Do Software Developers Understand Open Source
Licenses?

Daniel A. Almeida and Gail C. Murphy
Department of Computer Science
UBC, Vancouver Canada
{daa,murphy } @cs.ubc.ca

This pre-print has been accepted for publication in the
Proceedings of the International Conference on Program
Comprehension (ICPC) 2017.

Abstract—Software provided under open source licenses is
widely used, from forming high-profile stand-alone applications
(e.g., Mozilla Firefox) to being embedded in commercial offerings
(e.g., network routers). Despite the high frequency of use of open
source licenses, there has been little work about whether software
developers understand the open source licenses they use. To our
knowledge, only one survey has been conducted, which focused
on which licenses developers choose and when they encounter
problems with licensing open source software. To help fill the
gap of whether or not developers understand the open source
licenses they use, we conducted a survey that posed development
scenarios involving three popular open source licenses (GNU GPL
3.0, GNU LGPL 3.0 and MPL 2.0) both alone and in combination.
The 375 respondents to the survey, who were largely developers,
gave answers consistent with those of a legal expert’s opinion in
62% of 42 cases. Although developers clearly understood cases
involving one license, they struggled when multiple licenses were
involved. An analysis of the quantitative and qualitative results of
the study indicate a need for tool support to help guide developers
in understanding this critical information attached to software
components.

Keywords-open source, software licenses, survey

I. INTRODUCTION

Software developers increasingly use open source software
to build applications. As one example, Sonatype, the organiza-
tion behind the Central Repository that helps Java developers
access open source components as part of the build of an
application, reports that the average number of open source
components relied upon in 2014 was 106 per application [1].

Most often when an open source software component is
selected and used in a new application, it is accessed via an
application programming interface (API). Over the last twenty
years, there has been substantial investigation of challenges
developers face in understanding and using APIs (e.g., [2],
[3], [4]). This previous work has focused primarily on tech-
nical aspects of components, such as the code and related
documentation. However, when developers who are working
on a software project, whether open or closed source, choose
to use an open source component, they must also understand

Software Carpentry Foundation

gvwilson @software-carpentry.org

Greg Wilson Mike Hoye
Mozilla Corporation
Toronto Canada

mhoye @mozilla.com

Toronto Canada

and determine if the software to be used is licensed in a way
that is compatible with their intended use of the component.

If there were only one or two open source licenses in
existence, understanding the licenses and how they can be
used would be reasonably straightforward. Unfortunately for
developers, there are many open source licenses. As just
one example of the diversity of licenses for software in one
programming language, Vendome and colleagues found over
25 licenses used in a sample of Java GitHub projects [5].
When a developer makes use of open source software, the
use may take many forms, such as through copying a code
snippet, using a self-contained library, extending code that is
structured as a framework, to name just a few. Not all of the
ways in which a developer may wish to make use of open
source code may be allowed by the license applied to that
code and the way in which the code is used may affect the
resultant license of the application being built. The intricacies
of licenses and how they apply in different situations can result
in license incompatibility issues. Germdn and colleagues report
finding license incompatibility issues as a result of depen-
dencies between software with different licenses [6]. Hermel
and colleagues describe how the gpl-violations.org
project has detected license compliance problems on over 150
products, such as a Linksys router [7]. It is possible that the
developers working in these situations knowingly used the
licensed software inappropriately. However, it is also possible
that the developers did not understand the implications of using
the open source software as they did.

Despite an indication that license problems occur when
using open source software components, there is little research
investigating whether developers understand the licenses and
how to use them. We could find evidence of only one in-
vestigation of license interactions from a developer’s point
of view. Vendome and colleagues surveyed developers from
projects in which licenses for software changed, asking how
licenses were picked and reasons for license evolution [8]. The
focus of their study was thus on developers involved in license
change decisions as opposed to developers involved in using
components.

In this paper, we directly explore whether developers in-
volved in open source understand licenses and their inter-
actions. We report on the results of a survey that asked
developers about 42 different cases of the use of code under

different open source licenses. To make the survey tractable
for developers to answer, we focused on three popular open
source licenses (GNU GPL 3.0, GNU LGPL 3.0 and MPL
2.0). We advertised the survey on mailing lists and Twitter and
collected responses from 375 participants, who were largely
developers and who came from many parts of the world.

Analyzing the survey responses required determining, for
each case, appropriate answers. We determined these answers
by recruiting an intellectual property lawyer with deep knowl-
edge of the open source community as our oracle. This expert,
who has over a decade’s specialization in patent reform, open
source licensing, and related issues, kindly gave us his opinion
on each of the scenarios we constructed, and helped us identify
ambiguities and missing information so that we could check
to see if our developer respondents spotted the same issues
and analyzed them the same way.

Our analysis of the survey responses indicate that developers
had a good grasp on development cases involving a single
license. However, developers struggled when more than one
license was involved. Developers recognized that some license
interaction cases were more dependent on technical details and
others on license details, but they lacked a deep grasp of the
intricacies of license interactions.

This paper makes three contributions:

« It provides empirical evidence that software developers
understand how to use individual open source licenses in
both simple and complex development scenarios.

« It provides empirical evidence that software developers
struggle to understand cases involving combinations of
open source licenses.

o It provides an analysis of the factors that developers
consider as they work with combinations of open source
licenses.

The results of the survey indicate a need to help software
developers better understand the ramifications of the licenses
associated with open source software components that they
rely upon. This help needs to include tool support that can
help a developer comprehend, and reason about interactions
between licenses in the context of how components are be-
ing incorporated and modified into the software being built.
There is also potentially a role for recommenders that can
recommend how code should be structured to enable the use
of components with particular license characteristics.

