
Warped Landscapes and

Random Acts of SAT Solving

Dave A.D. Tompkins & Holger H. Hoos

Department of Computer Science

University of British Columbia

Canada

Outline

1. Dynamic Local Search (DLS) for SAT and MAX-SAT

2. Do DLS Algorithms Learn?

3. Is Randomness Needed?

4. Conclusions & Future Work

Dynamic Local Search (DLS) for (MAX-)SAT

Propositional Satisfiability Problem (SAT):

Given: Propositional formula � in conjunctive normal form.

Objective: Find an assignment of truth values to variables in �

such that � is satisfied, or declare � as unsatisfiable.

Example:

�� � �� � ��� � ���

� satisfiable, solution: � � true� � � false

Maximum Propositional Satisfiability Problem (MAX-SAT):

Given: Propositional formula � in conjunctive normal form.

Objective: Find an assignment of truth values to variables in �

that maximises the number of satisfied clauses in �.

Weighted MAX-SAT:

Given: Propositional formula � in conjunctive normal form,

weights ���� associated with each clause � � �

Objective: Find an assignment of truth values to variables in �

that maximises the total weight of satisfied clauses in �.

� hard vs. soft constraints

Stochastic Local Search (SLS)

Approach:

� Guess (i.e., randomly generate) initial candidate solution

(SAT: randomly determine truth value for each variable).

� Iteratively perform search steps by modifying small parts of

the candidate solution guided by evaluation function

(SAT: pick a variable and change its truth value

in order to reduce number of unsatisfied clauses).

� Stop this process when termination condition is satisfied,

e.g., solution found or time-limit reached.

� Stochastic decisions are used to overcome / avoid

search stagnation caused by, e.g., local minima.

Note:

� SLS algorithms are amongst the best-performing methods for

solving hard, satisfiable SAT instances.

� SLS algorithms are (by a large margin) the best-performing

methods for solving hard MAX-SAT instances.

Dynamic Local Search (DLS)

Key idea: Modify evaluation function during search process

to escape from local minima in objective function �.

DLS for SAT:

� associate penalty values ������ with every clause �

� initialise clause penalties (typically ������ �� �)

� perform local search on

������� �� ��

�

� is unsat under �
������

� modify clause penalties (important choices: when? how?)

Dynamic Local Search

Note:

� DLS for SAT effectively finds locally optimal solutions

for a series of weighted MAX-SAT instances,

where the clause weights correspond to the ��� values.

� Many DLS algorithms are motivated by methods from

continuous optimisation, but important theoretical properties

do not carry over.

� Modifications of clause weights typically have

high time complexity compared to local search steps.

Some DLS Algorithms for SAT

– Breakout Method [Morris, 1993]

� GSAT with clause weights [Selman & Kautz, 1993]

– GSAT with rapid weight adjustment [Frank, 1997]

� Discrete Lagrangian Method (DLM) [Wah et al., 1998-2000]

– Smoothed Descent and Flood (SDF) algorithm

[Schuurmans & Southy, 2000]

� Exponentiated Subgradient (ESG) algorithm

[Schuurmans et al., 2001]

�� Scaling and Probabilistic Smoothing (SAPS) algorithm

[Hutter, Tompkins, & Hoos, 2002]

Scaling And Probabilistic Smoothing (SAPS)

SAPS on SAT (median run-time in CPU sec)

Problem Instance Novelty� ESG SAPS s.f.

uf100-hard 0.046 0.006 0.006 1.00

uf250-med 0.015 0.0195 0.011 1.36

uf250-hard 2.745 0.461 0.291 1.58

uf400-med 0.160 0.324 0.103 1.55

uf400-hard 22.3 9.763 1.973 4.95

flat100-med 0.008 0.013 0.008 1.00

flat100-hard 0.089 0.037 0.032 1.16

flat200-med 0.208 0.237 0.087 2.39

flat200-hard 18.862 5.887 3.052 1.93

bw large.a 0.014 0.016 0.009 1.56

bw large.b 0.339 0.280 0.179 1.56

logistics.c 0.226 0.229 0.037 6.10

ais10 4.22 0.139 0.051 2.73

SAPS on MAX-SAT: test-set wjnh

0.0001

0.001

0.01

0.1

0.0001 0.001 0.01 0.1

G
LS

S
A

T
2

-
m

ed
ia

n
tim

e

SAPS - median time

Satisfiable
Unsatisfiable

SAPS on MAX-SAT: test-sets rnd100-1000u, rnd150-1500u

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

G
LS

S
A

T
2

-
m

ed
ia

n
tim

e

SAPS - median time

100 vars
150 vars

Do DLS Algorithms Learn?

Original motivation of DLS:

� Fill in local minima

� Learn important / hard clauses

� Hypothesis:

Clause penalties determined by DLS algorithm

render problem instance easier to solve

Note: This hypothesis was never tested!

Dynamic Local Search

Dynamic Local Search

Experiment:

1. Solve benchmark instances using SAPS;

measure search cost (median # variable flips).

2. Take snapshots of clause penalty values

at end of characteristic successful runs.

3. Initialise clause penalties according to snapshots;

measure search cost for SAPS.

4. Initialise clause penalties randomly;

measure search cost for SAPS.

5. Analyse differences in search cost

for “learned” and random penalties.

