an extremely deep



trace (e.g., even 30 seconds of real execution time), and
no way (without formal verification techniques, as in this
paper) to go backwards from a state of interest on the
actual silicon to determine what happened beforehand.

The goal, of course, is to determine what happenedbeforethe
crash occurs, but we do not knowa priori when that will be.
Accordingly, current methods typically attempt to find some
way to scan out a complete state snapshot some number of
cycles before a crash state happens, and then use that state
along with the recorded I/O behavior to simulate the chip from
shortly before the crash up until the crash, e.g.,:

• Periodic Sampling. The chip can be stopped at regular
intervals to scan out a snapshot of the internal state
and then allowed to continue execution. With hold-scan
latches, the chip need not even be stopped. When the
crash occurs, the most recent snapshot and the logic
analyzer traces of the I/O can be used to recreate the bug
in simulation. An obvious problem is that stopping the
chip disturbs system-level timing interactions, potentially
changing the execution and hiding the bug. Furthermore,
because the scan-out process is so slow, the interval
between snapshots must be long, meaning that the most
recent snapshot might be too far in the past.

• Cycle Counters. If the chip’s behavior and the system
environment are both deterministic (or the I/O behavior
has been recorded and can be replayed), then a simple
cycle counter can be used. When a crash occurs, we
record when it happened, and then we re-run the system,
but scan out a snapshot when the cycle counter is a
convenient number of cycles prior to the crash. Non-
determinism is the main difficulty for this approach,
obviously in the system environment (e.g., when a disk or
network interrupt occurs), but also on-chip (e.g., multiple
independent clock domains, arbitration, PLL lock times).

• For a system implemented on FPGAs, the problem of
system-level non-determinism can be eliminated by du-
plicating the entire design [11]. One copy of the design
runs in the system as usual; the second copy has all of
its inputs delayed in a FIFO. When the first copy hits the
bug, it triggers trace recording on the second copy. For a
non-FPGA design, it’s obviously impractical to duplicate
the design on-chip, but if two identical dies are available,
both of which are fully deterministic in an identical
manner, one could imagine building a specialized bring-
up board that implements this solution.2 Aside from the
determinism restriction, the obvious problems with this
approach are the cost of the purpose-built bring-up system
and the likelihood that bug behavior will be different
between that system and real OEM systems.

In contrast to the above methods, our method eliminates the
challenge of trying to determine when to take a snapshot of the
internal state just before the crash is about to happen; instead,
the formal analysis allows us to compute the predecessor state
directly.

2This idea was suggested to us by Igor Markov, June 30, 2008.

Our work is focused on design errors that escape pre-silicon
verification and end up on the actual chip. A complementary
post-silicon debug problem, for which there is also very little
research, is to help identify and repair physical, electrical, and
timing errors on-chip. Chang et al. [6] propose a methodolog-
ical framework for this class of problems. Park and Mitra [14]
also focus on electrical bugs and propose a processor-specific
technique using summaries of in-flight instructions in the
processor. A post-analysis over these summaries helps locate
the source of the bug. The main similarity between their work
and ours is the collection of information from the design via
summaries (signatures), and then using that information inthe
post-analysis. Their approach demonstrates very low overhead,
but is narrowly specific; our approach is not processor-specific,
but currently has excessive overhead.

One insight behind our approach is that the actual silicon
is so fast that it can be used to re-run some input stimuliab
initio repeatedly, to compute the state of the chip at different
points in time. This insight echoes a similar computation used
for “hardware modeling”, in which an actual chip is used in
a special modeling system to emulate its own behavior during
system-level logic simulation [9].

II. BASIC FRAMEWORK

A. Intuition and Assumptions

The basic problem is that we have observed the chip in
some buggy state, and we have no idea how that could have
happened. The goal is to explain the inexplicable buggy state,
by creating a “backspace” capability — iteratively computing
predecessor states in an execution that leads to the bug. The
resulting trace can be viewed like a simulation waveform, ex-
cept it shows what actually happened just before the bug/crash
on the real silicon.

