Proofs, analysis, and other such things

Matt Hoffman

September 15, 2009

- What's this refresher about?
- how to prove something
- but every problem's different. . . so we'll get to that
- What am I going to assume?
- nothing really, other than a little bit of logic
- we'll go over a few specific examples
- so first: going over general proofs (with boring examples)
- and then just stuff I find cool

What you should already know

- logical operators: $\neg A, A \vee B, A \wedge B, A \Rightarrow B$, etc.
- truth tables for these operators, i.e.

A	B	$A \Rightarrow B$
True	True	True
True	False	False
False	True	True
False	False	True

- logical equivalences, i.e. $A \Rightarrow B \equiv \neg A \vee B$

Direct proofs

- Many of things can be stated as an implication
a. The sum of two rational numbers is rational.

$$
a, b \in \mathbb{Q} \Rightarrow a+b \in \mathbb{Q}
$$

b. Every odd integer is the difference of two perfect squares.
$i=2 j+1$ for $j \in \mathbb{Z} \Rightarrow \exists a, b: i=a^{2}-b^{2}$

- If we assume the LHS is true and show the RHS is, then the implication must be true.

Direct proofs

- Many of things can be stated as an implication
a. The sum of two rational numbers is rational.

$$
a, b \in \mathbb{Q} \Rightarrow a+b \in \mathbb{Q}
$$

b. Every odd integer is the difference of two perfect squares.

$$
i=2 j+1 \text { for } j \in \mathbb{Z} \Rightarrow \exists a, b: i=a^{2}-b^{2}
$$

- If we assume the LHS is true and show the RHS is, then the implication must be true.

Proof of b.

Assume $i=2 j+1$, we can write this as

Direct proofs

- Many of things can be stated as an implication
a. The sum of two rational numbers is rational.

$$
a, b \in \mathbb{Q} \Rightarrow a+b \in \mathbb{Q}
$$

b. Every odd integer is the difference of two perfect squares.

$$
i=2 j+1 \text { for } j \in \mathbb{Z} \Rightarrow \exists a, b: i=a^{2}-b^{2}
$$

- If we assume the LHS is true and show the RHS is, then the implication must be true.

Proof of b.

Assume $i=2 j+1$, we can write this as

$$
i=2 j+1=j^{2}-j^{2}+2 j+1
$$

Direct proofs

- Many of things can be stated as an implication
a. The sum of two rational numbers is rational.

$$
a, b \in \mathbb{Q} \Rightarrow a+b \in \mathbb{Q}
$$

b. Every odd integer is the difference of two perfect squares.

$$
i=2 j+1 \text { for } j \in \mathbb{Z} \Rightarrow \exists a, b: i=a^{2}-b^{2}
$$

- If we assume the LHS is true and show the RHS is, then the implication must be true.

Proof of b.

Assume $i=2 j+1$, we can write this as

$$
i=2 j+1=j^{2}-j^{2}+2 j+1=(j+1)^{2}-j^{2}
$$

Direct proofs

- Many of things can be stated as an implication
a. The sum of two rational numbers is rational.

$$
a, b \in \mathbb{Q} \Rightarrow a+b \in \mathbb{Q}
$$

b. Every odd integer is the difference of two perfect squares.

$$
i=2 j+1 \text { for } j \in \mathbb{Z} \Rightarrow \exists a, b: i=a^{2}-b^{2}
$$

- If we assume the LHS is true and show the RHS is, then the implication must be true.

Proof of b.

Assume $i=2 j+1$, we can write this as

$$
i=2 j+1=j^{2}-j^{2}+2 j+1=(j+1)^{2}-j^{2}
$$

So here we have constructed $a=(j+1)^{2}$ and $b=j^{2}$.

Proof by contrapositive

- We can also use the equivalence: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

Show that if $3 n+2$ is even then n is even.

Proof by contrapositive

- We can also use the equivalence: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

Show that if $3 n+2$ is even then n is even.

Proof.

We will show that if n is odd then $3 n+2$ is odd.

Proof by contrapositive

- We can also use the equivalence: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

Show that if $3 n+2$ is even then n is even.

Proof.

We will show that if n is odd then $3 n+2$ is odd. Assume n is odd, i.e. there exists k s.t. $n=2 k+1$. which we can plug in to get

$$
3 n+2=3(2 k+1)+2
$$

Proof by contrapositive

- We can also use the equivalence: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

Show that if $3 n+2$ is even then n is even.

