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ABSTRACT: We study the complexity of certain
natural generalizations of satisfiability, in which one
of the possibly exponentially many satisfying truth
assignments must be selected. We consider two nat-
ural selection criteria, default preference and min-
imality (circumscription). The resulting computa-
tional problems are quite novel and intriguing. The
thrust of our complexity results seems to be that hard
problems become harder, while easy problems remain
easy. Interestingly, this consideration also yields as a
byproduct a new and very natural polynomial-time
randomized algorithm for 2SAT.

1. INTRODUCTION

The satisfiability problem for Boolean formulae in
conjunctive normal form needs no introduction. It
is perhaps one of the most fundamental and familiar
computational problems. It is the archetypical NP-
complete problem, and its polynomial special cases
(e-g., when the clauses either are all Horn or all con-
tain two literals) are well-known.

In this paper we study certain intricate general-
izations of satisfiability, motivated by important cur-
rent considerations in the study of common-sense
reasoning (see the “Motivation” subsection at the
end of this introduction). Given a Boolean formula I’
in conjunctive normal form, we are interested in se-
lecting one among its potentially exponentially many
satisfying truth assignments, according to some cri-
terion. We examine two natural and important selec-
tion criteria. Non—dominance with respect to speci-
fied defaults was proposed and initially investigated
in [SK); minimality or circumscription is a more es-
tablished notion of model “goodness” (we use the
terms “model” and “satisfying truth assignment” in-
terchangeably).
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We introduce defa\.gts first. A default is an ob-
ject of the form (z¥Z = w), with possibly several

literals before the 2 arrow and only one after. For
example, the above default may encode the real-life
heuristic rule that “if A is a graduate student, and
not independently wealthy, and not a TA, then it can
be assumed that (s)he is an RA.” The semantics of
this default are that any model of the world in which
z holds, y and z do not, and w holds, is to be pre-
ferred over the model in which all is the same except
that w fails to hold. Thus, a set of defaults A de-
fines a directed graph over all possible models, that
is, a directed subgraph of the hypercube. Each arc
comes from a default, whose premises are satisfied
in both the head and the tail, and the conclusion is
satisfied by the head but not by the tail. If we are
also given a formula T', the preference graph G(T', A)
is the directed graph defined above restricted to the
nodes that are models of T

It should be emphasized here that 2», the “then
it can be assumed by default” symbol, behaves dif-
ferently than logical implication, in that literals do
not migrate freely over it, just switching signs. For

example, the default (z7Z LA w) is not equivalent to

(zwz EA y) (recall the example above). But having
said that, it is ¢lear that there is a close relationship
between clauses and defaults. For example, the set

of all three defaults (Z7 2 2), (zz L y), (7Z L z)
clearly corresponds to the clause (zVyV z). We call
a set of defaults A clausal if it is the union of all
defaults derived this way from a set of clauses.
Thus, we are given a formula I’ in conjunctive
normal form, and a set A of defaults. If M and M’
are truth assignments that satisfy I', we write M >
M, if there is a path from M to M’ in G(T', A)!. We
say that M dominates M’ if M > M’ and it is not

1 [SK] define > in a way that allows intermediate nodes
in the path from M to M’ not satisfying I'. Since in our
motivation satisfying I' is the more fundamental property, we
prefer the present formalism, independently proposed by [Se].



the case that M’ > M. Finally, a model M of T is
undominated if there is no other model that domi-
nates it; in other words, if it is within a sink strongly
connected component of G(I', A). This is our pro-
posed notion of “goodness” of a model. Intuitively,
an undominated model conforms to all of our default
assumptions as much as possible, and thus presum-
ably it will be more useful in refuting deductions. As
we shall see in Section 4, undominated models turn
out to be precisely those one is likely to arrive at by
applying applicable defaults at random. The compu-
tational problem we study, the undominated model
problem, is this:

Given a formula T and a set of defaults A, find an
undominated model (obviously at least one always
exists, if ' Is satisfiable).

The undominated model problem is obviously a gen-
eralization of satisfiability (just take A = 0). But
there is a slightly subtler observation to be made
here: If there is no I', and A is clausal, then again
the undominated model problem is a form of satisfia-
bility: If a satisfying truth assignment of the clauses
that yield A exists, then the only undominated mod-
els are satisfying truth assignments. This immedi-
ately implies that the undominated model problem,
even with no T, is NP-hard (see Lemma 1 in Section
2; this was already observed in [SK]).