We assume that the problem occurs at a depth and complex-
ity not trivially solved by existing methods. For example, if the
full chip can be handled in a model checker, we can simply
ask the model checker to generate a trace to the observed
buggy state. This solution is not realistic for complex designs,
because of the capacity limits of model checkers. Alternatively,
if the bug occurs extremely shallowly during bring-up, we
could run the bring-up tests on the simulator, or via single-
stepping the chip (scanning in a state, pulsing the clock,
scanning out the state). Such an approach is also not realistic:
the roughly billion-to-one speedup of the actual silicon versus
full-chip simulation means that one second of runtime on-chip
equals decades of run time in simulation, and within seconds
of first power-on, the silicon has executed more cycles than
months of simulation on vast server farms. Trying to reproduce
the bugab initio in simulation is clearly not feasible. Similarly,
trying to monitor externally the full execution trace of thechip
running full-speed is electrically impossible.

We start with a few simplifying assumptions:

• It must be possible to recover the state of the chip when
an error has occurred. For example, this could be done
with the chip in test mode, via the scan chain.



• The key assumption is that since we are focusing on
design errors, we will assume that manufacturing test-
ing has eliminated manufacturing defects. Therefore, we
assume that the silicon implements the RTL (or gate-level
or layout or any other model of the design that can be
analyzed via formal tools).

• The bring-up tests can be run repeatedly and the bug
being targeted will be at least somewhat repeatable (one
out of everyn tries, for a reasonably small value ofn).

Later, we discuss how the framework changes when we relax
these assumptions, e.g., partial scan, mixtures of design errors
and defects, and non-deterministic errors due to marginal
circuits, process variability, etc. Even without the relaxations,
though, the problem is real, and a solution would be valuable.

Our framework consists of adding some debug support to
the chip: a signature that saves some history information but
otherwise has no functional effect on the chip’s behavior, and a
programmable breakpoint mechanism that allows us to “crash”
the chip when it reaches a specified state. Given these, the
approach repeats the following steps

1) Run the chip until it crashes or exhibits the bug. This
could be an actual crash or a programmed breakpoint.

2) Scan out the full crash state, including the signature.
3) Using formal analysis of the corresponding RTL (or

other model), compute the predecessor of the crash state.
The signature must provide enough information to allow
only one (or a few) possible predecessor state.

4) Set the computed predecessor as the new breakpoint.

until we have computed enough of a history trace to debug
the design (or Step 3 fails). Each iteration of the loop is like
hitting “backspace” on the design – we go back one cycle.
The approach exploits the capabilities of different analyses:
formal analysis is very slow with limited capacity, but can go
forward or backwards equally well; simulation is too slow to
run in a real system with actual software, but the visibility
of a simulation trace is user-friendly and well-accepted for
design understanding and debugging; the actual silicon runs
full-speed, rapidly hitting bugs that may have escaped pre-
silicon validation, but offers very poor visibility and no way
to backspace to see how the chip arrived in some state.

B. Theory

We model the system in the usual manner as a finite state
machineM , with S latches andI inputs, initial states Init⊆
2S , and transition relationδ ⊆ 2S × 2I × 2S. We allow the
transition relation to be non-deterministic, so the formalism
can handle randomness in the bring-up tests as well as transient
errors, race conditions, etc.

Given a state machineM , we can build an augmented
state machineM ′ which has the same behavior asM (when
projected onto the originalS latches), but has an additionalT
latches of signature. TheT signature latches are not allowed
to affect the behavior ofM , so the transition relation ofM ′

is a pair of relations: the originalδ ⊆ 2S × 2I × 2S as well as
a δ′ ⊆ 2S × 2T × 2I × 2T . In other words, the next signature

can depend on the signature as well as the state and inputs,
but the next state cannot depend on the signature.

Definition 1 (Backspaceable State): A state(s′, t′) of aug-
mented state machineM ′ is backspaceable if its pre-image
projected onto2S is unique, i.e.,:3

∃!s∃t, i[((s, i, s′) ∈ δ) ∧ ((s, t, i, t′) ∈ δ′)]

In general, a signature might contain enough information to
allow computing multiple cycles of unique pre-images. In that
case, the theory changes in the obvious manner to backspace
multiple cycles from each run of the chip. Currently, we
envision such multi-cycle signatures to be simply a series of
single-cycle signatures, stored via pipelining in the signature
collection circuitry or in efficient SRAM structures (Sect.IV).
To simplify the exposition in this paper, we describe backspac-
ing only a single cycle at a time.

Definition 2 (Backspaceable Machine): An augmented
state machineM ′ is backspaceable iff all reachable states
are backspaceable. A state machineM is backspaceable iff
it can be augmented into a state machineM ′ for which all
reachable states are backspaceable.