We begin with an overview of previous related research on
open source licenses (Section II) and a brief overview of the
licenses used in the survey (Section III). We then describe
the survey, (Section IV), our analysis methods (Section IV)
and present the results (Section V). The latter parts of the
paper describe threats to the results (Section VI), discuss ways
forward to improve the situation (Section VII) and summarize
the paper (Section VIII).

II. RELATED WORK

The role of open source licenses on open source projects
has been the focus of research from a number of different
perspectives.

Some researchers have focused on the overall trends of
open source license use. For example, Aslett has shown the
ratio of permissive (e.g., MIT style licenses that have limited
restrictions on reuse) vs. restrictive (e.g., GPL style licenses
that require changes to be open source) licensed projects
shifted in favour of permissive licenses between 2008 and
2011 [9]. This result is echoed in the work of Hofmann and
colleagues [10]. Di Penta and colleagues have looked at the
issue of open source license use at a more detailed level,
considering how licenses can change for and within a project
over time [11]. By considering overall trends, these researchers
have helped provide a characterization of open source license
use, showing that many licenses are used in practice and that
the choice of a license is not static for a project as a whole
or for parts of a project.

Other researchers have taken a different perspective, con-
sidering how the choice of a particular open source license
(or licenses) can impact a project. Through analysis of open
source project artifacts, Stewart and colleagues found business-
friendly open source licenses had a positive association with
project success [12], where success is defined as user interest
in and development activity on a project. Using a similar
analysis approach, Sen and colleagues determine factors that
affect the choice of a license for a project (e.g., [13]).

Another area of research focus has been on the impact
of license interactions on software development. German
and Hassan were the first to describe the license mismatch
problem, which occurs when two or more pieces of software
with different licenses with different restrictions are combined
in a new project. Germidn and Hassan developed a model
to describe mismatch problems and to document integration
patterns for solving such problems [14]. Researchers have
since looked at the license mismatch problem in several
different ways. For example, Alspaugh and colleagues de-
veloped a meta-model to analyze the interaction of licenses
from the viewpoint of software architecture [15]. Germéan and
colleagues developed the Ninka tool [16] to identify licenses in
source code, making possible larger scale studies of license use
and evolution (e.g., [17]). The research in this area has focused
largely on technical aspects and implications of licenses, such
as the detection of license interactions and the role of software
structure both in causing inappropriate interactions and ways
to resolve interactions.

In this paper, we focus on the developer perspective on open
source licenses, considering how well developers understand
open source licenses, particularly when those licenses interact.
In considering the developers’ perspectives, our work is closest
to Vendome and colleagues [8]. Their work includes a survey
of 138 developers chosen from projects in which the evolution
of a license use occurred. Their survey focused on how de-
velopers picked licenses and motivations for license changes.
This survey relies on the fact that developers responding to
the survey understood the licenses with which they work and
the situations in which the licenses are used. In this paper,
we focus on a more general population of developers, not just
those who have dealt with license changes, and delve into the

question of whether the more general population understands
open source license use both when one license is used and
when a combination of licenses is in use.

III. OVERVIEW OF LICENSES

Before we introduce the method we used to investigate
questions regarding developer knowledge of the use of open
source licenses, we present a brief overview of the licenses
referred to in the survey. We focused on these licenses because
they represent common licenses in use (e.g., [8]), because they
represent a range from restrictive (e.g., GNU GPL) to permis-
sive (e.g., Mozilla Public License (MPL)) and because they
represent different technological choices in license application
and resultant restrictions (e.g., GNU GPL vs. GNU LGPL).

a) GNU General Public License (GPL), Version 3.0
(GPL-3.0): The GNU General Public License (GPL)! ensures
end users of the software being licensed will be able to run,
view, share and modify the software. The GPL is a copyleft
license that requires the rights to be retained when software
is shared or modified. The updates to the GPL in Version 3.0
were instituted to protect the copyleft features given recent
legal and technological changes.

b) GNU Lesser General Public License, Version 3.0
(LGPL-3.0): The GNU Lesser General Public License
(LGPL)? is a weak copyleft license. The LGPL can be applied
to software that is deployed as a shared library; code in the
shared library must be available to be viewed, modified and
shared, but proprietary code using the library need not be made
freely available.

c) Mozilla Public License, Version 2.0 (MPL-2.0): The
Mozilla Public License (MPL-2.0)> provides a different bal-
ance between proprietary and free software. The MPL-2.0 is
copyleft, similar to the GPL-3.0, but at the file level, easing
the combination of code under different licenses. For example,
software that is a mixture of both proprietary and MPL code
requires only modifications to files licensed under the MPL to
be made available.

IV. METHOD

We chose a survey instrument to investigate whether de-
velopers understand open source licenses because we were
interested in trends about which aspects of licenses developers
understand and which aspects developers struggle with. Trends
identified in a survey can later be investigated in more depth
using other instruments, such as interviews.

To develop the survey, two authors of this paper posited a
number of different cases of how software might be licensed,
how a software system might be built out of existing compo-
nents and how software might evolve. The other two authors
of the paper, each of whom has extensive development ex-
perience, commented and helped refine the cases. All authors
of the paper then collaboratively developed a set of scenarios
based on the identified cases. We originally planned to include

"https://opensource.org/licenses/GPL-3.0
Zhttps://opensource.org/licenses/LGPL-3.0
3https://opensource.org/licenses/MPL-2.0

four licenses in our survey. After piloting, we decided to
reduce the number of licenses (to 3) and scenarios (to 7) to
keep survey completion time under 40 minutes.

A. Survey
The on-line survey we distributed consisted of:
« six demographic questions,
« seven hypothetical software development scenarios, some
of which included multiple license combinations, and
« four open-ended questions.

