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Aggregators DI-MLNs: A Normal Form for MLNs

Aggregators: dependency on unbounded #vars. DI-MLN (Distinct-Individuals MLN): A model similar to MLNs, but:
1. Simplified formulae:

Adding aggregators to MLNs — the simplest case: syntax: no ‘=
MLN over {A(x), B}, semantics: simplified semantics for 3 & V, denoted by 4, and V,
MLN over {A(x)} Add B & weighted formulae T defining Ppew(A1..n, B). 2. lts formulae are only instantiated when all free variables are assigned distinct individuals.
deﬁning P0|d(A1--n) g Z Pnew(Al..na B) — I:)new('ql..n)
Bc{0,1} Theorem 1: MLNs (:equivalent (equally expressive):) DI-MLNs
"Adding aggregators as dependent vars’ = the original distribution does not change:
Poew(A1.n) = Pou(Ar.n) MLNs with no 3, V < SRV S0, b MLNs with no 3., V.,

Theorem 2:If ' has no quantifiers (3 and V),
then B is independent of Aj_,, in all possible groundings.

—> No useful aggregator can be represented! Theorem 3:
For any [DI-]formula ¢ over { A(x), B} there is a [DI-]formula ¢, with no quantifiers, such that

Quantifiers = “Exceptions”

& ng := #vars among Aj.., that are 0 (“false”) whenever ng, n; > threshold, = Yung = ¢

O Ny := #vars among Aj.., that are 1 (“true”) (l.e.: 3 and V only allow “exceptions” when ng <threshold or n; <threshold.)

¢ An aggregator is saturated if for any n, P(B | Aj..,) is equal for all assignments to A;.., for which
ng, N1 > threshold.

. - Example 3: V_xA(x) = false whenever ng,m > 1 .
Theorem 4: General case — [F may contain quantifiers: — ’ o~
P unq resno P

then P(B | Aj..,) is a saturated aggregator.

Overview of Theorem 2 & 4’s Proofs

¢ Ignore the original MLN's formulae; treat IF as an MLN over {A(x), B}.
O Theorems 2 & 4 are negative results ==> must show for all possible MLNs .

& Approach: simplify representation until results can be proved analytically.J

prove thm 2
Theorem 2: usin(g limits nl)—> o0
Y equivalent o equivalent ] ] not trivial)...
MLN F w/o quantifiers — DI-MLN w/o quantifiers <———= parametric representation ———= Q.E.D.
m 1
syntax: =, \y V,= syntax: =, A\, V
semantics: simpler
Theorem 4: can be represented as continue similarly to

(when ng, n; > threshold) Thm 2's proof

MLN F =————=== MLN w/o quantifiers ——= Q.E.D.

(based on Thm 3)

syntax: -, A,V,=,4,V syntax: 1, A, V,=
Implications Results vs. Literature
_ Paper/Setting: Poole et al. (2012) Thm 2 Thm 4 Natarajan et al. (2010)
Our Results for Common Binary Aggregators: Basic Model: MLN MLN MLN MLN
Population size: unbounded unbounded unbounded unbounded
Aggregator P(B =1 | ng, m) Parameters | Thm 2 Thm 4 Hard constraints allowed? yes yes yes yes
AND [y=0 no yes Model: # free vars per formula: 0-—-1 0 — ¢ 0 — o 0 —
OR [n>1 no yes “=""allowed? no (1 lo. var) yes yes yes
Deterministic: At least t 1's [ny >t t >0 no yes 3, V allowed? no no yes yes
XOR 1+(;—1)"1 . . Weights depend on n? no no no no
At least t% 1's Iy /(ngtm) > t 0<t<l |  no no Auxiliary vars: 0 0 0 ©(n)
“Hybrid”: Majority pizn + Ins no no Maximal factor scope: {B, A;} fixed, arbitrarily large {B, A;.,.} {B, A1..,,aux vars}
2-M1=g ny >ng _ Summary: o .. i i . .
Noisy AND o0 a € [0,1] no approximated Flexibility: very limited flex. flexible highly flexible most flexible
Noisy OR 1 — a™m a € [0,1] no approximated Result typel: negative negative negative positive
Probabilistic: Random mux (or “average”) n?:-lnl no no Result: Which aggregators can be? one? Hone? only saturated Jt least some
Logistic regression 1/(1 + e™ W"'WU"O"'WI"I)) w, wp, wp no no(approx if wow;>0) added as dependent PRVs: aggregators
Relational logistic regr. (RLR) 1/(1+e_Z<LvF’W> Wi F"”HX){(L, F,w)} | no no(approx if ...) 1A positive result (e.g., “some”) is stronger when allowing less flexibility. A negative result (e.g., “none” or “only saturated”) is stronger when

allowing more flexibility.
2 Some dependencies on n itself, but not on Aj.,, can be modeled.

Our mathematical tools may facilitate further theoretic results. E.g.,
Theorem 5: Relational |OgiStiC regression (RLR) with quantifiers for P(B | Al n) represents a ¢ Poole, D.; Buchman, D.; Natarajan, S.; Kersting, K. Aggregation and population growth: The relational logistic regression and Markov logic cases.
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Sigmold ot a polynomial ot counts whnen g, .~ reshold. ¢ Natarajan, S.; Khot, T.; Lowd, D.; Tadepalli, P.; Kersting, K. Exploiting causal independence in Markov logic networks: Combining undirected and

directed models. In European Conference on Machine Learning (ECML), 2010.
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