The algorithm to compute the states prior to the crash state
starts from a given crash state and then iteratively computes
its predecessors, going backwards in time:

Algorithm 1 (Crash State History Computation): Given a
state(s0, t0) of a backspaceable augmented state machineM ′,
compute a finite sequence of states(s0, t0), . . . , (sk, tk) as
follows:

1) SinceM ′ is backspaceable, letsi+1 be the unique pre-
image state (in the state bitsS) of (si, ti).

2) Run M ′ (possibly repeatedly) until it reaches a state
(si+1, x). Defineti+1 = x.

Theorem 1 (Correctness of Trace Computation): If started
at a reachable state(s0, t0), the sequence of statessk, . . . , s0

computed by Algorithm 1 is the suffix of a valid execution of
M .
Proof Sketch: For any state(si, ti) in the sequence, we must
prove that two properties hold forsi+1: first, that si+1 is a
predecessor ofsi in M , and second, thatsi+1 is a reachable
state inM . By the definition of pre-image, there existsx such
that (si+1, x) is a predecessor of(si, ti). By the definition
of the augmented state machine,si cannot depend onx, so
thereforesi+1 must be a predecessor ofsi. That establishes
the first property. For the second property, becauseM ′ is
backspaceable,si+1 is the same for all predecessor states of
(si, ti). Therefore, any executionσ′ of M ′ that reached(si, ti)
must have gone through a state(si+1, x) for somex. Because
the signatures cannot affect the state latches, the projection of
σ′ onto the state latches is a valid execution ofM and goes
through the statesi+1. Hence,si+1 is a reachable state ofM .

If the state machine as well as the environment/testbench
are deterministic, then Algorithm 1 not only givesa valid
execution, butthe execution ofM that led to the crash state,

3The notation∃! denotes “There exists a unique....”



because the executionσ′ will be the same when computing
each state in the sequence. In the presence of randomness, the
algorithm still works, but with a constant factor expected slow-
down: if the bug appears in1 out of n runs, then we expect
to need to repeatn times step 2 per iteration of Algorithm 1.
Similarly, if the pre-image is not unique, but there arek states
in the pre-image, we can try step 2 for each of thek possible
pre-image state, resulting in a constant factork/2 expected
slow-down. There is no combinatorial blow-up, as there would
be for backward reachability. Definitions 1 and 2 generalize
naturally to “k-backspaceable” for a given boundk.

An important caveat is that, under the assumption of
true non-determinism, termination of the algorithm is not
guaranteed. For example, it is conceivable that setting the
programmable breakpoint hardware to target statesa will
result in an executionσa that reaches(sa, ta) from a state
(sb, x), but if we reprogram the breakpoint hardware to target
statesb, subtle electrical effects might cause the chip to follow
a different executionσb that reaches(sb, tb) from some state
(sa, y). In this case, Algorithm 1 will still compute a valid
execution ofM , as indicated by the theorem, but this execution
won’t make any progress toward the initial states. Fortunately,
if non-determinism in the model is really randomness, with
non-zero probability of choosing all legal transitions, then we
can prove termination with probability 1:

Theorem 2 (Probabilistic Termination of Algorithm 1): If
we terminate Algorithm 1 when the computed sequence
reaches an initial state ofM , and if the executionsσ′ of M ′

are chosen randomly such that all valid transitions have non-
zero probability, then termination occurs with probability 1.
Proof Sketch: At all times, the state being considered in
the algorithm is reachable. Hence, there is an executionσ′

of length l that reaches the target state, and this execution
occurs with non-zero probability. If this execution gets chosen
repeatedlyl times (an event that also occurs with non-zero
probability), then the algorithm will terminate afterl iterations.
Otherwise, the algorithm continues from another state. Hence,
the algorithm is a random walk backwards on the state
space, where the initial states are sink states and all states
are reachable from the initial states. With probability 1, the
random walk must terminate in a sink state.

In practice, we do not expect these issues of non-determinism,
randomness and termination to be a problem. The main diffi-
culty with randomness will be the number of trials required to
hit a breakpoint state when the chip runs — if the probability
is low, many runs will be needed for each backspace step.