Proof.

We will show that if n is odd then $3 n+2$ is odd. Assume n is odd, i.e. there exists k s.t. $n=2 k+1$. which we can plug in to get

$$
3 n+2=3(2 k+1)+2=6 k+5
$$

Proof by contrapositive

- We can also use the equivalence: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

Show that if $3 n+2$ is even then n is even.

Proof.

We will show that if n is odd then $3 n+2$ is odd. Assume n is odd, i.e. there exists k s.t. $n=2 k+1$. which we can plug in to get

$$
3 n+2=3(2 k+1)+2=6 k+5=2(3 k+2)+1 .
$$

and hence is $3 n+2$ odd.

Proof by contradiction

- Let's say we want to prove A
- Instead we'll assume $\neg A$ and arrive at some contradiction
- Everything however must be logically consistent if only A were false.

Example

Show that if a, b, c are odd integers, then $a x^{2}+b x+c=0$ has no solution in the set of rational numbers.

Example

Show that if a, b, c are odd integers, then $a x^{2}+b x+c=0$ has no solution in the set of rational numbers.

Proof.
Assume a solution $x=p / q$ does exist, in lowest form, $q \neq 0$.

Example

Show that if a, b, c are odd integers, then $a x^{2}+b x+c=0$ has no solution in the set of rational numbers.

Proof.

Assume a solution $x=p / q$ does exist, in lowest form, $q \neq 0$. Substitute this in and rearrange to arrive at

$$
a p^{2}+b p q+c q^{2}=0
$$

Example

Show that if a, b, c are odd integers, then $a x^{2}+b x+c=0$ has no solution in the set of rational numbers.

Proof.

Assume a solution $x=p / q$ does exist, in lowest form, $q \neq 0$. Substitute this in and rearrange to arrive at

$$
a p^{2}+b p q+c q^{2}=0
$$

We assumed p / q was fully reduced, so both cannot be even. Consider:

- only p is odd: odd + even + even = odd;

Example

Show that if a, b, c are odd integers, then $a x^{2}+b x+c=0$ has no solution in the set of rational numbers.

Proof.

Assume a solution $x=p / q$ does exist, in lowest form, $q \neq 0$. Substitute this in and rearrange to arrive at

$$
a p^{2}+b p q+c q^{2}=0
$$

We assumed p / q was fully reduced, so both cannot be even. Consider:

- only p is odd: odd + even + even = odd;
- only q is odd: even + even + odd = odd;

Example

Show that if a, b, c are odd integers, then $a x^{2}+b x+c=0$ has no solution in the set of rational numbers.

Proof.

Assume a solution $x=p / q$ does exist, in lowest form, $q \neq 0$. Substitute this in and rearrange to arrive at

$$
a p^{2}+b p q+c q^{2}=0
$$

We assumed p / q was fully reduced, so both cannot be even. Consider:

- only p is odd: odd + even + even = odd;
- only q is odd: even + even + odd = odd;
- both odd: odd + odd + odd $=$ odd.

Example

Show that if a, b, c are odd integers, then $a x^{2}+b x+c=0$ has no solution in the set of rational numbers.

Proof.

Assume a solution $x=p / q$ does exist, in lowest form, $q \neq 0$. Substitute this in and rearrange to arrive at

$$
a p^{2}+b p q+c q^{2}=0 .
$$

We assumed p / q was fully reduced, so both cannot be even. Consider:

- only p is odd: odd + even + even = odd;
- only q is odd: even + even + odd = odd;
- both odd: odd + odd + odd = odd.

But 0 is even, so this cannot be equal to 0 . Therefore our assumption that a solution exists must be false.

Proof by induction

- Say we want to prove an infinite number of statements $A_{0}, A_{1}, A_{2}, \ldots$
- Idea: prove that $A_{n} \Rightarrow A_{n+1}$ for any n. Then prove A_{0}.
- Like dominoes, $A_{0} \Rightarrow A_{1} \Rightarrow A_{2} \Rightarrow \ldots$

Example

Show that $\sum_{k=1}^{n}(k \cdot k!)=(n+1)!-1$ for all natural numbers.

Proof.