A copy of the full survey is available for reference.*

Table I summarizes the seven development scenarios in
the survey. The first scenario description in Table I is laid
out similar to how the questions appeared in the survey.
The second scenario description shows how questions were
posed about different combinations of licenses. The remaining
scenario descriptions are in compact form. These scenarios
included a total of 45 cases. In this paper, we refer to the cases
by their scenario number (as in S1) and the license (or licenses
involved, as in S2-GPL-GPL). For each case, a participant
could answer yes, no or unsure. If a participant answered
unsure, an extra textbox appeared after the question asking
for further clarification as an open-ended text comment. For
each scenario, there was also an open-ended text box for the
participant to state any assumptions she or he made about the
scenario posed.

In developing the survey, we had to make a choice between
full and long-specifications of all the details of a given
scenario, such as detailed descriptions of the architecture of
the software being combined in some scenarios, versus more
brief descriptions. We chose the latter approach to make the
survey tractable for participants and as we were interested in
the assumptions participants may (or may not) make.

B. Participant Recruitment

We recruited participants in two ways. First, three authors of
the paper, with over 6,000 followers combined, tweeted about
the survey with a link to the survey. Second, the authors used
mailing lists to advertise the survey.

C. Analysis

We analyzed the results of the survey both quantitatively
and qualitatively.

Quantitative analysis required correct answers for each of
the 45 cases. As described in Section I, we asked a lawyer
with relevant expertise to rule on each case and to point out
ambiguities and omissions that could affect the answer. This
allowed us to score responses from developers and also to
check how many were able to correctly identify the same
issues.

Qualitative analysis was performed on the open-ended com-
ments provided by participants about answers for cases for
which they were unsure and assumptions made for the scenar-
ios in which the case appeared. Two of the authors open-coded

“https://goo.gl/v2IGol

TABLE I
SURVEY SCENARIOS

Scenario #1 - Layout similar to survey

John has been working on ToDoApp, his own personal task management application. ToDoApp is going to be a desktop-based
application that will be used exclusively by John on his own computer. To make sure he does not lose any of his very special tasks,
John is planning to use a lightweight library called LightDB to persist ToDoApp’s data.

If LightDB is distributed under the following licenses, would John be allowed to use it as part of ToDoApp?

GNU GPL3.0 (S1-GPL) o Yes o No o Unsure
GNU LGPL3.0 (SI-LGPL) o Yes o No o Unsure
MPL 2.0 (S1-MPL) o Yes o No o Unsure

Scenario #2 - Layout abbreviated but similar to survey

Having used ToDoApp for three months, John realized how much his productivity has improved. To help other people manage their
tasks as efficiently as well, John has decided to make ToDoApp available as open source.

If LightDB, the lightweight library used to persist ToDoApp’s data is distributed under GNU GPL 3.0 would John be allowed to
make ToDoApp available under the following licenses?

GNU GPL3.0 (52-GPL-GPL) o Yes o No o Unsure
GNU LGPL3.0 (S2-GPL-LGPL) o Yes o No o Unsure
MPL 2.0 (S2-GPL-MPL) o Yes o No o Unsure

Survey repeats the question for LightDB under GNU LGPL 3.0 and MPL 2.0 for each license combination for ToDoApp.

Scenario #3 - Compact Form

After the success of the open source version of ToDoApp, John has decided to create a brand new commercial task management
application: TaskPro. TaskPro is going to be built from scratch and use LightDB as a lightweight library to persist data.

If LightDB, is distributed under {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0}, would John be allowed to make TaskPro
commercially available under each of the {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0} licenses?

Scenario #4 - Compact Form

As the lead developer of a new product at GreatSoftware Inc., Laura decided to use an existing authentication library she found on
the Web called SafeAuth. She realizes that SafeAuth could be improved using a stronger cryptographic algorithm when storing
users’ information. The product is going to be released under a commercial software license, but Laura would like to release the
improved version of SafeAuth as open source.

If safeAuth, is distributed under {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0}, would Laura and her team be allowed to release
the improved version of SafeAuth under each of the {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0} licenses?

Scenario #5 - Compact Form

Laura who works for GreatSoftware Inc. has changed the open version of SafeAuth found on the Web and added a new, stronger
cryptographic algorithm to it. Despite Laura’s intentions to release the modified version of SafeAuth as open source, her manager
sees a very strong competitive advantage for their products and decides not to release the modified version as open source.

Considering that the new product is going to be distributed under a commercial license, if SafeAuth is distributed under the {GNU
GPL 3.0, GNU LGPL 3.0 and MPL 2.0}, can Laura and her team use the modified version as part of their new product?

Scenario #6 - Compact Form

Shaoqging believes there are unhappy users out there willing to pay for a premium email client. To get to market faster, she decided
to use an open source implementation of the Simple Mail Transfer Protocol (SMTP).

If the SMTP implementation is released under {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0}, would Shaoging be allowed to fork
the SMTP project and change the fork’s license to the {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0} license in order to use it in
her commercial e-mail client??

Scenario #7 - Compact Form

Shaoqging has been trying to optimize the way her email client handles old e-mails. Browsing on the Web, she found a fairly
sophisticated implementation of a compression algorithm on a software developer’s blog that could be used on archived emails. The
algorithm implementation has hundreds of lines of code and does not include an explicit license, but there is a copyright notice on
the blog that states “All Rights Reserved”.