Algorithm 1 performs repeated pre-image computation,
which can be expensive. We encountered problems in our
initial experiments with BDDs and All-SAT. A key insight
greatly improved efficiency:

We need compute only whether a state has a unique
pre-image state or not (or whether it has more than
k pre-image states fork-backspaceability).

This insight means we can use a state-of-the-art, off-the-shelf
SAT solver to search forany pre-image state. If one is found,

2^n − 1

3

2

1
0

Fig. 1. State Machine Requiring|S| Extra State Bits to Be Backspaceable

then we add just one blocking clause to eliminate that solution
and run the SAT solver a second time, to see if the first solution
was unique.

To scale to full-size industrial designs, it is likely that
not all state bits will be scannable and breakpointable. In
that case, the above theory generalizes exactly as abstraction
applies to model checking. Algorithm 1 will compute an
abstract execution, over the subset of the state bits that are
scannable/breakpointable. This execution will be the suffix
of a valid execution of the conservative abstraction ofM
onto the subset of state bits. Hence, there will be the same
risk of false abstract execution paths, exactly as in abstract
model checking. Standard concretization heuristics from ab-
stract model checking may help. It is also likely that the
abstract trace may be suggestive enough of what actually
happened on-chip to help the debug engineer understand what
caused the crash/error, even if the trace can’t be or hasn’t been
concretized. For example, an abstract trace might indicatethat
the error occurs when a certain type of transaction encounters
a specific exception condition at the exact cycle that another
event occurs, but without indicating the specific data values in
the trace.

C. Backspace Coverage

Is it always possible to augment any state machine to make
it backspaceable? The answer is yes. We can simply make
|T | = |S| and set upδ′ to copy the values in the latches ofS
to the latches ofT . In other words, we can always backspace
to a unique predecessor state because we have stored that state.

Is it possible to do better, to make any state machine
backspaceable using fewer than|S| additional latches? Un-
fortunately, in the worst case, the answer is no. For a simple
example, consider the state machine in Figure 1. This example
is a simplen-bit counter, with a single input. If the input is
low, the counter transitions to the 0 state; otherwise, it counts
up. Almost all states have only a single predecessor, making
them backspaceable with no additional signature. However,
the 0 state has every state as a predecessor. To make the
machine backspaceable, we must add the fulln additional
state bits, just to handle one particularly bad state. We call such
states “convergence states” because many incoming transitions
converge on them.

Figure 1 shows that in the worst case, we can do no
better than by storing a copy of all the state bits. However,
it also suggests that we might be able to do much better



for most states. Is it good enough if we make most states
backspaceable?

Definition 3 (Backspace Coverage): Given state machine
M augmented intoM ′, the backspace coverage ofM ′ for
M is the fraction of the reachable states ofM ′ that are
backspaceable.

Can we get good backspace coverage with much fewer
than |S| bits in the signature, or more to the point, can we
backspace a long enough trace to be useful before hitting a
convergence state? The convergence states are likely to be
states that are easy to get to and easy to understand (like
reset or idle states); backspacing to a convergence state may
be sufficient for debugging purposes. In the next section,
we explore whether we can make this theory work on some
sample open-source designs.

III. PRELIMINARY EXPERIMENTS

A. Experimental Setup

We present our experiments on two small proces-
sors/microcontrollers. The research is still highly exploratory,
so we have chosen to focus on a small number of design
examples: we often needed detailed understanding of the
designs to generate good research hypotheses. The designs
also had to be small enough so that repeated experiments were
feasible, and so that the supporting algorithms and tools that
are not germane to this research did not need to be highly
optimized. On the other hand, the designs must be realistic,
to capture characteristics of real designs.

The two processors are a 68HC05 and an 8051. These are
both open-source designs from opencores.org that are rebuilds
from datasheets of the respective classic 8-bit microcontrollers
from Motorola and Intel. The 68HC05 is smaller, with 109
latches. The 8051 implementation has 702 latches. In both
cases, we developed a simulation testbench based on the
testbenches supplied with the designs: the 68HC05 ran real
LED and LCD controller applications, and the 8051 ran some
small software routines.

For our experiments, we treated the design running on a
commercial logic simulator as if it were the actual chip running
on silicon. We simulated the designs for an arbitrary number
of cycles and randomly selected 10 states each to serve as
“crashed” states for our analysis. In addition, our testbench
also recorded the immediate predecessor state before the crash
state (which wouldn’t be possible in silicon); this predecessor
state is the correct answer that our backspace analysis is trying
to recover. Thus, we have 10 pairs of states per design to serve
as testcases.

