
SAT COMPETITION 2007 - SOLVER DESCRIPTION

Adaptive Novelty+

Holger H. Hoos and Dave A. D. Tompkins
University of British Columbia
Computer Science Department

{hoos,davet}@cs.ubc.ca

1 Preface
This paper is essentially a reprint of the solver de-
scription from the 2004 competition, as the software
submitted this year is identical to the 2004 software
that placed first in the RANDOM category of the
competition.

2 Introduction
In this paper we briefly describe Novelty+ and
Adaptive Novelty+, two high-performance, stochas-
tic local search (SLS) algorithms for SAT. Based
on the WalkSAT architecture, these algorithms com-
bine search intensification and diversification feau-
tures that lead to good peformance on a broad range
of SAT instances. The performance of the Novelty+

algorithm critically depends on the setting of a so-
called noise parameter, which effectively controls
the relative amount of search diversification. Adap-
tive Novelty+ exploits insights in this performance
dependence to dynamically adjust the noise param-
eter throughout the search, depending on search
progress and stagnation.

3 Novelty
Algorithms from the WalkSAT family are amongst
the most widely known and best-performing SLS al-
gorithms for SAT [5, 4, 3]. Starting from a randomly
chosen variable assignment, they repeatedly select
one of the clauses which are violated by the cur-
rent assignment. Then, according to some heuristic
a variable occurring in this clause is flipped using a
greedy bias to increase the total number of satisfied
clauses. (See Figure 1.)

For the original WalkSAT algorithm [5], also
known as WalkSAT/SKC, the following heuristic is
applied. If any variables in the selected clause are
safe, meaning they can be flipped without violating
any clauses, then a safe variable is randomly cho-
sen. Otherwise, with a fixed probability p a variable

is randomly chosen from the clause and with proba-
bility 1-p a variable is selected which minimises the
number of clauses which are currently satisfied but
would become violated by the variable’s flip (num-
ber of breaks).

Novelty [4] considers the variables in the se-
lected clause sorted according to their score, i.e., the
difference in the total number of satisfied clauses a
flip would cause. If the best variable according to
this ordering (i.e., the one with maximal score) is
not the most recently flipped one, it is flipped, other-
wise, it is flipped with a probability 1-p, while in the
remaining cases, the second-best variable is flipped.

4 Novelty+

Although Novelty in many cases performs substan-
tially better than WalkSAT/SKC and other WalkSAT
algorithms, it has been proven to suffer from es-
sential incompleteness, i.e., there are situations in
which without restarting the search, even for arbi-
trarily long runs, the probability of finding an ex-
isting solution to a given satisfiable CNF formula
approaches a limit strictly less than one. In other
words, the search process underlying Novelty can
get terminally trapped in non-solution regions of
the given search space. In practice, this has been
shown to occasionally lead to extreme stagnation
behaviour, which affects the performance of the al-
gorithm in a very detrimental way [1].

Novelty+ has been designed to overcome both
the theoretical weakness and the practically ob-
served stagnation behaviour [1]. It can be seen
as a simple extension of Novelty with an uncondi-
tional random walk mechanism, similar to the ear-
lier GSAT with Random Walk algorithm [5]. In
Novelty+, in each search step, with a user-specified
probability wp, the variable to be flipped is ran-
domly selected from the selected clause, while in
the remaining cases, the variable is selected accord-
ing to the heuristic for Novelty. Novelty+ is prob-
abilistically approximately complete, i.e., by run-
ning the search process sufficiently long (without



SAT COMPETITION 2007 - SOLVER DESCRIPTION

procedure WalkSAT(F, maxTries, maxSteps, Select)
for try := 1 to maxTries do

a := randomly chosen assignment of the variables in F;
for step := 1 to maxSteps do

if a satisfies F then return a;
c := randomly selected clause which is unsatisfied under a;
v := variable from a selected according to a heuristic Select;
a := a with v flipped;

end for;
end for;
return “no solution found”;

end WalkSAT;

Figure 1: The WalkSAT algorithm family.

using restart), arbitrarily high probabilities of find-
ing an existing solution can be guaranteed. In prac-
tice, using wp = 0.01 is sufficient for avoiding the
severe stagnation behaviour occasionally observed
for Novelty. More precisely, for sufficiently high
values of p, the performance of Novelty+ is basi-
cally unaffected by restarts, and using the parame-
ters maxSteps = ∞ and maxTries = 1 always
results in optimal performance.