In Section 2 of this paper we study the complex-
ity of the undominated model problem in depth. Our
main complexity result establishes that the undom-
inated model problem is PSPACE-complete even if
T is empty. Our main algorithmic result is an O(n?)
algorithm for solving the undominated model prob-
lem with no I' and with A consisting of 2-defaults
(all premises have one literal). Our algorithm is
quite involved (it solves a major generalization of
2-satisfiability). It exploits the graph-theoretic na-
ture of 2-defaults in a novel way, and is based on
the concept of immortal literals. It can be extended
to the cases in which I' consists of atoms, and 2-
clauses. Other complexity and algorithmic results
fill in all entries of the 5 x 5 table of special cases
of the problem with respect to clauses and defaults
(none, atoms, 2-literal, Horn, or general); see Table
1 at the end of this paper.

Minimality is a very different notion of goodness
for models: It requires that models be conservative,
with as few true variables as possible, at least among
certain distinguished variables. In Section 3 we prove
two results for the problem of minimal model selec-

164

tion: It is Af—complete in general, and in NC for
the case of 2-satisfiability (it is immediate that the
2-satisfiability case is in P, as is the case of Horn for-
mulae, for which the well-known greedy algorithm
automatically yields minimal models).

There is a natural probabilistic point of view we
can take about model selection. If we consider the
preference graph as a Markov chain, model selection
corresponds to finding any ergodic (non-transient)
state of this chain. In fact, the randomized algorithm
suggested by this chain (follow applicable defaults
at random, repeat long enough) is arguably much
more plausible as a model of a component of human
reasoning. Unfortunately, we show that this algo-
rithm may require (for certain starting points) expo-
nentially long to converge to an undominated model
in the case of 2-defaults (in the general, PSPACE-
complete case, of course, there was never any hope).
The more interesting result, however, concerns the
same algorithm applied to clausal default sets. In
this case the algorithm takes the following appealing
form:

Start with any truth assignment. While there are
unsatisfied clauses, pick any one, and flip a random
literal in it.

We show in Section 4 that this algorithm solves 2-
satisfiability in O(n?) expected time. The proof in-
volves an aggregation of the states of the Markov
chain so that the chain is mapped to the gambler’s
ruin chain. The result remains true even if two of the
three choices (that of an initial truth assignment, and
an unsatisfied clause at each step) are made by an
adversary. This result is not exactly silly, even in
view of the known linear-time and NC algorithms
for this problem. Significantly, the above algorithm
is extremely simple and natural, and thus a plausible
scheme for modeling reasoning.

What is potentially more important, the same
algorithm, or natural variants, seem to solve all kinds
of other polynomial special cases of satisfiability. For
example, we conjecture that it also solves the polyno-
mial special case in which all clauses have three liter-
als, and no variable appears more than three times,
while a variant solves the case of Horn clauses. An
important question thus arises: What are the limita-
tions of this simple unified technique for solving sat-
isfiability problems in randomized polynomial time?
Are there new special forms of satisfiability that can
be thus attacked? This and other open problems are
discussed in Section 5.



MOTIVATION: Common—Sense Reasoning

It has been convincingly argued {Le] that human rea-
soning functions in two quite distinct modes. The
puzzle mode supports complex decisions in sophisti-
cated contexts using elaborate combinatorial reason-
ing as in puzzle-solving and game-playing. The far
more common routine mode specializes in easy de-
ductions like “I am in a city, so the roar I hear is not
atiger’s.” Such deductions are made rapidly and at a
massive rate. The power of human reasoning, it can
be argued, derives from the presence and interaction
of these two modes (and, of course, all the shades in
between). On the other hand, for the purpose of for-
mal study, reasoning is usually abstracted as a deduc-
tion problem of the form “T' = ¢,” where presumably
T' is a massive formula encompassing the reasoner’s
experience to—date, and ¢ is a smaller formula cap-
turing the situation at hand. As this is equivalent to
the problem of testing I' A =¢ for satisfiability, such
formalisms seem to model the puzzle mode, rather
than the routine mode, of reasoning. It was proposed
in [Le] that, in order to understand better the rou-
tine mode, we should come up with algorithms that
preprocess T' to obtain a data structure, called the
vivid form of T'. Fast heuristics can then be applied
to the vivid form in order to quickly test (possibly
with infrequent errors) whether T |= ¢, for any new
¢ arising in the rapidly changing situations of life?.

