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What’s this refresher about?
I how to prove something
I but every problem’s different. . . so we’ll get to that

What am I going to assume?
I nothing really, other than a little bit of logic
I we’ll go over a few specific examples

so first: going over general proofs (with boring examples)

and then just stuff I find cool
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What you should already know

logical operators: ¬A, A ∨ B, A ∧ B, A⇒ B, etc.

truth tables for these operators, i.e.

A B A⇒ B

True True True
True False False
False True True
False False True

logical equivalences, i.e. A⇒ B ≡ ¬A ∨ B

Matt Hoffman () Proofs, analysis, and other such things September 15, 2009 3 / 19



Direct proofs

Many of things can be stated as an implication

a. The sum of two rational numbers is rational.
a, b ∈ Q⇒ a + b ∈ Q

b. Every odd integer is the difference of two perfect squares.
i = 2j + 1 for j ∈ Z⇒ ∃a, b : i = a2 − b2

If we assume the LHS is true and show the RHS is, then the
implication must be true.

Proof of b.

Assume i = 2j + 1, we can write this as

i = 2j + 1 = j2 − j2 + 2j + 1 = (j + 1)2 − j2.

So here we have constructed a = (j + 1)2 and b = j2.
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Proof by contrapositive

We can also use the equivalence: A⇒ B ≡ ¬B ⇒ ¬A

Example

Show that if 3n + 2 is even then n is even.

Proof.

We will show that if n is odd then 3n + 2 is odd.

Assume n is odd, i.e.
there exists k s.t. n = 2k + 1. which we can plug in to get

3n + 2 = 3(2k + 1) + 2

= 6k + 5 = 2(3k + 2) + 1.

and hence is 3n + 2 odd.
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Proof by contradiction

Let’s say we want to prove A
I Instead we’ll assume ¬A and arrive at some contradiction
I Everything however must be logically consistent if only A were false.
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Example

Show that if a, b, c are odd integers, then ax2 + bx + c = 0 has no
solution in the set of rational numbers.

Proof.

Assume a solution x = p/q does exist, in lowest form, q 6= 0. Substitute
this in and rearrange to arrive at

ap2 + bpq + cq2 = 0.

We assumed p/q was fully reduced, so both cannot be even. Consider:

only p is odd: odd + even + even = odd;

only q is odd: even + even + odd = odd;

both odd: odd + odd + odd = odd.

But 0 is even, so this cannot be equal to 0. Therefore our assumption that
a solution exists must be false.
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Proof by induction

Say we want to prove an infinite number of statements A0,A1,A2, . . .
I Idea: prove that An ⇒ An+1 for any n. Then prove A0.
I Like dominoes, A0 ⇒ A1 ⇒ A2 ⇒ . . .

Example

Show that
∑n

k=1(k · k!) = (n + 1)!− 1 for all natural numbers.

Proof.

Base case: 1 · 1! = (1 + 1)!− 1 = 1.
Now we’ll prove the inductive case directly. We’ll assume that what we’re
trying to prove holds for a specific n. If this is true then∑n+1

k=1(k · k!) =
∑n

k=1(k · k!) + (n + 1)(n + 1)!

...

= ((n + 1) + 1)!− 1.
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Playing with sets

Sets are just logical statements in disguise
I A ∪ B = {x |(x ∈ A) ∨ (x ∈ B)}
I A ∩ B = {x |(x ∈ A) ∧ (x ∈ B)}
I A \ B = A ∩ B

I A ⊆ B can be translated as “if x is in A, then x is in B.”
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Example

Show that (A \ B ⊆ C )⇒ (A \ C ⊆ B).

Proof.

We’ll assume A \ B ⊆ C . We want to prove the consequent, which can be
translated into

x ∈ A \ C ⇒ x ∈ B.

We can do this by assuming x ∈ A \ C and showing that

x ∈ (A \ C )⇒ x 6∈ C

⇒ x 6∈ (A \ B)

⇒ x 6∈ A ∧ x 6∈ B ⇒ x ∈ B.
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And now something completely different. . .
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Diagonalization and uncountable sets

Example

The real numbers are uncountable, i.e. R cannot be put into one-to-one
correspondence with N.

Proof.

We’ll assume [0, 1] is countable, and thus we can construct an infinite
table containing all the reals in this range

0 0.0
1 0.14159. . .
2 0.3
...

Let kn to be the nth digit of the nth number. We’ll construct a number i
such that the nth digit of i is kn + 1 mod 10. This number does not exist
on our list because it differs from every number on the list by at least one
digit. Therefore the reals are not countable.
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Density of Q in R

Theorem

For any a, b ∈ R s.t. a < b there is a q ∈ Q such that a < q < b.

Proof.

There exists an n such that nb − na > 1 due to the Archimedian property
of R. Let m be the largest integer such that m < na. It must hold that
na < m + 1 < nb:

m + 1 < na cannot hold since m is the largest integer less than na

m + 1 > nb cannot hold since nb − na > 1

As a result a < m+1
n < b.
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inf, sup, and ordering

Consider an ordered set T with a relation ≤ and a subset S ⊆ T .

The infimum is the greatest lower bound.

The supremum is the least upper bound.

These are the tightest bounds on the set S , but need not be in S

hence differ from the greatest/least elements

Consider S = {exp(−x) : x ∈ [0, inf)} where T = R.

sup S = 1 and inf S = 0, but 0 6∈ S .

max(S) = 1 but min(S) does not exist.
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limits

Definition

The limit of a function limx→x0 f (x) = L holds if for every ε > 0 there
exists δ > 0 such that

|f (x)− L| < ε if |x − x0| < δ.

Definition

For limits tending to infinity limx→∞ f (x) = L if for every ε > 0 there
exists a bound M > 0 such that

|f (x)− L| < ε if M < x .
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Example

Show that limx→∞
2x−1
x−3 = 2.

Proof.

Using the definition we can write

|f (x)− L| =
2x − 1

x − 3
− 2 =

5

x − 3
< ε.

We can see that this holds if x > M = 3 + 5
ε so long as x > 3.
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Continuity

Definition

f (x) is continuous at x0 if limx→x0 f (x) = f (x0). f (x) is continuous on
[a, b] if this holds for every point in the range.

Theorem (Intermediate-value theorem)

If f (x) is continuous on [a, b] then f takes on every value between f (a)
and f (b).
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Differentiable

Definition

A function f (x) is differentiable at x0 so long as the limit

f ′(x0) = lim
x→x0

f (x)− f (x0)

x − x0

exists.
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Integration

For smooth enough functions the standard Riemannian integral is fine
(i.e. use subintervals, take limit)

Otherwise we need the Lebesgue integral (divide up the range)

Here we need measure theory to measure the resulting interval

Why in continuous probabilities a specific point has probability 0∫ 1
0 IQ(x) dx

Matt Hoffman () Proofs, analysis, and other such things September 15, 2009 19 / 19