B. Signature Functions

As a first step, we needed to find some plausible signature
functions. We concentrated on the 68HC05 and tried a variety
of approaches. Fig. 2 summarizes the results of our experi-
ments.

Our first idea was to try a quick experimental upper bound
on the size of the signature. We created the signature as a
randomly selected subset of all state bits. Unfortunately,this
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Fig. 2. Results for Compressed Signatures Based on Architectural Insight.

approach fared poorly: 90% of the state bits were needed in
the signature before the median size of the pre-image was 1,
and even with 95% of the state bits in the signature, only 7
out of 10 of our test states had unique pre-image states.

In real life, the designers understand their design, and
architectural insight might allow selecting a particularly good
subset of the state bits to use as a signature. Based on a
careful study of the 68HC05, we identified 38 latches (35%
of the design) to use as the signature. This approach was
very successful, yielding unique pre-image states for all 10
test cases.

Spurred by that success, we tried some simple checksums
on those 38 bits, reducing the number of bits used to 6, then
12, and then 19. These results were not very successful at
getting unique pre-image states, but the plot suggested that
better compression would be promising.

Accordingly, we tried a perfect hash function — universal
hashing [5] (essentially the same as X-Compact [12], which
is easier to implement on-chip) to compress the 38 bits to 6,
19, and 25 bits. These results demonstrated the promise of
universal hashing.

In all of these experiments, computations were fast, and the
SAT solver had no problem computing pre-image states.

C. BackSpacing

With some promising ideas for signature functions, we
proceeded to the real test: can we backspace for hundreds of
cycles from the random crash states? We created an automatic
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framework to experiment and explore the BackSpace paradigm
(Fig. 3). The components of the framework are the BackSpace
Manager, a commercial logic simulator, and a SAT solver.
The input to the framework is a synthesized design (gate-level
netlist). The logic simulator plays the role of the silicon:we
use it to run our testbench, exactly as the real silicon would
run bring-up tests. The SAT solver is the engine to compute
the required pre-image states. The core of the framework is
the BackSpace Manager.

The BackSpace Manager coordinates the logic simulation
and the SAT solving tasks by dispatching each task and
processing their intermediate results (shown as the double-
headed arrow in Fig. 3). For logic simulation, the BackSpace
Manager automatically generates a testbench instance based on
the synthesized design, dispatches the logic simulation, awaits
its termination, and captures the crash state and signature.
For SAT solving, given the crash state and the signature,
the BackSpace Manager generates a SAT problem instance.
When the SAT solver finds a solution, it means there is
one (more) state in the pre-image of the crash state. The
BackSpace Manager generates a blocking clause based on
this solution and asks the SAT solver for another solution.
If another solution is found, this process repeats until there
are no more solutions. At that point, a single state or a
set of states is available as candidate states prior to the
crash state. The task now is to find which candidate state
is the actual one. The BackSpace Manager dispatches logic
simulation, setting a candidate state as a simulation breakpoint.
If simulation reaches the breakpoint, it means we have a new
crash state and a signature. This process continues until we
have “backspaced” some pre-determined number of cycles. If
simulation does not reach the breakpoint, it means we need
to try another candidate. For our logic simulator, we used
Synopsys VCS (version 7.2), and for our SAT solver, we used
Minisat (version 2.0). Due to VCS licensing issues and GCC
compatibility problems, we had to run these tools on different
machines: logic simulation was run on a Sun Fire V880 server
(UltraSPARC III at 900Mhz); SAT solving was run on an Intel
Xeon at 3.00GHz.

We ran experiments for both the 68HC05 and the 8051. For
each, the goal was to see how far we could backspace before
the pre-image set got too large or the computation blew-up.

Crash # of Cycles Max States Sim Sat Manager
State BackSpaced in PreImg Time Time Time
s1 54 4096 63.44 0.93 204.42
s2 1 65536 1.45 86.61 4.38
s3 37 4096 62.65 0.71 139.67
s4 7 4096 37.76 0.52 27.11
s5 53 4096 116.16 0.92 200.34
s6 500 1 1261.48 3.24 1884.31
s7 500 1 2384.29 3.15 1890.91
s8 500 1 4575.41 3.01 1893.89
s9 2 4096 22.93 0.51 22.93
s10 9 65536 2424.55 91.18 34.86

“Sim Time” is the time spent in the logic simulator. This timewould be
replaced by time running on the actual silicon. “Sat Time” isthe time spent in
the SAT solver. “Manager Time” is the time spent by the BackSpace Manager
to supervise the framework and connect the various tools. Our BackSpace
Manager implementation is very preliminary and can be optimized extensively.

