Representing Aggregators in Relational Probabilistic Models

David Buchman¹ David Poole¹

¹ Department of Computer Science, University of British Columbia, Vancouver, B.C., Canada

29th AAAI Conference on Artificial Intelligence (AAAI 2015)

DI-MLNs: A Normal Form for MLNs Aggregators Aggregators: dependency on unbounded #vars. **DI-MLN (Distinct-Individuals MLN):** A model similar to MLNs, but: **1.** Simplified formulae: syntax: no "=" Adding aggregators to MLNs – the simplest case: semantics: simplified semantics for $\exists \& \forall$, denoted by \exists_{\neq} and \forall_{\neq} MLN over $\{A(x), B\}$, $\begin{array}{l} \text{MLN over } \{A(x)\}, & \text{Add } B \& \text{ weighted formulae } \mathbb{F} \\ \text{defining } \mathsf{P}_{\mathsf{old}}(A_{1..n}) & & & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{Add } B \& \text{ weighted formulae } \mathbb{F} \\ & & & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathsf{P}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathbb{C}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathbb{C}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathbb{C}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathbb{C}_{\mathsf{new}}(A_{1..n}, B) \\ & & \\ \end{array} \xrightarrow{} \begin{array}{l} \text{defining } \mathbb{C}_{\mathsf{n$ 2. Its formulae are only instantiated when all free variables are assigned distinct individuals. Theorem 1: MLNs \leftarrow equivalent (equally expressive) \rightarrow DI-MLNs *B*∈{**0**,**1**} "Adding aggregators as dependent vars" = the original distribution does not change: MLNs with no $\exists, \forall \leftarrow = = = = = = = = \Rightarrow$ DI-MLNs with no $\exists_{\neq}, \forall_{\neq} = = = = = \Rightarrow$ $P_{new}(A_{1..n}) = P_{old}(A_{1..n})$

Theorem 2: If \mathbb{F} has no quantifiers $(\exists \text{ and } \forall)$, then B is independent of $A_{1..n}$ in all possible groundings. \implies No useful aggregator can be represented!

◇ n₀ := #vars among A_{1..n} that are 0 ("false")
◇ n₁ := #vars among A_{1..n} that are 1 ("true")
◇ An aggregator is saturated if for any n, P(B | A_{1..n}) is equal for all assignments to A_{1..n} for which n₀, n₁ ≥ threshold.

Theorem 4: General case $-\mathbb{F}$ may contain quantifiers: then $P(B \mid A_{1..n})$ is a saturated aggregator.

Overview of Theorem 2 & 4's Proofs

♦ Ignore the original MLN's formulae; treat \mathbb{F} as an MLN over $\{A(x), B\}$.
♦ Theorems 2 & 4 are negative results \implies must show for all possible MLNs \mathbb{F} .

◇Approach: simplify representation until results can be proved analytically.

Theorem 2: $MLN \mathbb{F} w/o \text{ quantifiers} \xleftarrow{equivalent}{(Thm 1)} DI-MLN w/o \text{ quantifiers} \xleftarrow{equivalent}{} parametric representation \xrightarrow{(not trivial)...}{} Q.E.D.$ $syntax: \neg, \land, \lor, = syntax: \neg, \land, \lor semantics: simpler$

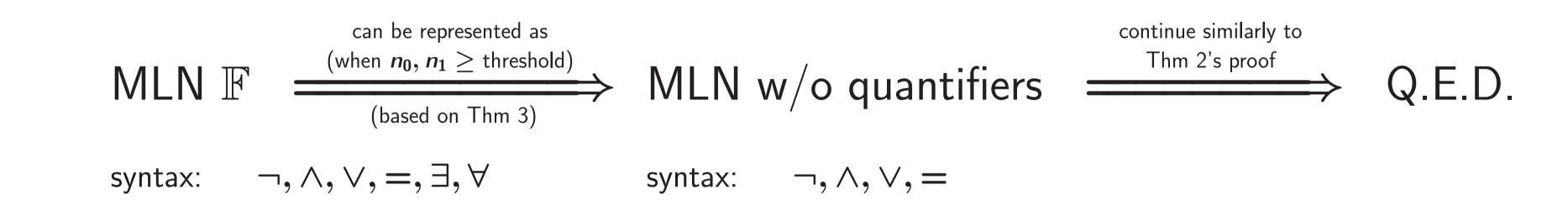
Theorem 3: For any [DI-]formula φ over $\{A(x), B\}$ there is a [DI-]formula φ_{unq} with no quantifiers, such that

whenever $n_0, n_1 \geq$ threshold $_{arphi} \implies arphi_{unq} \equiv arphi$

(I.e.: \exists and \forall only allow "exceptions" when n_0 <threshold or n_1 <threshold.)