Given a Boolean formula T, what kind of vivid
form would favor rapid heuristic deductions? One
appealing idea is that the vivid form of T need only
be a model M of T, that is, a truth assignment that
satisfies I'. Then, one can immediately demonstrate
that T j£ ¢ by simply verifying that M |~ ¢, a prob-
lem that can be rapidly solved. Naturally, one-sided
errors are possible in this proposal. But they can
be checked either by maintaining many models, and
—finally arriving at the problem addressed in this
paper— by carefully selecting the models maintained
in order to maximize their usefulness in refuting de-
ductions. That is, given a Boolean formula, we wish
to select among its potentially exponentially many
models one that is, informally, the most likely model
of the real world, and thus presumably the most use-
ful in falsifying false propositions.

As might be expected, there is no agreement as

2 Incidentally, for such algorithms to be plausible models
of human reasoning, they should also be extremely simple and
natural, an unfamiliar and novel criterion in algorithm design
briefly discussed in [PY], and taken up again in Section 4 of
the present paper.
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to what this means exactly. The two formalisms
of model selection studied in this paper represent
two important and technically interesting hypothe-
ses, one recently proposed and studied, and the other
well-established: Default preference [SK], where de-
fault rules are used to formalize model goodness, and
minimality or circumscription [Mc, KP], in which
“good model” means “model with few true variables”
(the motivation for the latter is that we expect for-
mulae ¢ above to be largely monotonic, and thus
easier to disprove by models poor in true variables).
Our results, viewed from the point of view of
the motivating application, can be stated thus: (a)
In general, the addition of selection criteria make the
complexity obstacles to satisfiability much more se-
vere (Theorems 1 and 3). (b) However, solvable cases
of the problem remain easy, even in the presence of
non—trivial selection criteria (Theorems 2 and 4). (c)
A randomized algorithm has been shown to work ef-
ficiently in certain cases (Theorem 5 and subsequent
discussion). Furthermore, this algorithm is so simple
and natural, that it is perhaps the first credible algo-
rithmic model of common-sense reasoning; the full
extent of its applicability is not yet understood.

2. UNDOMINATED MODELS

We are given a set (possibly empty) of defaults A,
and a formula I in conjunctive normal form (also
possibly empty). The directed graph G(I', A) has as
nodes all models of ', and an edge from model M to
M' if there is a default (o LA A) € A where Ais a
literal and « a set of literals, such that (a) M and M’
both satisfy «, (b) M’ satisfies A, and M does not,
and (¢) M and M’ differ only in A. The undominated
model problem is this: Given I' and A, find a model
in a sink strongly connected component of G(T, A).
As seen in Table 1, the complexity of the problem
depends heavily on the special form of T' and A.
Let T be a set of clauses. The corresponding set
of defaults is DEF(I') = {(«a LA A) i {a— A) €T}
Notice that each clause in T' gives rise to as many
defaults as it has literals. A set of defaults A is
called clausal if there is a set of clauses I such that
DEF(T') = A. The following is not hard to prove:

Lemma 1. Let ' be a set of clauses. Then T is
satisfiable if and only if all undominated models of
G(0, DEF(T)) satisfy I". (0

Corollary [SK]. It is NP-hard to find an undomi-
nated model in G(8, A). O



‘We show the following;:

Theorem 1. It is PSPACE-complete to find an un-
dominated model in G(9, A).

Sketch: The problem is in NPSPACE (even for gen-
eral T') because an undominated model, if it exists,
can be guessed, and then it can be checked (reusing
space) that all other models are either unreachable
from it in G(@, A), or are in the same strongly con-
nected component with it.

The PSPACE-completeness construction is in
general terms the following: We consider a determin-
istic linear-bounded Turing machine M that stops
after precisely 2" steps having erased its tape. Con-
sider the configuration graph G(M,z) on input z.
The initial, accepting, and rejecting configurations
are denoted I, A, and R. We replicate G(M, z) by
having two copies of each configuration C, say 0C
and 1C. Then there is an arc from 0A and 14 to 01,
and from OR and 1R to 11. All configurations not on
the computation path are led to the corresponding 01
or 11 as well. In this graph, if 0C is in a sink strongly
connected component, then the machine accepts z,
and if 1C is in a sink strongly connected component
the machine rejects z. It takes some more construc-
tion to make this graph into a preference graph of an
appropriate set of defaults, thus proving the Theo-
rem. [J

In contrast, we can prove the following:

Theorem 2. If ' and A consist of 2—clauses and
2—defaults, respectively, we can find an undominated
model in G(T, A) in O(n?) time.