TABLE I
68HC05W/ 38-BIT SUBSET HAND-CHOSENSIGNATURE

Crash # of Cycles Max States Sim Sat Manager
State BackSpaced in PreImg Time Time Time
s1 500 2 1097.25 185.57 8524.15
s2 500 2 2011.04 187.21 8397.09
s3 500 2 2737.15 171.57 8335.45
s4 500 2 2988.38 242.89 8477.88
s5 500 2 3358.40 216.81 8398.14
s6 500 1 3176.94 31.89 8175.62
s7 500 1 6247.61 31.42 8280.93
s8 500 1 12207.49 38.58 8297.21
s9 500 2 15280.79 42.31 8173.19
s10 500 1 34084.53 36.63 8125.62

TABLE II
68HC05W/ 38-BIT UNIVERSAL HASHING SIGNATURE

For the 68HC05, we reused the signature consisting of a hand-
selected subset of 38 of the 109 total state bits, chosen based
on our insight into the design. We also tried a 38-bit hash
generated via universal hashing over the 109 state bits. For
the 8051, we hand-selected a 281 bit subset of the 702 total
state bits to be the “human architectural insight” signature. We
also tried to use a 281 bit universal hash of the 702 state bits.

In these experiments, we used thek-backspaceable compu-
tation (i.e., pre-image sets are allowed to have up tok states),
with k set to 300 states. To keep our experiments manageable,
we also set an upper limit of 500 cycles of backspacing per
test crash state.

Tables I and II show the results for the 68HC05. With the
hand-chosen subset of bits, we hit our 500 cycle limit on 3
of the 10 test crash states. But on 4 of the 10, we cannot
backspace more than a handful of cycles. With a universal hash
of the same size, all 10 test crash states can be backspaced
to our limit, and all of the pre-images are very small. In
Section IV, we will see that a hand-chosen subset of bits is
a very low-overhead signature, whereas universal hashing all
bits of a large design appears to be prohibitively expensive.
We can see the trade-off between quality and cost.

Table III presents the results for the 8051 using the hand-
chosen subset of the state bits as the signature. The resultsare



Crash # of Cycles Max States Sim Sat Manager
State BackSpaced in PreImg Time Time Time
t1 205 512 2841.07 4.58 6048.46
t2 500 256 21759.74 9.70 14720.71
t3 500 257 8326.66 10.84 14746.10
t4 500 257 10342.40 10.77 14772.03
t5 500 256 11587.21 11.26 14742.81
t6 500 256 11581.93 8.72 14735.07
t7 500 255 25767.40 8.54 14742.60
t8 500 256 13581.20 11.57 14759.73
t9 500 257 22493.04 10.62 14735.48
t10 500 257 24793.42 10.81 14759.77

TABLE III
8051W/ 281-BIT SUBSETHAND-CHOSENSIGNATURE

Crash # of Cycles Max States Sim Sat Manager
State BackSpaced in PreImg Time Time Time
t1 500 8 138616.15 1379.21 55389.29
t2 500 4 497905.92 1350.15 55104.32
t3 500 4 191655.42 1378.15 55462.20
t4 500 4 183283.27 1383.10 55642.82
t5 500 8 431057.79 1377.87 55039.00
t6 500 4 151950.65 1399.62 55601.11
t7 500 4 506787.53 1388.94 55639.58
t8 500 8 506229.79 1368.52 55512.44
t9 500 4 488157.90 1379.14 55049.31
t10 500 4 534870.14 1378.37 55448.52

TABLE IV
8051W/ 281-BIT UNIVERSAL HASHING SIGNATURE

excellent: we can backspace up to our 500 cycle limit in 9 out
of the 10 test crash states. Initially, we were unable to complete
results for the 8051 with a 281-bit universal hash. The SAT
solver blew up (1 hour timeout and 1GB memory limit) on
all 10 test cases. The universal hash function is essentially
a matrix-multiplication over GF(2), with a random matrix,
so it’s not surprising that large instances are challengingfor
current SAT solvers. However, with some more thought and
experimentation, we were successful with this experiment as
well. The key is that any full-rank matrix provides correct
universal hashing, but a sparse matrix will be easier for the
SAT solver, and also reduce area overhead, too. If we generate
the random hash matrix with a 0.985 probability of each entry
being 0, we can backspace up to our set limit for all 10 test
crash states. Furthermore, the number of states in the pre-
image is 2 orders of magnitude smaller for all crash states.
Table IV gives these results.