If Shaoqing used the source code she found on the blog in her e-mail client, would be allowed to distribute the e-mail client
commercially under the {GNU GPL 3.0, GNU LGPL 3.0, MPL 2.0} license?

the collected comments [18]. We focused on comments and
assumptions for questions for which over 30% of the answers
did not match the legal expert’s answer (14 cases) or for which
over 10% of the answers were “unsure” (14 cases). We chose

30% as the threshold for which answers did not match the
legal expert’s answer to allow room for ambiguity; we believe
a simple majority threshold would have suggested the answers
are always clearcut. We choose to analyze cases for which over

10% of the answers were “unsure” to capture where ambiguity
seemed to be likely occurring. Applying these thresholds,
nine out of the 28 cases identified overlapped, resulting in
the coding of comments for 19 cases and assumptions for
four scenarios. We took the approach of assigning only one
code to each comment, choosing the code that best described
the comment. For comments for five of the cases (a total of
132 comments), each coder independently coded the case and
then the coders met to discuss the codes and form agreement.
After five cases were coded, the coders independently coded
the remaining 14 cases and then met to form an agreement.
The Cohen’s kappa score for the 14 cases that involved 393
comments was .836. Similarly, the coders independently coded
assumptions for one scenario (a total of 53 comments), met to
form agreement and then independently coded the assumptions
for the remaining three scenarios. The Cohen’s kappa score for
coding assumptions for the 282 assumptions across the three
scenarios was .853.

V. RESULTS

The survey was started 825 times. Ultimately, 375 individu-
als completed the survey for a completion rate of 45%. We re-
port on the demographics of the participants before providing a
quantitative and qualitative analysis of the respondents’ results.
A data package containing aggregate results and participants’
comments may be consulted for further information.’

A. Participants

Participants came from all over the world (i.e., USA (267),
UK (133), Germany (63), Canada (62), etc.). Table II sum-
marizes the roles and experience of the participants. As the
majority of the participants identified their role as developer
or team lead, we will refer to our findings from the survey in
terms of findings about developers. The participants had signif-
icant software development experience, with 93% reporting at
three years or more. The participants came from a range of size
of company with 20% working in companies with over 5000
employees down to 7% working solely. Most participants have
previously chosen software licenses and most contribute to
open source. The table shows the top five languages used, with
participants reporting use of over 10 different programming
languages.

B. Quantitative Results

Table III presents the participants’ survey answers. For each
case, a bar chart is shown that compares the participants’
responses for the case to the legal expert’s opinion: a dot is
used to indicate the response of the legal expert in each case.
For each chart, the green bar represents “Yes” answers, the
red bar represents “No” answers and the blue bar represents
“Unsure” answers.

As we delved into the details of participants’ responses, we
noted an issue with Scenario 5. By comparing the assumptions
of the legal expert with the participants’ assumptions, we

Shttps://www.cs.ubc.ca/labs/spl/projects/softwarelicensing/resources/UBC_
SPL_software_licensing_survey_data.zip

TABLE II
PARTICIPANT DEMOGRAPHICS

[Demographics |
Job title
Programmer/Soft. Dev./Soft. Eng. 67.2%
Technical Lead/Team Leader 13.3%
Other 13%
Sys. Administrator/Network Engineer 3.2%
Project Manager 2.9%
Level of Experience
More than 7 years 61.3%
At least 3 years 32.3%
Less than 3 years 6.4%
Ever chose a software project’s license?
Yes 85.3%
No 14.7%
Often contribute to open source projects?
Yes 74.7%
No 25.3%
Programming languages used the most
Python 51.6%
JavaScript 25.7%
C++ 25.4%
Java 22.5%
C 19.8%

determined that the scenario was not stated clearly enough in
terms of which source code would eventually be released. As
a result, we have omitted the results for Scenario 5 in Table 111
and we do not include Scenario 5 in any further reporting or
analysis. Its removal leaves 42 cases for analysis.

We consider that the participants’ answers for a case are
correct when 70% or over of the participants’ answers match
the legal expert’s. We chose this threshold to account for
the potential ambiguity in our short scenario descriptions,
which may lead participants to be unsure of the meaning of
the scenarios. Applying this threshold, participants’ responses
matched the legal expert’s in 26 of the 42 cases (62%). This
rate of matching the legal expert’s opinion is encouraging as it
suggests that participants understood many aspects of the open
source licenses used in the scenarios. Participants also matched
the opinion of the legal expert whenever only one open source
license is in use in the scenario (e.g., S2-GPL-GPL or S7-
MPL-MPL, etc.). However, when more than one license is
involved, the participants’ answers differed from the expert’s.
We were not able to find any trend in particular license
combinations that were troublesome: four cases involved GPL
and LGPL, three cases involved GPL and MPL and five cases
involved LGPL and MPL. From these results, we make the
following two observations.

Observation 1. Developers cope well with single li-
censes even in complex scenarios.

Observation 2. Developers have difficulty interpreting
which actions are allowed in scenarios where more than
one open source license is in use.

TABLE IV

CODES FOR ASSUMPTIONS
AG Authorship/Geo Who is author and where are they
located
What system files are to be modified
Text could not be interpreted
Participant felt question was invalid
Characteristics of licenses
Ramifications of more than one license
System structure, deployment, etc.
Patent or IP
Dual licensing
Meaning of term unclear in license or
scenario
Unsure about scenario or license

CD Change Dependent
I Invalid

1Q Invalid Question

LA License Assumption
LI License Interactions

TA Tech. Assumption
PA Patent Assumption
SC Specific Case

TeA Term Assumption

U Unsure

To learn what aspects the participants struggled with, we
focus our remaining analysis on the 12 cases in which the
participants answered differently than the legal expert and the
13 cases for which over 10% of the participants were not sure
which answer to choose. These cases overlap, resulting in 17
cases on which we focus our remaining analysis.

C. Qualitative Analysis

The qualitative analysis we conducted considered assump-
tions at the scenario level and comments made by participants
about individual cases.

1) Assumptions: For each scenario, participants had the
opportunity to express assumptions that they made when
answering the cases. We coded the assumptions for the three
scenarios (S2, S3 and S4) on which we focus our qualitative
analysis.

