Proofs, analysis, and other such things

Matt Hoffman

September 15, 2009

- What's this refresher about?
 - how to prove something
 - but every problem's different...so we'll get to that
- What am I going to assume?
 - nothing really, other than a little bit of logic
 - we'll go over a few specific examples
- so first: going over general proofs (with boring examples)
- and then just stuff I find cool

What you should already know

- logical operators: $\neg A$, $A \lor B$, $A \land B$, $A \Rightarrow B$, etc.
- truth tables for these operators, i.e.

A	В	$A \Rightarrow B$
True	True	True
True	False	False
False	True	True
False	False	True

• logical equivalences, i.e. $A \Rightarrow B \equiv \neg A \lor B$

- Many of things can be stated as an implication
 - a. The sum of two rational numbers is rational. $a, b \in \mathbb{Q} \Rightarrow a + b \in \mathbb{Q}$
 - b. Every odd integer is the difference of two perfect squares. i = 2j + 1 for $j \in \mathbb{Z} \Rightarrow \exists a, b : i = a^2 - b^2$
- If we assume the LHS is true and show the RHS is, then the implication must be true.

- Many of things can be stated as an implication
 - a. The sum of two rational numbers is rational. $a, b \in \mathbb{Q} \Rightarrow a + b \in \mathbb{Q}$
 - b. Every odd integer is the difference of two perfect squares. i = 2j + 1 for $j \in \mathbb{Z} \Rightarrow \exists a, b : i = a^2 - b^2$
- If we assume the LHS is true and show the RHS is, then the implication must be true.

Proof of b.

Assume i = 2j + 1, we can write this as

- Many of things can be stated as an implication
 - a. The sum of two rational numbers is rational. $a, b \in \mathbb{Q} \Rightarrow a + b \in \mathbb{Q}$
 - b. Every odd integer is the difference of two perfect squares. i = 2j + 1 for $j \in \mathbb{Z} \Rightarrow \exists a, b : i = a^2 - b^2$
- If we assume the LHS is true and show the RHS is, then the implication must be true.

Proof of b.

Assume i = 2j + 1, we can write this as

$$i = 2j + 1 = j^2 - j^2 + 2j + 1$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- Many of things can be stated as an implication
 - a. The sum of two rational numbers is rational. $a, b \in \mathbb{Q} \Rightarrow a + b \in \mathbb{Q}$
 - b. Every odd integer is the difference of two perfect squares. i = 2j + 1 for $j \in \mathbb{Z} \Rightarrow \exists a, b : i = a^2 - b^2$
- If we assume the LHS is true and show the RHS is, then the implication must be true.

Proof of b.

Assume i = 2j + 1, we can write this as

$$i = 2j + 1 = j^2 - j^2 + 2j + 1 = (j + 1)^2 - j^2.$$

< 回 > < 三 > < 三 >

- Many of things can be stated as an implication
 - a. The sum of two rational numbers is rational. $a, b \in \mathbb{Q} \Rightarrow a + b \in \mathbb{Q}$
 - b. Every odd integer is the difference of two perfect squares. i = 2j + 1 for $j \in \mathbb{Z} \Rightarrow \exists a, b : i = a^2 - b^2$
- If we assume the LHS is true and show the RHS is, then the implication must be true.

Proof of b.

Assume i = 2j + 1, we can write this as

$$i = 2j + 1 = j^2 - j^2 + 2j + 1 = (j + 1)^2 - j^2.$$

So here we have constructed $a = (j + 1)^2$ and $b = j^2$.

< 回 > < 三 > < 三 >

• We can also use the equivalence: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

Show that if 3n + 2 is even then *n* is even.

47 ▶

• We can also use the equivalence: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

Show that if 3n + 2 is even then *n* is even.

Proof.

We will show that if *n* is odd then 3n + 2 is odd.

A 🖓 h

• We can also use the equivalence: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

Show that if 3n + 2 is even then *n* is even.

Proof.

We will show that if n is odd then 3n + 2 is odd. Assume n is odd, i.e. there exists k s.t. n = 2k + 1. which we can plug in to get

$$3n+2 = 3(2k+1)+2$$

• We can also use the equivalence: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

Show that if 3n + 2 is even then *n* is even.

Proof.