Sketch: We only sketch the case of I' = @. The
problem can be rethought as follows: We are given
a directed graph whose nodes are the n variables
and their negations, and the arcs are the defaults
in A. A state S is a set of n nodes not containing
both a variable and its negation (that is, a state is a
truth assignment). We represent pictorially a state
by marking all nodes in it (see Figure 1(a)). State
transitions happen by selecting an arc going from a
marked node to an unmarked one, and marking the
head (thus unmarking its negation), see Figure 1(b).
We are seeking a state that is in a sink component
of this transition diagram.

Call a node live in a state if there is a reachable
state containing the node (equivalently, if there is a
path from a marked node to it). Call a node perma-
nent if all reachable states contain it. Thus a node
is permanent iff its negation is not live. Call a node

166

|

|

'fé '

(b)

Figure 1: States and transitions.

immortal if it is live at all reachable states. Finally,
call a state stable if all live nodes in it are immortal.
Stable states are a subtle concept, but a complex yet
useful characterization is possible:

Lemma 2. We can test in O(n3) time whether a
state is stable. [J

More useful for our purposes is a construction
that gets us a special kind of a stable state:

Lemma 3. We can find in O(n?) time a stable state
in which the following is true: For each immortal
node v either (a) there is a permanent node u such
that there is a path from u to v, or (b) there is a pair
{u, 4} such that there are paths from u to @ and v,
and there are paths from % to v and v. O



Given a path (possibly with node repetitions)
starting at a marked node, there is a sequence of
state transitions that makes all nodes on the path
marked one after the other, if they are not already
marked. We call this transition sequence the firing
of the path (it may perform fewer transitions than
the length of the path, or even no transitions at all).

Continuing the proof of Theorem 2, we can ob-
tain an undominated model thus: We first find a
stable state according to Lemma 3. At this state,
all live nodes have a path starting from a permanent
node or a pair (in the later case, corresponding to the
(b) clause of Lemma 3, we choose a path that goes
at least twice between each of z and T before getting
to v). Starting from this stable state, we successively
fire all these paths (this takes time O(n?)). It can
then be shown that the resulting state is indeed un-
dominated. [

w|

8|
<

y z

Figure 2: A state that is stable but dominated.

Notice that all undominated states are stable,
but not all stable states are undominated. For exam-
ple, the state in Figure 2 is stable because all nodes
are immortal, but if (z,%) fires there is no way to
return to the same state. The reason is that there
is a set B of marked nodes (in this case B = {z,y})
such that (a) all paths from marked nodes to them
have as next to last node a node in B = {ZT : z € B};
(b) at least one such path exists; and (c) there is
no arc (5,b) for b € B. We call such a set S of
marked nodes blocked (it can be checked in O(n®)
time whether there is a blocked set in a state). A
state with a blocked set is dominated, as there can
be no last state transition that restores the firing
of one of the paths. We conjecture that a state is
undominated if and only if it is stable and has no
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blocked set. By Lemma 2 and the above observa-
tion, this would give an O(n®) algorithm for deter-
mining whether a model is undominated in the case
of 2-literal defaults; at present the existence of such
an algorithm is open. The same construction as in
the proof of Theorem 1 establishes that the prob-
lem of recognizing whether a model is undominated
is PSPACE-complete for general defaults.

Finally, in order to prove that the undominated
model problem for Horn clauses and 2-defaults is
NP-hard, and similarly for the case of Horn defaults
and 2-clauses (these are the two last entries of Table
1 we must discuss), we need just observe that the sat-
isfiability problem for formulae that contain a mix-
ture of Horn clauses and 2-clauses is NP-complete
(proof: using 2-clauses we can rename the variables,
thereby making all original clauses Horn), and then
use Lemma 1.

3. MINIMAL MODELS

We next define the propositional analog of circum-
scription, an influential approach to common-sense
reasoning proposed by McCarthy {Mc]. We are given
a formula I' in conjunctive normal form, and a subset
X of the set of variables. We say that a model M of
T is X-minimal if there is no other model M’ of T
having a set of true variables among those in X that
are a proper subset of those of M. We are asking for
an X-minimal model M of I

Theorem 3. Finding an X -minimal satisfying truth
assignment for a formula is Aj-complete.