We ended up defining 11 codes to describe the assumptions;
Table IV describes these codes. The codes demonstrate the
wide range of concerns participants considered when thinking
about the use of the open source licenses. For instance, partic-
ipants thought deeply about how the nature of the change—
which files (CD), who is making changes (AG), where the
author was located (AG), effects on the product architecture
(TA)—could affect the situation. Participants also thought
deeply about how licenses might interact, such as how code
under one license might be re-licensed or dual licensed (LI),
and whether the licenses in use included particular exhibits,
such as Exhibit B for the MPL that enables an author to mark
certain files as incompatible with secondary licenses (LA).
Other codes capture comments that we could not interpret (I),
such as “All’s good”, descriptions of why the participant felt
the question was invalid (IQ), where participants questioned
the meaning of terms in the question (i.e., TeA) and where
participants were unsure, such as not knowing a license being
asked about (i.e., U).

Table VI states the frequency of each assumption code
and indicates the total number of assumptions received for
each scenario (ranging from 14% of the participants stating
assumptions for S4 to 30% of the participants stating assump-
tions for S3). For scenario 2, assumptions about the technical
aspects of the scenario were most frequent, with over 42% of
the assumptions having the TA code. This scenario involved

an open source application that might be licensed differently
than an open source library that the application relies on.
Participants considered such questions as how the library
might be used; for instance, would the library be statically
or dynamically linked to the application?

Participants also questioned how the code would be struc-
tured and released for scenario 3 (52% of codes were tagged
with the TA code), in which participants were asked to
consider a commercial distribution of a product including open
source. For this scenario, participants differed in response
from the expert in three of nine cases, with two of those
cases involving MPL which describes license constraints at
the file level. The difference in participant responses from the
expert may also be related to the larger number of questions
by participants about terms used in the scenario, such as
the precise meaning of the term “commercial”; the term
assumption code (Ted) accounted for 22% of the codes for
this scenario.

For scenario 4, which described a developer making modi-
fications to an open source library and releasing the modified
version of the library as open source, the most frequently
occurring code is about the nature of the change, specifically
which and how many files might be changed (over 18% of
the codes are CD). Participant responses for three of the nine
cases in this scenario did not match the legal expert’s opinion;
all cases that differed involved the GPL and LGPL licenses,
including how they interact with each other and how they
interact with MPL. Although many participants understood
that MPL places file-based restrictions on subsequent use when
modified, the majority of participants thought there were ways
to structure the modifications to enable MPL licensed code to
be redistributed as GPL or LGPL code (S4-MPL-GPL and
S4-MPL-LGPL).

For scenarios 2 and 4, the second most frequently occurring
group of codes relates to licenses. For scenario 2, 28% of
the assumptions questioned aspects of the licenses, such as
what relicensing is possible for source under a given open
source license and the possibilities for dual licensing code
(i.e., the LI and LA codes). Over 20% of the assumptions for
scenario 4 relate to licenses (i.e., 20.8% of codes are LA and
7.3% of codes are LI). Some assumptions with these codes
indicate significant knowledge of one or more of the open
source licenses used in the scenarios, such as referencing the
“tri-license” header.

This analysis leads us to two additional observations.

Observation 3. Developers understand technical deci-
sions will impact open source license use.

Observation 4. Developers recognize that there are
interactions between open source licenses, but those in-
teractions were not always correctly interpreted.

TABLE III
PARTICIPANT RESPONSES BY CASE. DOTS INDICATE ANSWER OF LEGAL EXPERT. GREEN BAR FOR EACH CASE IS A “YES” ANSWER; RED BAR IS A “NO”
ANSWER AND BLUE BAR IS A “UNSURE” ANSWER.

Case S1 Case S2-GPL Case S2-LGPL
CCC1944% @ CC198.1%@ CC0912% @

GPL 13.5% GPL 11.3% GPL 05.3%

12.1% 10.5% 013.5%
CC198.4%@ [C126.8% CC1984% @

LGPL | 0.8% LGPL CC66.5% @ LGPL 10.8%
| 0.8% 06.7% 10.8%
CCC194.7% @ [122.2% CC161.7% @

MPL |1 0.5% MPL C163.1% @ MPL C126%

04.8% 0 14.7% 012.3%
Case S2-MPL Case S3-GPL Case S3-LGPL
CCC745% @ CC186.1% @ 85.8% @

GPL [0 10.8% GPL 0 12% GPL 011.2%

[14.8% 11.9% 12.9%
CC777% @ [C133.9% CCC94.7% @
LGPL 08.3% LGPL CC—1605% @ LGPL 04%
013.9% 05.6% 11.3%
CCC193.3% @ C127.7% C—164% @
MPL |0.5% MPL CC1584% @ MPL [124.5%
06.2% 013.9% 011.6%
Case S3-MPL Case S4-GPL Case S4-LGPL
CC1722% @ CC19%6% @ C—1695% @

GPL 0 14.7% GPL 12.7% GPL [124.9%

013.1% 11.3% 05.6%

C775% @ 010.9% CC19%% @
LGPL 09.9% LGPL 83.7% @ LGPL 11.9%

012.6% 05.3% 12.1%

[1832% @ 08.8% [118.4%

MPL 12.7% MPL O 182.1% @ MPL C—170.5% @
09.1% 09.1% 011.1%

Case S4-MPL Case S5 - Removed Case S6-GPL
C153.5% CCC742% @

GPL C131% @ GPL 1 24.2%
15.5% 11.6%
C154.4% 06.5%

LGPL C1292% @ LGPL L 190% @
1 16.4% 13.5%
CC190.3% @ 06.2%

MPL 12.1% MPL CC186.8% @
07.5% 07%

Case S6-LGPL Case S6-MPL Case S7
C157.4% @ C1432% @ 12.1%

GPL [C136.4% GPL C142.9% GPL 92.5% @
06.2% 13.9% 05.3%
C180.6%@ C144.4% @ 12.7%

LGPL [116.9% LGPL C141.5% LGPL CC192% @
12.4% 0 14.1% 05.3%

014.1% CCC80.1% @ 0 4%

MPL O 1775% @ MPL 011.1% MPL C188.5% @

08.4% 08.9% 07.5%

TABLE V
CODES FOR COMMENTS FOR CASES

A Assumption
Am Ambiguity

An assumption about the case.
Description of ambiguous point in
case.