We will show that if n is odd then 3n + 2 is odd. Assume n is odd, i.e. there exists k s.t. n = 2k + 1. which we can plug in to get

$$3n + 2 = 3(2k + 1) + 2 = 6k + 5$$

• We can also use the equivalence: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

Show that if 3n + 2 is even then *n* is even.

Proof.

We will show that if n is odd then 3n + 2 is odd. Assume n is odd, i.e. there exists k s.t. n = 2k + 1. which we can plug in to get

$$3n+2 = 3(2k+1)+2 = 6k+5 = 2(3k+2)+1.$$

and hence is 3n + 2 odd.

Proof by contradiction

- Let's say we want to prove A
 - Instead we'll assume $\neg A$ and arrive at some contradiction
 - Everything however **must** be logically consistent if only *A* were false.

Show that if a, b, c are odd integers, then $ax^2 + bx + c = 0$ has no solution in the set of rational numbers.

< 4 → <

Show that if a, b, c are odd integers, then $ax^2 + bx + c = 0$ has no solution in the set of rational numbers.

Proof.

Assume a solution x = p/q does exist, in lowest form, $q \neq 0$.

3

Show that if a, b, c are odd integers, then $ax^2 + bx + c = 0$ has no solution in the set of rational numbers.

Proof.

Assume a solution x = p/q does exist, in lowest form, $q \neq 0$. Substitute this in and rearrange to arrive at

$$ap^2 + bpq + cq^2 = 0.$$

3

Show that if a, b, c are odd integers, then $ax^2 + bx + c = 0$ has no solution in the set of rational numbers.

Proof.

Assume a solution x = p/q does exist, in lowest form, $q \neq 0$. Substitute this in and rearrange to arrive at

$$ap^2 + bpq + cq^2 = 0.$$

We assumed p/q was fully reduced, so both cannot be even. Consider:

only p is odd: odd + even + even = odd;

3

Show that if a, b, c are odd integers, then $ax^2 + bx + c = 0$ has no solution in the set of rational numbers.

Proof.

Assume a solution x = p/q does exist, in lowest form, $q \neq 0$. Substitute this in and rearrange to arrive at

$$ap^2 + bpq + cq^2 = 0.$$

We assumed p/q was fully reduced, so both cannot be even. Consider:

- only p is odd: odd + even + even = odd;
- only *q* is odd: even + even + odd = odd;

3

Show that if a, b, c are odd integers, then $ax^2 + bx + c = 0$ has no solution in the set of rational numbers.

Proof.

Assume a solution x = p/q does exist, in lowest form, $q \neq 0$. Substitute this in and rearrange to arrive at

$$ap^2 + bpq + cq^2 = 0.$$

We assumed p/q was fully reduced, so both cannot be even. Consider:

- only p is odd: odd + even + even = odd;
- only *q* is odd: even + even + odd = odd;
- both odd: odd + odd + odd = odd.

3

Show that if a, b, c are odd integers, then $ax^2 + bx + c = 0$ has no solution in the set of rational numbers.

Proof.

Assume a solution x = p/q does exist, in lowest form, $q \neq 0$. Substitute this in and rearrange to arrive at

$$ap^2 + bpq + cq^2 = 0.$$

We assumed p/q was fully reduced, so both cannot be even. Consider:

- only p is odd: odd + even + even = odd;
- only *q* is odd: even + even + odd = odd;
- both odd: odd + odd + odd = odd.

But 0 is even, so this cannot be equal to 0. Therefore our assumption that a solution exists must be false. $\hfill\square$

3

イロト イヨト イヨト イヨト

Proof by induction

- Say we want to prove an infinite number of statements A_0, A_1, A_2, \ldots
 - Idea: prove that $A_n \Rightarrow A_{n+1}$ for any *n*. Then prove A_0 .
 - Like dominoes, $A_0 \Rightarrow A_1 \Rightarrow A_2 \Rightarrow \dots$

Example

Show that $\sum_{k=1}^{n} (k \cdot k!) = (n+1)! - 1$ for all natural numbers.

Proof.

Base case: $1 \cdot 1! = (1+1)! - 1 = 1$.

Now we'll prove the inductive case directly. We'll assume that what we're trying to prove holds for **a specific** n. If this is true then

$$\sum_{k=1}^{n+1} (k \cdot k!) = \sum_{k=1}^{n} (k \cdot k!) + (n+1)(n+1)!$$

$$=((n+1)+1)!-1.$$

Playing with sets

- Sets are just logical statements in disguise
 - $A \cup B = \{x | (x \in A) \lor (x \in B)\}$

•
$$A \cap B = \{x | (x \in A) \land (x \in B)\}$$

- $A \setminus B = A \cap \overline{B}$
- $A \subseteq B$ can be translated as "if x is in A, then x is in B."

