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OverviewOverview
• Motivation

– Stochastic Local Search for SAT
• Quality

– Random Number Generators (RNGs)
– PAC Property

• Quantity 
– De-randomization
– Number of random decisions

• Conclusions & Future Work
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Stochastic Local Search (SLS)Stochastic Local Search (SLS)
• Large combinatorial 

problems

• Start with a full (random) 
variable assignment

• Move to neighbouring
(adjacent) solutions

• Typically incomplete
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SATisfiabilitySATisfiability ProblemProblem

• (a v b v ¬c) (a v ¬b v d) (¬a v d v e)…

OBJECTIVE:
• Find an assignment of variables (A=T,B=F,…) 

so that all clauses are SATisfied

literal

clause
variables
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CRWALKCRWALK
• a.k.a. Papamaditrou’s algorithm

[ Papadimitriou 1991]

• Nice theoretical bounds:
– Schöning’s algorithm is avg. case O(1.334n)

[Schöning 1999]

• Conflict-Directed Random Walk
– Randomly select an unsatisfied clause
– Flip a random variable from that clause
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CRWALKCRWALK
• a=T, b=T, c=T, d=F, e=F…
• (a v b v ¬c) (a v ¬b v d) (¬a v d v e)…

• a=F, b=T, c=T, d=F, e=F…
• (a v b v ¬c) (a v ¬b v d) (¬a v d v e)…

• a=F, b=F, c=T, d=F, e=F…
• (a v b v ¬c) (a v ¬b v d) (¬a v d v e)…
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Adaptive NoveltyAdaptive Novelty++

• High performance, state-of-the-art SLS algorithm 
• SLS Leader in last two SAT competitions 

www.satcompetition.org
• Uses random decisions in four different ways:

– Selecting clauses
– Decide to take a random walk step
– Selecting variables in random walks
– Selecting between “best” & “second best” choices

• Deterministically adapts noise during search
– Based on current search progress
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Random Number Generators (Random Number Generators (RNGsRNGs))
• SLS algorithms use random decisions in a variety 

of ways
• Obviously a “true” RNG is ideal (prohibitive)
• We use Pseudo-RNGs (PRNGs)
• The qualities of a “good” PRNG:

– Unbiased
– Uncorrelated
– Long Period

• Software packages available for measuring the 
“quality” of a bitstream

• Quality is related to underlying PRNG function
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Model of a PseudoModel of a Pseudo--RNGRNG

MEMORY

FUNCTION

SEED

RANDOM
BITSFINITE STATE MACHINE
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Measuring QualityMeasuring Quality
• Tested different streams with statistical tests 

and on SLS algorithms
– True RNG (atmospheric noise)
– Pseudo-RNGs:

• Unix “C” Random
• Linear congruential [ANSI C]
• Lagged Fibinoacci [Knuth]
• Mersenne twister [Matsumoto, Takuji]

– Intentionally bad streams:
• Added bias
• Cycled (periodic) behaviour
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ObservationsObservations
• Standard PRNGs are all “good” enough

• We could affect the SLS algorithm 
performance with biased streams
(but they were really biased)

• With cycled streams, we could get the 
algorithms to become “stuck”
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PAC Property of SLS AlgorithmsPAC Property of SLS Algorithms
• Many SLS algorithms are 

Probabilistically Approximate Complete (PAC)
– Will solve a soluble instance with arbitrarily high 

probability when allowed to run long enough

• CRWALK & Adaptive Novelty+ are both PAC

• Even though the algorithms were PAC, we could 
make them “incomplete” with a poor RNG
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Model of a PseudoModel of a Pseudo--RNGRNG
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ConclusionsConclusions
• Since all PRNGs eventually cycle, no conventional 

algorithm implementation is truly PAC

• Desired PRNG features
– Reasonably “good” score on a statistical quality test
– Long cycle period
– Efficiency
– Platform independence

• Mersenne Twister; period is (219937 - 1)
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Quantity of Random DecisionsQuantity of Random Decisions
• Previous Observation:

Scaling and Probabilistic 
Smoothing (SAPS)
algorithm essentially becomes 
deterministic after initial search 
phase

• We derandomized the algorithm: 
SAPS/NR
[Tompkins, Hoos 2004]

Time

C
um

ul
at

iv
e 

# 
of

 
R

an
do

m
 D

ec
is

io
ns



On the Quality & Quantity of Random Decisions in SLS for SAT
Dave A. D. Tompkins and Holger H. Hoos

AI 2006
17



On the Quality & Quantity of Random Decisions in SLS for SAT
Dave A. D. Tompkins and Holger H. Hoos

AI 2006
18

DerandomizationDerandomization
• Can we achieve similar results with 

algorithms that rely more heavily on random 
decisions?

• We developed derandomized versions of 
CRWALK and Adaptive Novelty+

• Used straightforward derandomization
methods
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DerandomizedDerandomized CRWALKCRWALK
• BEFORE:

– Select unsatisfied clause at random
– Select variable to flip at random

• DERANDOMIZED:
– Select clause with the lowest value of:

(# times selected / # times unsat)
• Breaking ties with the “first” clause

– Select variable to flip in sequential order
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DCRWALK (Deterministic)DCRWALK (Deterministic)
• a=T, b=T, c=T, d=F, e=F…
• (a v b v ¬c) (a v ¬b v d) (¬a v d v e)…

• a=F, b=T, c=T, d=F, e=F…
• (a v b v ¬c) (a v ¬b v d) (¬a v d v e)…

• a=T, b=T, c=T, d=F, e=F…
• (a v b v ¬c) (a v ¬b v d) (¬a v d v e)…

• a=F, b=T, c=T, d=T, e=F…
• (a v b v ¬c) (a v ¬b v d) (¬a v d v e)…
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Advanced Advanced DerandomizationDerandomization
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Quantity of Random DecisionsQuantity of Random Decisions

• Deterministic Algorithms

• Deterministic Initialization
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Conclusions & Future WorkConclusions & Future Work
• SLS algorithms are very robust w.r.t. the quality of 

the random number generator

• With straightforward implementations, a surprisingly 
few number of random decisions can exhibit full 
variability

• Future Work
– Other domains & algorithms
– Time analysis of PRNGs & randomized vs. deterministic
– Statistical outliers: investigate for further insight 



On the Quality & Quantity of Random Decisions in SLS for SAT
Dave A. D. Tompkins and Holger H. Hoos

AI 2006
33

Questions?

Thank youThank you
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