Meaning of comment unclear.
Concern about actions possible with
more than one license.

Concern about relicensing or dual li-
cense.

Concern about technical aspects of
case.

Case is unclear.

I Invalid
LI License Interaction

SC Specific Case
TD Technical Detail

U Unsure

2) Case Comments: We also analyzed 462 comments pro-
vided by participants for the 17 cases of interest. Table V
describes the seven codes that resulted from the process
described in Section IV-C; these codes include comments
about license interactions (LI), specific cases of relicensing
or dual licensing (SC), technical details regarding the scenario
(TD), and uncertainty about the scenario (U, A, Am and U).

Table VII reports on the frequency of occurrences of each
code in the comments for each case. From this table, it
becomes evident that different combinations of codes appear
for the same license combinations: the S2-GPL-LGPL case, as
an example, has 20% of comments as license interactions, but
license interactions were not a concern for the S3-GPL-LGPL
and S6-LGPL-GPL cases. These three cases differ in how the
software is used, changed and combined (i.e., the technical
context), leading to the following observation.

Observation 5. Questions that arise about the use of
multiple open source licenses are situationally dependent.

The most frequently occurring code across the cases is the
Unsure code. This uncertainty often had to do with details
related to the licenses, such as “don’t know if GPL allows it”
and “don’t know to which point GPL is viral”. The prevalence
of this code leads to the following observation.

Observation 6. A number of developers lack knowledge
of the details of open source licenses.

The second more frequently occurring code across the cases
studied was for license interactions (L.I). Comments made by
participants echoed concerns raised in the assumption coding,
such as which licenses could subsume other licenses, when
code could be dual licensed and when code could be re-
licensed. This data helps reinforce Observation 4.

D. Detailed Examples

We look at two cases in more detail to provide more context
for the findings that participants struggled with license inter-
actions and technical assumptions. The two cases we consider
are from scenario 2, which involves the use of an existing open
source library (L1ghtDB) to build an application that will also

be released under an open source license (ToDoApp). A full
description of scenario 2 is available in Table I.

1) License Interaction: For the S2-GPL-MPL case, only
63.1% of participants responded with an answer that matched
the legal expert’s opinion and 14.7% of the participants were
unsure.

After the unsure code, the second most frequently occurring
code for this case was the license interaction (LI) code.
In these comments, participants expressed their doubts about
appropriate interactions. For instance, one participant wrote:
“I don’t understand how the secondary license restriction and
GPL interact”. Another wrote: “MPL/L)GPL dual licensing
is popular, so I assume there is a reason for that”. Even in
a comment labelled unsure, a participant recognized license
interactions might be relevant: “Have not studied the details;
generically expect trouble when mixing non-GPL licenses with
GPL so would have guessed 'No’ if forced”. These comments
highlight that although participants recognize license inter-
action, they do not understand the intricate details of when
interactions occur or the results.

2) Technical Details: For the S2-GPL-LGPL case, only
66.5% of participants responded with an answer that matched
the legal expert’s opinion and 12.3% were unsure.

After the unsure code, the most frequently occurring code
was the technical details (TD) code. Participants expressed a
need to understand more technical details about the scenario
in order to interpret how the licenses would interact. For
example, one participant wrote: “It depends on how ToDoApp
is distributed. If ToDoApp was only distributed as source then
this would be fine. For binary distributions, if ToDoApp is
statically linked against LightDB it must be distributed under
GPL. The case is less clear for dynamically linked code - I
understand the FSF and other organizations disagree!”. This

TABLE VII
CODES DESCRIBING CASES
Case Code (%)
A [Am [I [LI [SC [TD [U #
Scenario 2
S2-GPL-LGPL - - - 1 20.0 -1 320 | 48.0 | 25
S2-GPL-MPL - - 22 | 174 6.5 87 | 652 | 46
S2-LGPL-MPL - - 59 | 147 29 | 11.8 | 64.7 | 34
S2-MPL-GPL - 2.5 7.5 | 250 7.5 - | 575 | 40
S2-MPL-LGPL - 5.6 - | 194 5.6 -1 694 | 36
Scenario 3
S3-GPL-LGPL - - | 46.7 - -1 267 | 267 | 15
S3-GPL-MPL 2.9 -1 114 8.6 5.7 86 | 629 | 35
S3-LGPL-MPL - - 8.0 | 12.0 4.0 40 | 720 | 25
S3-MPL-GPL 3.5 - 6.9 | 17.2 3.5 35] 655 | 29
S3-MPL-LGPL - 3.6 36 | 179 3.6 36 | 67.9 | 28
Scenario 4
S4-LGPL-GPL - - | 154 | 154 | 46.2 - | 231 13
S4-LGPL-MPL - - 5.6 | 333 5.6 5.6 | 50.0 | 18
S4-MPL-GPL - 33| 100 | 23.3 | 133 -1 500 | 30
S4-MPL-LGPL - 6.1 152 | 21.2 | 12.1 - | 455 | 33
Scenario 6
S6-LGPL-GPL - 7.1 7.1 - - -1 8.7 | 14
S6-MPL-GPL - - - 9.5 | 333 -1 57.1 | 21
S6-MPL-LGPL - - - | 10.0 | 10.0 -1 80.0 | 20

TABLE VI
CODES DESCRIBING ASSUMPTIONS

Scenario # Code (%) Total

AG CD I 1Q LA LI [PA | SC TA | TeA U #
Scenario 2 2.1 5.2 63 | 3.1 | 208 | 7.3 | 2.1 | 42 | 427 1.0 | 52 96
Scenario 3 0.9 1.8 44 | 09 89 | 27 | 09 - | 522 | 221 | 53 113
Scenario 4 38 | 189 | 151 | 7.6 | 132 | 94 | 57 | 3.8 | 11.3 57 | 5.7 53

comment indicates knowledge of the licenses and views of the
communities around the licenses. Other participants knew the
technical details might matter, but not why: “I think it might
depend on how the two libraries are linked together”.