5 Adaptive Novelty+

As in the case of WalkSAT/SKC and Novelty, the
noise parameter, p, which controls the degree of
randomness of the search process, has a major im-
pact on the performance and run-time behaviour of
Novelty+. Unfortunately, the optimal value of p
varies significantly between problem instances, and
even small deviations from the optimal value can
lead to substantially decreased performance [2].

Adaptive Novelty+ dynamically adjusts the
noise setting p based on search progress, as reflected
in the time elapsed since the last improvement in the
number of satisfied clauses has been achieved.

At the beginning of the search, the search is
maximally greedy (p = 0). This will typically lead
to a series of rapid improvements in the evaluation
function value, followed by stagnation (unless a so-
lution to the given problem instance is found). In
this situation, the noise value is increased. If the re-
sulting increase in the diversification of the search
process is not sufficient to escape from the stagna-
tion situation, that is, if it does not lead to an im-
provement in the number of satisfied clauses within
a certain number of steps, the noise value is further
increased. Eventually, p should be high enough for
the search process to overcome the stagnation situ-
ation, at which point the noise can be gradually de-
creased, leading to an increase in search intensifica-
tion, until the next stagnation situation is detected or
a solution to the given problem instance is found.

Details of the mechanism used in Adaptive
Novelty+ can be found in [2]; as shown there,

Adaptive Novelty+ typically achieves the same per-
formance as Novelty+ with approximately opti-
mal static noise, which renders it one of the best-
performing and most robust SLS algorithms for SAT
currently available.

6 Implementations in UBCSAT
For the SAT competition Adaptive Novelty+ was
implemented in the UBCSAT framework [7], pre-
cisely following the earlier reference implemen-
tations used in [1, 2]. However, different from
those, the UBCSAT implementations do not use the
caching and incremental updating scheme for vari-
able scores originally developed for GSAT [6], but
rather computes effects of variable flips for each
variable occurring in a selected clause from scratch,
which interestingly improves the efficiency of the
implementation for many types of SAT instances.

References
[1] H. H. Hoos. On the run-time behaviour of stochastic local search

algorithms for SAT. In Proc. of the Sixteenth Nat’l Conf. on Artificial
Intelligence (AAAI-99), pages 661–666, Orlando, Florida, 1999.

[2] H. H. Hoos. An adaptive noise mechanism for WalkSAT. In Proc. of
the 18th Nat’l Conf. in Artificial Intelligence (AAAI-02), pages 655–
660, 2002.

[3] H. H. Hoos and T. Stützle. Local search algorithms for SAT: An em-
pirical evaluation. Journal of Automated Reasoning, 24(4):421–481,
2000.

[4] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants
in local search. In Proc. of the Fourteenth Nat’l Conf. on Artificial
Intelligence (AAAI-97), pages 321–326, 1997.

[5] B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving
local search. In Proc. of the 12th Nat’l Conf. on Artificial Intelligence
(AAAI-94), pages 337–343, 1994.

[6] B. Selman, H. Levesque, and D. Mitchell. A new method for solv-
ing hard satisfiability problems. In Proc. of the Tenth Nat’l Conf. on
Artificial Intelligence (AAAI-92), pages 459–465, 1992.

[7] D. A. D. Tompkins and H. H. Hoos. UBCSAT: An implementation
and experimentation environment for SLS algorithms for SAT and
MAX-SAT. In LNCS 3542: Proceedings of the Seventh Int’l Confer-
ence on Theory and Applications of Satisfiability Testing (SAT 2004),
pages 305–319, 2004.


