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Aggregators

Aggregators: dependency on unbounded #vars.

Adding aggregators to MLNs – the simplest case:

MLN over {A(x)},
defining Pold(A1..n)

Add B & weighted formulae F
=======================⇒

MLN over {A(x),B},
defining Pnew(A1..n,B).∑
B∈{0,1}

Pnew(A1..n,B) = Pnew(A1..n)

“Adding aggregators as dependent vars” = the original distribution does not change:

Pnew(A1..n) = Pold(A1..n)

Theorem 2: If F has no quantifiers (∃ and ∀),
then B is independent of A1..n in all possible groundings.

=⇒ No useful aggregator can be represented!

� n0 := #vars among A1..n that are 0 (“false”)

� n1 := #vars among A1..n that are 1 (“true”)

�An aggregator is saturated if for any n, P(B | A1..n) is equal for all assignments to A1..n for which
n0, n1 ≥ threshold.

Theorem 4: General case – F may contain quantifiers:
then P(B | A1..n) is a saturated aggregator.

DI-MLNs: A Normal Form for MLNs

DI-MLN (Distinct-Individuals MLN): A model similar to MLNs, but:
1. Simplified formulae:

syntax: no “=”
semantics: simplified semantics for ∃ & ∀, denoted by ∃6= and ∀6=

2. Its formulae are only instantiated when all free variables are assigned distinct individuals.

Theorem 1:
MLNs

equivalent (equally expressive)
⇐=============⇒ DI-MLNs

MLNs with no ∃, ∀
equivalent (equally expressive)
⇐=============⇒ DI-MLNs with no ∃6=, ∀6=

Quantifiers = “Exceptions”

Theorem 3:
For any [DI-]formula ϕ over {A(x),B} there is a [DI-]formula ϕunq with no quantifiers, such that

whenever n0, n1 ≥ thresholdϕ =⇒ ϕunq ≡ ϕ
(I.e.: ∃ and ∀ only allow “exceptions” when n0 <threshold or n1 <threshold.)

Example 3: ∀6=xA(x)︸ ︷︷ ︸
ϕ

≡ false︸ ︷︷ ︸
ϕunq

whenever n0, n1 ≥ 1︸︷︷︸
thresholdϕ

.

Overview of Theorem 2 & 4’s Proofs

� Ignore the original MLN’s formulae; treat F as an MLN over {A(x),B}.

�Theorems 2 & 4 are negative results =⇒ must show for all possible MLNs F.

�Approach: simplify representation until results can be proved analytically.

Theorem 2:

MLN F w/o quantifiers
equivalent⇐====⇒
(Thm 1)

DI-MLN w/o quantifiers
equivalent⇐====⇒ parametric representation

prove thm 2

using limits n→∞
(not trivial)...

========⇒ Q.E.D.

syntax: ¬,∧,∨,= syntax: ¬,∧,∨
semantics: simpler

Theorem 4:

MLN F
can be represented as

(when n0, n1 ≥ threshold)

==========⇒
(based on Thm 3)

MLN w/o quantifiers

continue similarly to

Thm 2’s proof

========⇒ Q.E.D.

syntax: ¬,∧,∨,=, ∃, ∀ syntax: ¬,∧,∨,=

Implications

Our Results for Common Binary Aggregators:

Aggregator P(B = 1 | n0, n1) Parameters Thm 2 Thm 4

Deterministic:

AND In0=0 no yes

OR In1≥1 no yes

At least t 1’s In1≥t t ≥ 0 no yes

XOR 1+(−1)n1

2
no no

At least t% 1’s I n1/(n0+n1) ≥ t 0 < t < 1 no no

“Hybrid”: Majority 1
2
In1=n0

+ In1>n0
no no

Probabilistic:

Noisy AND αn0 α ∈ [0, 1] no approximated

Noisy OR 1− αn1 α ∈ [0, 1] no approximated

Random mux (or “average”) n1
n0+n1

no no

Logistic regression 1/
(
1 + e

−(w+w0n0+w1n1)
)

w , w0, w1 no no(approx if w0w1≥0)

Relational logistic regr. (RLR) 1/
(
1+e

−
∑
〈L,F,w〉w

∑
L
FΠ,x→X

)
{〈L,F ,w〉} no no(approx if ...)

Our mathematical tools may facilitate further theoretic results. E.g.,
Theorem 5: Relational logistic regression (RLR) with quantifiers for P(B | A1..n) represents a
“sigmoid of a polynomial of counts” when n0, n1 ≥ threshold.

� Kazemi, S. M.; Buchman, D.; Kersting, K.; Natarajan, S.; Poole, D. Relational logistic regression. In 14th International Conference on Principles of

Knowledge Representation and Reasoning (KR 2014).

Results vs. Literature
Paper/Setting: Poole et al. (2012) Thm 2 Thm 4 Natarajan et al. (2010)

Model:

Basic Model: MLN MLN MLN MLN

Population size: unbounded unbounded unbounded unbounded

Hard constraints allowed? yes yes yes yes

# free vars per formula: 0− 1 0−∞ 0−∞ 0−∞
“=” allowed? no (1 lo. var) yes yes yes

∃, ∀ allowed? no no yes yes
Weights depend on n? no no no no

Auxiliary vars: 0 0 0 Θ(n)

Summary:
Maximal factor scope: {B,Ai} fixed, arbitrarily large {B,A1..n} {B,A1..n, aux vars}
Flexibility: very limited flex. flexible highly flexible most flexible

Result:
Result type1: negative negative negative positive
Which aggregators can be

none2 none2 only saturated
at least some

added as dependent PRVs? aggregators

1 A positive result (e.g., “some”) is stronger when allowing less flexibility. A negative result (e.g., “none” or “only saturated”) is stronger when

allowing more flexibility.
2 Some dependencies on n itself, but not on A1..n, can be modeled.
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