E. Summary of Results

The software developers who took our survey were able
to correctly interpret a variety of simple and complex de-
velopment scenarios involving one license (Observation I).
These software developers understand that how the software
is built affects license interactions, but they have neither a
consistent and deep grasp of what technical details matter
(Observation 2 and Observation 3) nor a solid understanding
of the intricacies of how licenses interact (Observation 4).
Developers are aware that different characteristics matter in
different situations of multiple license use (Observation 5), but
overall lack the knowledge to tease apart license interactions
across multiple situations (Observation 6).

V1. THREATS TO VALIDITY

The survey provided links to the licenses referred to in the
survey but did not require participants to answer questions to
validate their understanding of individual licenses, which may
have affected the construct validity of the survey. We made this
choice for two reasons. First, we wanted to allow participants
to interact with the licenses as they normally would; for
instance, some participants might rely on their knowledge
of the licenses, some might reference the licenses to answer
survey questions and others might use other sources, such as
choosealicense.com or knowledgeable colleagues. The
survey asked if participants used additional resources: 36% re-
ported using resources such as Wikipedia, TLDRlegal.com
and choosealicense.com.

Second, the overall survey is lengthy and adding more
questions to validate understanding of each of three licenses
would be even more time consuming for participants. The
choice not to validate individual license understanding may
have resulted in participants answering questions for which
they have no background. For some survey questions, we
received a large number of comments, such as over 100; the
insight in many of these comments suggests many participants
had sufficient background to answer the questions posed. A
large number of individuals, 825, started the survey with 45%
completing the survey; some of the individuals that started the
survey but did not finish might represent individuals without
sufficient license knowledge.

The construct validity may also have been affected by the
particular three licenses we chose to use in the survey. We

deliberately picked a mixture of restrictive (i.e., GPL) and
permissive (i.e., MPL) licenses to trigger license interactions.
Our findings might differ if only a set of more permissive
licenses were used. Future work should investigate developers’
understanding of fine-grained license interactions.

The survey has limitations with regards to content validity,
which considers the degree to which the survey investigates
developers knowledge of open source license use. The sur-
vey questions required participants to understand individual
licenses, such as GPL, and how the use of the license
affects scenarios involving interactions with other licenses.
Furthermore, because the questions were presented as multiple
choice problems, they are likely not as complex as many of
the scenarios faced in practice. As noted above, the survey
is limited in what can be concluded about the knowledge of
individual open source licenses.

Another issue we faced in the design of the survey was
the specificity to provide in the scenarios posed in the survey
questions. As some of the participants noted, the wording of
the scenarios had some ambiguity. In particular, participants
struggled with the wording in scenario 3 in which the term
“commercial” was used; the confusion involved whether the
term implied any changes made to open source software
were to be kept as closed source or whether the term meant
money may be charged for use of the resultant software.
We did not foresee this ambiguity and note that the term
commercial has also been used in previous surveys on open
source software [8]. The ambiguity also did not arise in pilots
we conducted of the survey questions. The lack of specificity
may have also caused differences between the legal expert’s
reading of the cases and the participants’. We have tried to
mitigate the effects of question ambiguity through careful
analysis of the legal expert’s input and careful analysis and
reporting of the qualitative comments provided by participants.

As described in Section IV, the participants in the survey
came from a large number of countries, used a wide variety
of programming languages and largely described their job as
a software developer. As noted above, the techniques we used
to recruit participants for the survey may have biased the pop-
ulation from which the participants are drawn. In particular,
we observed that the large majority of the participants (85.3%)
had chosen a software project’s license before, which might be
an instance of self-selection bias. The diversity of participants
suggests the results may be applicable to a reasonable segment
of open source developers.

VII. DISCUSSION

The survey results indicate that most of the 375 respondents
to our survey struggle with understanding the interaction of
open source licenses in both simple and complex software
development cases. These situations can arise often. As stated
in Section I, Sonatype reports that most Java applications built
using Maven incorporate over 100 open source components;
it is highly unlikely these components will all have the same
open source license. Furthermore, as indicated by comments
of our participants, in some cases, whether or not licenses
are compatible depends on the structure of the code using the
components.

Tool support is needed to help developers deal with li-
cense incompatibilities when using open source components.
German and Hassan [14] provides a model for identifying pos-
sible mismatches when different open source licenses interact,
but is not able to recognize code structures that cause these
mismatches. Vendome goes further, suggesting a need to find
incompatibilities, explain why there is an incompatibility and
recommend a way to fix incompatibilities, possibly through a
license change or through code restructuring [19]. The com-
ments we analyzed from participants completing our survey
suggest the recommendation engine may need to be more
extensive and robust than suggested by Vendome. Participants
described ways to restructure their own code and/or change the
open source code to enable the use of a component without
causing license incompatibilities. This type of recommender
may require a means of formally modelling licenses, the
effects of a license in terms of how it is used in code, and the
variability allowed by the license in terms of code interactions.
This formal model would then need to be potentially integrated
with code refactoring tools, to perhaps automatically search for
refactorings that would allow a license compatibility check
to pass. Models, such as that introduced by Alspaugh and
colleagues [15], may provide a starting point for building such
tools.

