
C/C++ Refresher Session

Michael DiBernardo and Lloyd Markle
September 18th, 2007



You always hurt the one you love

• “If C++ has taught me one thing, it's this: Just because the system is consistent 
doesn't mean it's not the work of Satan.” (Andrew Plotkin)

• “Within C++, there is a much smaller and cleaner language struggling to get 
out.” (Bjarne Stroustrup)

• “I invented the term Object-Oriented, and I can tell you I did not have C++ in 
mind.” (Alan Kay)

• “There are only two things wrong with C++: The initial concept and the 
implementation.” (Bertrand Meyer)

• “C++ is like jamming a helicopter inside a Miata and expecting some sort of 
improvement.” (Drew Olbrich)



So why do we use it?

• “I now understand better why C++ is the way it is. Even though C++ is 
monstrously complex, the ability to write code that moves smoothly from a bit-
level of abstraction to a fairly high level of abstraction is extremely valuable for 
many projects, especially ones where efficiency is paramount.” (Mike Vanier)



Outline

• Philosophy and Origins

• C++: A Confederation of Languages

• The *NIX C++ toolchain

• Programming “into” C++, not “in” C++

• Resources and finale



Outline

• Philosophy and Origins

• C++: A Confederation of Languages

• The *NIX C++ toolchain

• Programming “into” C++, not “in” C++

• Resources and finale



Heritage

• The C OOP family

• The statics (give commands):

• Algol led to

• Simula, which led to

• C++ 

• The dynamics (send messages):

• Lisp led to

• Smalltalk, which led to

• Objective-C



Philosophy

• Knuth says it best:

• ‘Whenever the C++ language designers had two competing ideas as to how 
they should solve some problem, they said, "OK, we'll do them both".’

• You can select from a grab-bag of language features to address a problem

• You should probably not use all of them

• So, a lot of the work in C++ involves choosing what you will not do

• i.e. How you will protect yourself from the rest of the language that you’re not using

• and how you will keep things understandable by omitting parts

• “A C program is like a fast dance on a newly waxed dance floor by people 
carrying razors.” (Waldi Ravens)



Outline

• Philosophy and Origins

• C++: A Confederation of Languages

• The *NIX C++ toolchain

• Programming “into” C++, not “in” C++

• Resources and finale



Confederation of languages

• C

• C++ OOP extensions

• Generics / templates



Confederation of libraries

• The C++ standard library is:

• Stream library

• C stdlib 

• e.g. <assert.h> becomes <cassert>

• <ctype.h> becomes <cctype>

• Strings

• The Standard Template Library (STL)



Be aware of borders

• Why does this matter?

• As part of the restriction effort:

• It helps to program with foreknowledge of what “country” you’re in

• Strive for apartheid

• Or write your own wrappers to unify

• So you have to be able to identify these borders in order to work within them



Outline

• Philosophy and Origins

• C++: A Confederation of Languages

• The *NIX C++ toolchain

• Programming “into” C++, not “in” C++

• Resources and finale



The toolchain

• The usual suspects (i.e. stuff you’ll see most often at UBC):

• gcc

• make

• cvs or svn

• gdb / xxgdb / ddd

• Other stuff that might help you:

• cscope

• scons

• valgrind, purify

• pprof and variants



Debugging!

• Debo vs. Lloyd



Outline

• Philosophy and Origins

• C++: A Confederation of Languages

• The *NIX C++ toolchain

• Programming “into” C++, not “in” C++

• Resources and finale



Programming “into” a language

• “Programmers who program in a language limit their thoughts to the 
constructs that the language directly supports. If the language tools are 
primitive, the programmer’s thoughts will also be primitive”

• “Programmers who program into a language first decide what thoughts they 
want to express, and then they determine how to express those thoughts 
using the tools provided by their specific language.” (Steve McConnell, 
paraphrasing David Gries).



Programming “into” C++

• C++:

• provides little library support

• syntax is rather verbose

• the actual constructs are fairly primitive

• ... and basically provides few conveniences

• Thus, it’s a good idea to get used to programming “into” C++

• Corollary to this is that having other language experience really helps



Programming “into” C++

• Programming into C++ entails:

• Including things you want in the language that it doesn’t have

• Excluding the rest so that it doesn’t “creep” in and increase complexity



Adding support for circular dependencies

• e.g. in a producer/consumer problem, producer must import the consumer 
and vice-versa

• In, say, Java, this is easy, as dependencies are managed by compiler (sort 
of)

• How to do this in C++?

• Header guards

• Not including headers in other headers

• ... which requires forward declarations

• ... which requires class-typed member variables to be pointers to 
instances



Adding memory / resource management

• The most oft-quoted difference between C/C++ and most other modern 
languages is that there is no support for garbage collection

• How to do this in C++?

• Resource Allocation Is Initialization (RAII)

• Other gotchas:

• delete vs delete[]

• Always make destructors virtual

• Use const to enforce ownership



Handling exceptional conditions

• In most languages, you’d just throw an exception

• Exceptions in C++, erm, suck -- Many people choose not to use them (e.g. 
STL, anything portable)

• How to do this in C++?

• Use return values to signal exceptional conditions

• ... requires formal parameters to hold return types

• ... requires careful signature design to make the distinction clear

• Arbitrate object creation through static factory functions, making 
constructors private



No style conventions

• e.g. like those suggested by Sun for Java, or enforced by Python

• The solution here is simple -- adopt some! 

• There are many on the net

• It is less important at first about exactly what restrictions the conventions 
suggest - anything is almost always better than nothing



Examples of things one might exclude

• friend

• exceptions

• operator overloading

• defaults

• stack allocation for member variables

• macros

• C libraries

• C-style casts



Take-home message

• To be effective in C++ you have to:

• Be aware of the available constructs

• Actively select which ones you will use and not use



Resources

• Style guides / examples

• Splash and programming pearls @ http://www.mikedebo.ca

• http://www.possibility.com/Cpp/CppCodingStandard.html

• Good books:

• Bruce Eckel’s Thinking in C++ (for beginners)

• Scott Meyers’ Effective C++ (after some experience)

• comp.lang.c++

• #c++ on freenode

• Boost (boost.org)



Questions and discussion