Base case: $1 \cdot 1$! $=(1+1)!-1=1$.
Now we'll prove the inductive case directly. We'll assume that what we're trying to prove holds for a specific n. If this is true then

$$
\begin{aligned}
\sum_{k=1}^{n+1}(k \cdot k!)= & \sum_{k=1}^{n}(k \cdot k!)+(n+1)(n+1)! \\
& \vdots \\
= & ((n+1)+1)!-1
\end{aligned}
$$

Playing with sets

- Sets are just logical statements in disguise
- $A \cup B=\{x \mid(x \in A) \vee(x \in B)\}$
- $A \cap B=\{x \mid(x \in A) \wedge(x \in B)\}$
- $A \backslash B=A \cap \bar{B}$
- $A \subseteq B$ can be translated as "if x is in A, then x is in B."

Example

Show that $(A \backslash B \subseteq C) \Rightarrow(A \backslash C \subseteq B)$.

Proof.

We'll assume $A \backslash B \subseteq C$. We want to prove the consequent, which can be translated into

$$
x \in A \backslash C \Rightarrow x \in B
$$

We can do this by assuming $x \in A \backslash C$ and showing that

$$
\begin{aligned}
x \in(A \backslash C) & \Rightarrow x \notin C \\
& \Rightarrow x \notin(A \backslash B) \\
& \Rightarrow x \notin A \wedge x \notin \bar{B} \Rightarrow x \in B .
\end{aligned}
$$

And now something completely different. . .

Diagonalization and uncountable sets

Example

The real numbers are uncountable, i.e. \mathbb{R} cannot be put into one-to-one correspondence with \mathbb{N}.

Proof.

We'll assume $[0,1]$ is countable, and thus we can construct an infinite table containing all the reals in this range

0	0.0

1 0.14159...
20.3

Let k_{n} to be the nth digit of the nth number. We'll construct a number i such that the nth digit of i is $k_{n}+1$ mod 10 . This number does not exist on our list because it differs from every number on the list by at least one digit. Therefore the reals are not countable.

Density of \mathbb{Q} in \mathbb{R}

Theorem

For any $a, b \in \mathbb{R}$ s.t. $a<b$ there is a $q \in \mathbb{Q}$ such that $a<q<b$.

Proof.

There exists an n such that $n b-n a>1$ due to the Archimedian property of \mathbb{R}. Let m be the largest integer such that $m<n a$. It must hold that $n a<m+1<n b$:

- $m+1<n a$ cannot hold since m is the largest integer less than na
- $m+1>n b$ cannot hold since $n b-n a>1$

As a result $a<\frac{m+1}{n}<b$.

inf, sup, and ordering

- Consider an ordered set T with a relation \leq and a subset $S \subseteq T$.
- The infimum is the greatest lower bound.
- The supremum is the least upper bound.
- These are the tightest bounds on the set S, but need not be in S
- hence differ from the greatest/least elements
- Consider $S=\{\exp (-x): x \in[0$, inf $)\}$ where $T=\mathbb{R}$.
- $\sup S=1$ and $\inf S=0$, but $0 \notin S$.
- $\max (S)=1$ but $\min (S)$ does not exist.

limits

Definition

The limit of a function $\lim _{x \rightarrow x_{0}} f(x)=L$ holds if for every $\epsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { if } \quad\left|x-x_{0}\right|<\delta
$$

Definition

For limits tending to infinity $\lim _{x \rightarrow \infty} f(x)=L$ if for every $\epsilon>0$ there exists a bound $M>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { if } \quad M<x
$$

Example

Show that $\lim _{x \rightarrow \infty} \frac{2 x-1}{x-3}=2$.

Proof.

Using the definition we can write

$$
|f(x)-L|=\frac{2 x-1}{x-3}-2=\frac{5}{x-3}<\epsilon .
$$

We can see that this holds if $x>M=3+\frac{5}{\epsilon}$ so long as $x>3$.

Continuity

Definition

$f(x)$ is continuous at x_{0} if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) . f(x)$ is continuous on $[a, b]$ if this holds for every point in the range.

Theorem (Intermediate-value theorem)
If $f(x)$ is continuous on $[a, b]$ then f takes on every value between $f(a)$ and $f(b)$.

Differentiable

Definition

A function $f(x)$ is differentiable at x_{0} so long as the limit

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists.

Integration

- For smooth enough functions the standard Riemannian integral is fine (i.e. use subintervals, take limit)
- Otherwise we need the Lebesgue integral (divide up the range)
- Here we need measure theory to measure the resulting interval
- Why in continuous probabilities a specific point has probability 0
- $\int_{0}^{1} \mathbb{I}_{\mathbb{Q}}(x) d x$