VIII. SUMMARY

Open source software is not a self-contained world with
a specific set of developers involved and a small set of
open source licenses with well-defined interactions. Many
closed-source, commercially-oriented software projects rely on
open source software. Many open source licenses exist with
different ramifications depending on how the software with
different licenses interact (i.e., via dynamic linking, copying of
source code, etc.). Many software developers work on a variety
of open source projects with different licenses and move back
and forth between open and closed source software projects.

The results of our survey indicate that many of the 375 re-
spondents to our survey, who were largely software developers,
have a good grasp of at least three open source licenses when
only one of those licenses is being used. When a combination
of open source licenses is being used, developers struggle to
ask the right questions for the situation, such as whether to
focus on technical details of the situation or generic issues of
how two licenses interact (i.e., is one license more permissive

than another). Overall, our survey indicates that the developers
who responded lack the knowledge and understanding to tease
apart license interactions across multiple situations.

This survey is the first to our knowledge that has delved into
developers’ understanding of open source licenses as the one
previous survey has targeted developers specifically involved
in license changes to open source software. Our exploratory
survey aims to investigate trends in comprehension of open
source licenses, rather than suggest specific changes to the
licenses studied. Our results do indicate the need for tool
support to help developers overcome license incompatibilities.

Given the importance of open source software to many
of the software products being built, we hope these results
motivate others to also learn more about how software de-
velopers interact with open source licenses and to build tool
support to help developers comprehend and work with this
information that is a critical part of the growing number of
software components available for use.

ACKNOWLEDGMENT

We would like to thank the participants of the survey for
the time they spent and their insightful comments. We would
especially like to think the legal expert who surveyed as
our oracle for survey answers. This work was supported in
part by NSERC and in part by the Institute for Computing,
Information and Cognitive Systems (ICICS) at the University
of British Columbia. We also thank Michalis Famelis for
helpful comments on an earlier draft.

REFERENCES

[1] Sonatype, “2015 state of the software supply chain report: Hidden speed
bumps on the road to “continuous”,” 2015.

[2] M. Rosson and J. Carroll, “The reuse of uses in Smalltalk programming,”
ACM Transactions on Computer-Human Interaction, vol. 3, no. 3, pp.
219-253, 1996.

[3] S. Clarke, “Measuring API usability,” Dr. Dobb’s Journal, Special
Windows/NET Supplement, 2004.

[4] M. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, p. 703, 2011.

[5] C. Vendome, “A large scale study of license usage on github,” in 37th
International Conference on Software Engineering, 2015.

[6] D. M. German, M. D. Penta, and J. Davies, “Understanding and auditing
the licensing of open source software distributions,” in The 18th IEEE
Int’l Conf. on Program Comprehension, 2010, pp. 84-93.

[71 A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,” in
Proceedings of the S8th Working Conference on Mining Software Repos-
itories. ACM, 2011, pp. 63-72.

[8] C. Vendome, M. L. Vésquez, G. Bavota, M. D. Penta, D. M. Germén,
and D. Poshyvanyk, “When and why developers adopt and change
software licenses,” in 2015 IEEE International Conference on Software
Maintenance and Evolution, 2015, pp. 31-40.

[9] “On the continuing decline of the gpl,” http://blogs.the451group.com/

opensource/2011/12/15/on-the-continuing-decline-of-the-gpl/, 2011.

G. Hofmann, D. Riehle, C. Kolassa, and W. Mauerer, “A dual model of

open source license growth,” in IFIP International Conference on Open

Source Systems. Springer, 2013, pp. 245-256.

M. Di Penta, D. M. German, Y.-G. Guéhéneuc, and G. Antoniol, “An ex-

ploratory study of the evolution of software licensing,” in Proceedings of

the 32nd ACM/IEEE International Conference on Software Engineering-

Volume 1. ACM, 2010, pp. 145-154.

K. J. Stewart, A. P. Ammeter, and L. M. Maruping, “Impacts of license

choice and organizational sponsorship on user interest and development

activity in open source software projects,” Info. Sys. Research, vol. 17,

no. 2, pp. 126-144, Jun. 2006.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

R. Sen, C. Subramaniam, and M. Nelson, “Determinants of the choice
of open source software license,” J. Manage. Inf. Syst., vol. 25, no. 3,
pp- 207-240, Dec. 2008.

D. M. German and A. E. Hassan, “License integration patterns: Address-
ing license mismatches in component-based development,” in Proc. of
31st Int’l Conf. on Soft. Eng, 2009, pp. 188-198.

T. A. Alspaugh, W. Scacchi, and H. U. Asuncion, “Software licenses in
context: The challenge of heterogeneously-licensed systems,” Journal of
the Association for Information Systems, vol. 11, no. 11, p. 730, 2010.
D. M. German, Y. Manabe, and K. Inoue, “A sentence-matching method
for automatic license identification of source code files,” in ASE 2010,
25th IEEE/ACM International Conference on Automated Software En-
gineering, 2010, pp. 437-446.

C. Vendome, M. Linares-Vasquez, G. Bavota, M. Di Penta, D. German,
and D. Poshyvanyk, “License usage and changes: A large-scale study
of java projects on github,” in Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension, ser. ICPC ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 218-228.

J. Corbin and A. Strauss, “Grounded theory research: Procedures, canons
and evaluation criteria,” Qualitative Sociology, vol. 13, pp. 3-21, 1990.
C. Vendome and D. Poshyvanyk, “Assisting developers with license
compliance,” in Proc. of the International Conference on Software
Engineering, 2016, pp. 811-814.