Example 3:
$$\forall_{\neq} xA(x) = false_{\varphi_{unq}}$$
 whenever $n_0, n_1 \ge 1_{\text{threshold}_{\varphi}}$.

Quantifiers = "Exceptions"



Implications

Our Results for Common Binary Aggregators:

	Aggregator	$P(B=1\mid n_0,n_1)$	Parameters	Thm 2	Thm 4
	AND	$\mathbb{I}_{n_0=0}$		no	yes
	OR	$\mathbb{I}_{n_1 \geq 1}$		no	yes
Deterministic:	At least t 1 's	$\mathbb{I}_{n_1 \ge t}$	$t \geq 0$	no	yes
	XOR	$\frac{1+(-1)^{n_1}}{2}$		no	no
	At least $t\%$ 1 's	$\mathbb{I} n_1/(n_0+n_1) \geq t$	0 < t < 1	no	no
"Hybrid":	Majority	$\frac{1}{2}\mathbb{I}_{n_1=n_0}+\mathbb{I}_{n_1>n_0}$		no	no
	Noisy AND	α^{n_0}	$lpha \in [0,1]$	no	approximated
	Noisy OR	$1-lpha^{n_1}$	$lpha \in [0,1]$	no	approximated
Probabilistic:	Random mux (or ''average'')	$\frac{n_1}{n_0+n_1}$		no	no
	Logistic regression	$1/(1+e^{-(w+w_0n_0+w_1n_1)})$	w, w_0, w_1	no n	no(approx if $w_0 w_1 \ge 0$)
	Relational logistic regr. (RLR)	$1/(1+e^{-(w+w_0n_0+w_1n_1)}) 1/(1+e^{-\sum_{\langle LF,w angle}w\sum_LF_{\Pi,x ightarrow X}})$	(L, F, w)	no	no(approx if)

Our mathematical tools may facilitate further theoretic results. E.g., **Theorem 5:** Relational logistic regression (RLR) with quantifiers for $P(B | A_{1..n})$ represents a "sigmoid of a polynomial of counts" when $n_0, n_1 \ge$ threshold.

Paper/Setting:		Poole et al. (2012)	Thm 2	Thm 4	Natarajan et al. (2010
Model:	Basic Model:	MLN	MLN	MLN	MLN
	Population size:	unbounded	unbounded	unbounded	unbounded
	Hard constraints allowed?	yes	yes	yes	yes
	# free vars per formula:	0-1	$0-\infty$	$0-\infty$	$0-\mathbf{\infty}$
	"=" allowed?	no (1 lo. var)	yes	yes	yes
	$\exists, \forall allowed?$	no	no	yes	yes
	Weights depend on <i>n</i> ?	no	no	no	no
Auxiliary vars:		0	0	0	$\Theta(n)$
Summary:	Maximal factor scope:	$\{B,A_i\}$	fixed, arbitrarily large	$\{B, A_{1n}\}$	$\{B, A_{1n}, aux vars\}$
	Flexibility:	very limited flex.	flexible	highly flexible	most flexible
Result:	Result type ¹ :	negative	negative	negative	positive
	Which aggregators can be	none ²	none ²	only saturated	at least serves
	added as dependent PRVs?	none-	none-	aggregators	at least some

¹ A positive result (e.g., "some") is stronger when allowing less flexibility. A negative result (e.g., "none" or "only saturated") is stronger when allowing more flexibility.

² Some dependencies on n itself, but not on $A_{1..n}$, can be modeled.

Results vs literature

- ♦ Natarajan, S.; Khot, T.; Lowd, D.; Tadepalli, P.; Kersting, K. *Exploiting causal independence in Markov logic networks: Combining undirected and*

directed models. In European Conference on Machine Learning (ECML), 2010.

Kazemi, S. M.; Buchman, D.; Kersting, K.; Natarajan, S.; Poole, D. Relational logistic regression. In 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014).