< 177 ▶

Show that
$$(A \setminus B \subseteq C) \Rightarrow (A \setminus C \subseteq B)$$
.

Proof.

We'll assume $A \setminus B \subseteq C$. We want to prove the consequent, which can be translated into

$$x \in A \setminus C \Rightarrow x \in B.$$

We can do this by assuming $x \in A \setminus C$ and showing that

$$x \in (A \setminus C) \Rightarrow x \notin C$$

$$\Rightarrow x \notin (A \setminus B)$$

$$\Rightarrow x \notin A \land x \notin \overline{B} \Rightarrow x \in B.$$

3

10 / 19

< 回 ト < 三 ト < 三 ト

And now something completely different...

∃ →

< A

æ

11 / 19

Diagonalization and uncountable sets

Example

The real numbers are uncountable, i.e. \mathbb{R} cannot be put into one-to-one correspondence with \mathbb{N} .

Proof.

We'll assume [0,1] is countable, and thus we can construct an infinite table containing all the reals in this range

```
0 0.0
1 0.14159...
2 0.3
```

Let k_n to be the *n*th digit of the *n*th number. We'll construct a number *i* such that the *n*th digit of *i* is $k_n + 1 \mod 10$. This number does not exist on our list because it differs from every number on the list by at least one digit. Therefore the reals are not countable.

Density of ${\mathbb Q}$ in ${\mathbb R}$

Theorem

For any $a, b \in \mathbb{R}$ s.t. a < b there is a $q \in \mathbb{Q}$ such that a < q < b.

Proof.

There exists an *n* such that nb - na > 1 due to the Archimedian property of \mathbb{R} . Let *m* be the largest integer such that m < na. It must hold that na < m + 1 < nb:

- m + 1 < na cannot hold since m is the largest integer less than na
- m+1 > nb cannot hold since nb na > 1

As a result $a < \frac{m+1}{n} < b$.

13 / 19

inf, sup, and ordering

- Consider an ordered set T with a relation \leq and a subset $S \subseteq T$.
- The *infimum* is the greatest lower bound.
- The *supremum* is the least upper bound.
- These are the tightest bounds on the set S, but need not be in S
- hence differ from the greatest/least elements
- Consider $S = {\exp(-x) : x \in [0, \inf)}$ where $T = \mathbb{R}$.
- sup S = 1 and inf S = 0, but $0 \notin S$.
- max(S) = 1 but min(S) does not exist.

limits

Definition

The limit of a function $\lim_{x\to x_0} f(x) = L$ holds if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 if $|x - x_0| < \delta$.

Definition

For limits tending to infinity $\lim_{x\to\infty} f(x) = L$ if for every $\epsilon > 0$ there exists a bound M > 0 such that

$$|f(x) - L| < \epsilon$$
 if $M < x$.

- 31

< 回 ト < 三 ト < 三 ト

Show that $\lim_{x\to\infty} \frac{2x-1}{x-3} = 2$.

Proof.

Using the definition we can write

$$|f(x) - L| = \frac{2x - 1}{x - 3} - 2 = \frac{5}{x - 3} < \epsilon.$$

We can see that this holds if $x > M = 3 + \frac{5}{\epsilon}$ so long as x > 3.

・ 同 ト ・ 三 ト ・ 三 ト

- 32

Continuity

Definition

f(x) is continuous at x_0 if $\lim_{x\to x_0} f(x) = f(x_0)$. f(x) is continuous on [a, b] if this holds for every point in the range.

Theorem (Intermediate-value theorem)

If f(x) is continuous on [a, b] then f takes on every value between f(a) and f(b).

17 / 19

Differentiable

Definition

A function f(x) is differentiable at x_0 so long as the limit

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists.

< 回 ト < 三 ト < 三 ト

Integration

- For *smooth enough* functions the standard Riemannian integral is fine (i.e. use subintervals, take limit)
- Otherwise we need the Lebesgue integral (divide up the range)
- Here we need measure theory to measure the resulting interval
- Why in continuous probabilities a specific point has probability 0
- $\int_0^1 \mathbb{I}_{\mathbb{Q}}(x) dx$