To summarize, the overall framework works. We can com-
pute hundreds of cycles of error trace backwards from a crash
state. Additional research will need to explore what sorts of
signature functions work well, and at what hardware cost.

IV. A RCHITECTURE ANDON-CHIP OVERHEAD

This section describes the circuity that must be added to
the integrated circuit to implement the framework. It also
estimates the area overhead of this circuitry.

A. Support Circuitry

Figure 4 shows how a Circuit Under Debug (CUD) can be
instrumented with a Breakpoint Circuit, a Signature Creation
circuit, and a Signature Collection circuit.

During debugging, as the circuit operates, the Signature
Creation circuit monitorsNmon of the Nstate state bits in
the CUD. In general,Nmon ≤ Nstate, but in this analysis,
we assume that all state bits are collected and used to form
a signature, soNmon = Nstate. Each cycle, the Signature
Creation circuit uses these state bits to construct a signature of
sizeSwidth; the construction of the signature will be described
below. The signature is then stored in a memory within the
Signature Collection circuit. The memory is arranged as a
FIFO buffer composed of an SRAM block and read/write
circuitry. The depth of this FIFO buffer dictates how many
consecutive states can be stored. Meanwhile, the Breakpoint
Circuit also monitors the state bits. When the state bits match a
predetermined state (the target state), a signal is sent to stop the
collection of signatures. The signature(s) stored in the buffer
can then be read out and processed as described in Section II.

The heart of the architecture is the Signature Collection
circuit. The simplest way to construct a signature is to simply
use the state bits directly. IfNmon = Swidth, then the history
of all flip flops is stored, and the circuit becomes trivially
backspaceable. IfNmon > Swidth, then missing bits must be
reconstructed using off-chip analysis as described in Section II.

If the set ofNmon signals cannot be determined at fabri-
cation time, the selection of these signals can be made pro-
grammable at debug-time using a concentrator network [15].
Such a network would programmably connect a subset of
the Nmon monitored signals for use in the signature. On-
chip SRAM bits (similar to configuration bits in an FPGA)
can be used to store the configuration of the concentrator. As
debugging proceeds, the configuration can be changed, so that
a different set ofNmon bits can be used in the signature.
An example of the use of a concentrator in a debugging
application can be found in [16]. Unlike the concentrators
described in previous work in which each bit can be switched
independently, we assume that the concentrator switches 8-
bit wide words; this reduces the area of the concentrator by
approximately 50%, while suffering only a small decrease in
flexibility.

Circui t  Under  Debug

Breakpoint
 Circuit

S ignature
Collection

Circuit

S ignature  
Creation Circuit

Breakpoint
Signal

Shif t  in
CSR bits

Read out
Signatures

N s t a t e
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N m o n

Fig. 4. Debugging Architecture
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Fig. 5. Area overhead for instrumented LEON3 processor

As described in Section II, a Universal Hash Function can
be used to compress the signature. This can be implemented as
an array of XOR gates within the Signature Creation Circuit,
and can be used with or without a concentrator network.

B. Area Overhead

In this subsection, we estimate the area overhead of our
circuitry. To make our results concrete, we present an estimate
of the area required to instrument a specific processor. In
Section III, we used implementations of 68HC05 and 8051
processors to illustrate the technique, but these processors
are too small to give meaningful area overhead estimates.
Instead, in this section, we focus on a typical instantiation
of the LEON3 open source processor,4 because it represents a
typical small-but-modern RISC processor, which is the natural
next step beyond the small microcontrollers of our initial
experiments. The LEON3 is a synthesizable, pipelined 32-
processor that is certified SPARC V8 conformant. It is highly
configurable, including support for multiprocessing, making it
an attractive testbed as we scale this research to increasingly
challenging designs. In this subsection, our LEON3 config-
uration has an area equivalent of 40,000 2-input nand-gates
and 2,500 flip flops (so,Nstate = Nmon = 2500). This
area estimate does not include any RAM used by the LEON3
(but we will include the area of the SRAM used to store the
signatures when computing the overhead of our method).