Sketch: In A} we can find the lexicographically
smallest satisfying truth assignment, which is X-
minimal. To prove completeness, we reduce the prob-
lem deterministic satisfiability (DSAT) shown Aj-
complete in [Pa], to the problem of finding an X~
minimal model. (]

It is open whether this result holds even when
X contains all variables. The same argument that
proves that the general problem is in A}, also es-
tablishes that the problem in the special case of 2-
clauses is in P. However, the following is more in-
teresting (shown by a careful implementation of the
strong components algorithm for 2-satisfiability):

Theorem 4. Finding an X-minimal model for a
conjunction of 2-clauses is in NC. OJ

4, THE RANDOMIZED ALGORITHM



If undominated models are indeed the instruments
of vivid knowledge in human reasoning, how are we
proposing that they are obtained? Certainly not by
the complicated algorithm in the proof of Theorem
2! For an algorithm to qualify as a plausible model of
human reasoning, it must satisfy much subtler crite-
ria than correctness and efficiency. It should be natu-
ral (whatever this means) and “convincingly simple.”
The greedy algorithm and the monotonic algorithm
for satisfying Horn clauses are good examples; so is
the first-fit decreasing heuristic for bin-packing, and
the exploration heuristics in [PY].

There is a randomized algorithm3 for the un-
dominated model problem that is suggested by the
preference graph G(I',A): Consider this graph as
a Markov chain (with equal transition probabilities
on the arcs leaving each state, and adding self-loops
to the sinks). In this Markov chain, the states with
non-zero asymptotic probability are precisely the un-
dominated models sought. Therefore, if we run this
Markov chain long enough, we shall obtain almost
surely an undominated model. The problem is, of
course, that the number of transitions required may
be as large as the number of states, which is expo-
nential in the size of I and A. In fact, we can show
the following disappointing result:

Proposition 1. There is a family of sets of 2—
defaults such that, even without clauses, from a given
starting state the expected time to reach an undom-
inated model is exponential in the number of vari-

ables. (]

The counterexample in this result must be heav-
ily asymmetric, and thus non—clausal. Let us con-
sider, however, a clausal set of defaults. The Markov
chain, applied to it, can be thought of as the follow-
ing randomized algorithm applied to the original set
of clauses:

Start with any truth assignment. While there are
unsatisfied clauses, pick one and flip a random literal
in it.

Theorem 5. The above algorithm applied to 2
satisfiability and run for O(n?) steps, where n is the
number of variables, will find a satisfying truth as-
signment, if one exists, with probability arbitrarily
close to one.

3 Many thanks to Charles Elkan for directing my attention
to this issue.
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Sketch:* If the formula is unsatisfiable, then noth-
ing can go wrong. If it is satisfiable, consider a sat-
isfying truth assignment, and the Hamming distance
of our current assignment from it. It turns out that
this distance is at least as likely to be decreased as
to be increased, at all steps. And, naturally, this
distance cannot be increased beyond n, the number
of varables. Thus, this is a “gambler’s ruin” chain
with reflecting barrier (that is, the house cannot lose
its last dollar). It follows that the gambler must be
ruined after O(n?) steps, with probability arbitrarily
close to one. [J

5. OPEN PROBLEMS

Can undominated models of 2-literal defaults be rec-
ognized in polynomial time? (Also, recall the related
conjecture at the end of Section 2.) Can the NP-
hardness entries of Table 1 be tightened to PSPACE?
We expect that the answer is “yes” in both questions.

Perhaps the most intriguing open problems sug-
gested by this work are related to the probabilistic
approach in the previous section. There are other
polynomially solved special cases of satisfiability, be-
sides 2SAT and Horn clauses, that this algorithm
appears to solve (for example, the one in which we
have 3-clauses with each variable appearing at most
three times). Thus, the randomized algorithm seems
to be a unifying algorithmic approach to satisfiabil-
ity! Are there other special cases of satisfiability that
can be handled by the randomized algorithm? One
would hope that the emerging theory of rapidly mix-
ing Markov chains (see, for example, [Mi, LS]) could
in principle be employed to extend the applicability
of this technique. However, the presence of sinks in
our Markov chains (an important ingredient of our
application) seems to prohibit direct application of
those techniques.

Finally, a broader research direction is pointed
to by this work: To advance the use of the method-
ology and norms of the theory of algorithms and
complexity in the exploration of common-sense rea-
soning and intelligence (as has been done for learn-
ing, for example). This is particularly promising,
as new influential theories of reasoning (such as the
puzzle/routine dichotomy of [Le] that motivated this
paper) have notions of algorithmic efficiency as their
very basis.

4 Tomas Feder recently pointed out to me that this result
can also be proved by arguing along the same lines as in [Fe].
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