Selecting Characteristic Runs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

P
(s

ol
ve

)
[%

]

Number of Search Steps

Flat100: SAPS-generated vs. random weights

 1000

 10000

 100000

 1000 10000 100000M
ed

ia
n

ru
n-

le
ng

th
 o

n
ra

nd
om

ly
 g

en
er

at
ed

 w
ei

gh
ts

 [s
te

ps
]

Median run-length on SAPS generated weights [steps]

UF100: SAPS-generated vs. random weights

 100

 1000

 10000

 100 1000 10000M
ed

ia
n

ru
n-

le
ng

th
 o

n
ra

nd
om

ly
 g

en
er

at
ed

 w
ei

gh
ts

 [s
te

ps
]

Median run-length on SAPS generated weights [steps]

SAPS Generated Randomly Generated

Weighted Instances Weighted Instances

Instance Unweighted ����� Median ����� ����� Median �����

uf100-easy 81 0.98 1.01 1.06 1.31 1.36 1.46

uf100-hard 3,763 1.08 1.11 1.14 1.03 1.06 1.10

uf250-hard 197,044 0.98 1.06 1.14 0.97 1.03 1.06

uf400-hard 2,948,181 0.92 1.04 1.17 0.95 1.10 1.19

flat100-hard 24,248 0.99 1.02 1.04 0.98 1.01 1.04

bw large.a 2,499 0.90 0.93 0.98 1.01 1.04 1.07

bw large.b 34,548 0.97 1.02 1.08 0.99 1.07 1.11

logistics.c 9,446 0.97 1.03 1.06 1.05 1.07 1.14

ssa7552-038 3,960 0.86 0.91 0.95 1.02 1.08 1.12

ais10 20,319 1.06 1.09 1.11 1.04 1.11 1.19

Result:

No support for hypothesis that clause penalties

determined by SAPS render problem instances easier.

So . . . why does SAPS work?

� Main effect of scaling: escape from local minimum

and avoid being immediately sucked back in.

� But: adverse side effects (e.g., very likely new / more

local minima) due to large “footprints” of clauses.

� Hence: Need mechanism for undoing

unwanted effects of scaling� smoothing!

Note:

The main role of penalty modifications appears to be

search diversification, which in many other SLS algorithms

is achieved through strong randomisation of the search.

Is Randomness Needed?

Random decisions in SAPS:

1. random initialisation of variable assignment

2. random tie-breaking in subsidiary local search

3. random walk steps (in local minimum)

4. probabilistic smoothing

SAPS/NR:

� deterministic tie-breaking

� no random walk steps (�� � �)

� deterministic periodic smoothing

� after initialisation, SAPS/NR is completely deterministic

Experiment:

1. Compare performance and behaviour of SAPS and SAPS/NR.

2. Study variants of SAPS/NR in which only a fraction

of variables is initialised with random truth values

(others set deterministically).

SAPS SAPS/NR

Instance Mean c.v. Mean c.v.

uf100-easy 102 0.75 103 0.70

uf100-hard 5,572 0.95 5,458 0.97

uf250-hard 296,523 0.98 282,668 1.02

uf400-hard 4,349,480 0.75 3,662,192 0.83

flat100-hard 35,124 1.02 33,519 0.98

bw large.a 3,374 0.85 3,245 0.81

bw large.b 50,025 0.95 50,266 0.94

logistics.c 12,873 0.76 12,458 0.83

ssa7552-038 4,460 0.44 4,399 0.41

ais10 32,810 1.01 31,527 0.99

SAPS vs. SAPS/NR (100 random decisions)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

P
(s

ol
ve

)
[%

]

Number of Search Steps

uf100-hard

SAPS
SAPS/NR [100]

SAPS vs. SAPS/NR (0 random decisions)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

P
(s

ol
ve

)
[%

]

Number of Search Steps

uf100-hard

SAPS
SAPS/NR [0]

SAPS vs. SAPS/NR (1 random decision)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

P
(s

ol
ve

)
[%

]

Number of Search Steps

uf100-hard

SAPS
SAPS/NR [1]

SAPS vs. SAPS/NR (2 random decisions)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

P
(s

ol
ve

)
[%

]

Number of Search Steps

uf100-hard

SAPS
SAPS/NR [2]

SAPS vs. SAPS/NR (4 random decisions)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

P
(s

ol
ve

)
[%

]

Number of Search Steps

uf100-hard

SAPS
SAPS/NR [4]

SAPS vs. SAPS/NR (8 random decisions)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

P
(s

ol
ve

)
[%

]

Number of Search Steps

uf100-hard

SAPS
SAPS/NR [8]

Result:

� Behaviour and performance of SAPS/NR

+ random initialisation is indistinguishable

from fully randomised SAPS

� Performance of (deterministic) SAPS/NR

shows sensitive dependence on initial conditions

� central component in definition of chaotic behaviour!

� Diversifying effect of penalty updates

is sufficient to propagate small amount

of randomness throughout entire search process.

Conclusions
� Penalty mechanism in DLS �� global simplification

(no “long-term memory”)

� Local (“short-term memory”) effects dominate search

behaviour

� Penalty mechanism in SAPS primarily provides

search diversification

� Only few initial random decisions are sufficient for obtaining

same behaviour as fully randomised SAPS algorithm

� Behaviour of deterministic SAPS/NR algorithm

sensitively depends on initial conditions (chaotic behaviour?)

Future Work
� characterisation of “warped” search spaces

� separation of short-term and long-term memory in DLS

� optimally weighted SAT instances

� advanced initialisation methods for SAPS/NR

� further investigation of “chaotic” behaviour in SAPS/NR