We first present results assuming that the Universal Hash
function is not used, and then discuss the overhead of the
hash function.

Figure 5(a) shows the area overhead as a function of the
ratio betweenSwidth and Nmon, for an architecture without
the Universal Hash function. Intuitively, if this ratio is 1, all
state bits are stored as a signature, and so the area is maximum.
As the ratio drops, the size of the memory decreases, reducing
the area overhead. The figure shows results for an architecture
with and without a concentrator; as described above, if a
concentrator is not present, the decision of whichNmon bits
must be fixed before fabrication, while if a concentrator is
present, this decision can be made during debugging. The

4http://www.gaisler.com

difference between the two lines in Figure 5(a) indicates the
area cost of this post-fabrication flexibility.

Figure 5(b) shows the area overhead results as a function
of the depth of the FIFO, assumingSwidth = 0.3Nmon. The
larger the depth, the higher the area overhead, but the more
cycles that can be backspaced per run of the CUD.

Much of the area overhead in our architecture is due to
the Breakpoint Circuit. This circuit requires storing eachbit
of the target state. As described in Section II, we could use
abstraction and match only a subset of the flip flops. Doing
so could greatly reduce the size of the circuit, at the cost of
losing precision in the debug traces.

Adding the universal hash circuitry to the Signature Creation
circuit increases the overhead dramatically. For small designs
(such as the 68HC05 described earlier), such circuitry may be
feasible. However, the size of a straightforward implementa-
tion of the hash circuit grows quadratically with the number
of inputs. For the LEON3, if we use a hash circuit similar to
what we used for the 8051, the estimated area overhead would
be unacceptable (almost 150%overhead). By intelligently
combining signals (such that the number of XOR gates grows
linearly with respect to the number of inputs), we might be
able to reduce the area overhead of this structure considerably.

More generally, we believe that signatures can be made
much smaller, likely by exploiting architectural insight and
design-specific characteristics. For example, Park and Mi-
tra [14] produce information-rich signatures with only 2% area
overhead, but narrowly tuned for an Alpha-like processor. We
are hopeful we will be able to achieve similarly low overheads
in future research.

V. EXTENSIONS AND RESEARCHDIRECTIONS

This paper introduces a novel paradigm for using formal
analysis in post-silicon debug and demonstrates its potential.
However, it is only a start. As with any new paradigm,
considerable further research remains to be done.

The primary direction for further research is scalability and
reducing overhead. As mentioned, we have started work on
implementing the BackSpace paradigm on physical hardware,
with a multi-thousand latch design. As the idea scales to



larger designs, new research challenges will reveal them-
selves. Some ideas already mentioned include abstraction
(with research questions of finding effective abstraction and
concretization techniques), better signature functions (that are
effective at constraining the pre-images, scalably solvable via
SAT, and efficiently realizable in hardware), and reconfig-
urable BackSpace architectures (how much smaller can the
signatures be if they are tailored to a specific target state).

A specific idea, which we have yet to explore but which we
believe can greatly reduce signature size, is to use external
constraints to prune the pre-images. For example, on toy
benchmark circuits, constraining the pre-image by the reach-
able states of the circuit results in vastly smaller pre-images
(equivalently, allows a smaller signature size). Obviously, if
we could compute the exact reachable state set, then we
would use pure formal verification to hit the target state,
obviating the need for the BackSpace approach. But a crude
over-approximation of the reachable states might be efficiently
computable even for a large design, yet provide useful pruning
of the pre-images. Similarly, we are not currently using
constraints on the primary inputs to reduce pre-image size.
For example, logic analyzer traces or knowledge about the
bring-up tests could be used to constrain the primary inputs
when computing pre-images.

The other main direction for further research is bet-
ter handling of realistic designs: partial state monitoring,
randomness/non-determinism, multiple clock domains, and
circuit marginality and faults. For each of these, there is
a straightforward, brute-force attack (partial states andnon-
determinism were described already, multiple clock domains
can be conservatively approximated by a single state machine,
and circuit marginality/faults can be handled analogouslyto
fault simulation: for each postulated circuit fault, we repeat
the entire BackSpace framework), but much more elegant and
efficient approaches are likely necessary and possible.
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