
Learnability and Personalization

Peter Beshai

March 11, 2013



Introduction

When designing and evaluating user interfaces, the learnability of the interface needs to be

taken into consideration. Due to the lack of a consensus definition of learnability, Grossman

et al. tackled the problem of surveying the literature to find out all the ways the term was

being used and consequently produced a taxonomy of learnability to be used in future work

[6]. They make a clear distinction between two different types of learnability: initial and

extended. Initial learnability has to do with users learning how to do tasks for the first time,

while extended learnability is about the learning that takes place as a user gains expertise

with a system.

With this understanding of learnability, we investigate how a variety of systems have

made use of personalization techniques to facilitate both initial and extended learning.

Three different ways of supporting learnability are discussed: reduced-functionality inter-

faces, context-aware help, and command recommendations.

Reduced-Functionality Interfaces

A reduced-functionality interface is one where features have been stripped out for the pur-

poses of simplification. In this section, we will examine one method in particular: the use of

Multi-Layered (ML) interfaces, where users can progress from a basic version of the interface

into the full-featured version over time. Motivations behind such interfaces are to adapt to a

user’s cognitive limits, such as working memory capacity, as well as to make common tasks

easier for novices to learn [7].

Inspired by previous work that showed significant improvements to learnability for desk-

top software [1, 2, 4], Leung et al. investigated the effectiveness of using an ML interface for

a mobile software application designed for older users [7]. They discovered that while novices

were faster and less-error prone when learning basic tasks in the reduced-functionality layer,

they did not experience any positive transfer effects when switching to the full-functionality

layer, contrary to the results of [2]. The authors speculate that this may be due to the

difficulty their older participants had in producing mental models of how the menus worked.

Another possible source for the discrepancy was the way layers were reduced. The systems

used in [2] had the advanced functions blocked in the reduced layer, while in [7] they were

completely hidden. The authors suggest as future work an investigation of the impact on

extended learnability caused by the method of feature reduction, as well as research into

which tasks benefit most from ML interfaces.

While there were no positive transfer effects for learnability, there were also no negative

effects, and many of the users in [7] were happy solely using the features in the reduced inter-

1



face. This is important because the improved initial learnability resulted in a less frustrating

interface, a highly determining factor in older user adoption rates of new technologies.

However, an important flaw with reduced-functionality interfaces is that by removing

functionality, awareness of other features can be negatively affected [4, 5], compromising

extended learnability. The performance gains in studies looking at the improved initial

learnability of an interface often overlook this component, so to combat this, Findlater and

McGrenere have devised metrics to measure awareness distinct from feature findability [4].

Context-aware Help

Beyond simply finding features quickly and completing tasks with minimal errors, another

aspect of learnability is the ease with which users can find solutions to problems and questions

they have with the system: learning by reading help documentation. It was only in 2011

that work began being done on how help systems can be improved to better support users

by taking advantage of contextual information [10, 3]. Prior to this work, help systems were

either built-in, typically offering descriptions of the features in the application, or were found

on the web through discussion boards, which often have richer answers than the in-software

help, but lack contextual information, putting the onus on the user to construct accurate

queries to find relevant information. This becomes especially difficult for users who are new

to an application and unfamiliar with how to describe their context.

The work of Matejka et al. involved bringing the richness of web-based answers into

the software itself [10]. They did this through their system IP-QAT (In-Product Questions,

Answers, and Tips), a context-aware help panel in AutoCAD (Fig. 1). While most discussion

boards are organized by date of last modification, IP-QAT extends this idea by including

the user’s recent activity and help browsing history to produce a list of ten potentially useful

topics. The main benefits of this approach lie in the integration with the software: the help

topics, visible within the main program, are passively updated based on what the user is

doing. The push nature of this system allows for opportunistic learning, in that a user may

notice an interesting topic that they would not have otherwise searched for.

In contrast, the work by Ekstrand et al. involved integrating the software context directly

into a web browser to aid users in finding relevant answers to their problems [3] (Fig. 2).

The solution tracks user behaviour along with the application’s context (e.g., opened dialogs,

document contents, recent commands) in order to augment web search queries and results.

The user study showed mixed results, with many users feeling confused by the interface due

in part to the lack of transparency of the queries being made.

Beyond the user confusion shown in [3], both systems had problems related to privacy

2



and confidentiality. Automatically including contextual information in public forums may

violate company policies, and it’s not clear whether users are aware of what information

is being shared. The two systems also both rely heavily on having a diverse amount of

quality content in the help databases they are indexing. By adding contextual keywords

to search queries in [3], the number of results returned is reduced, requiring well described,

good quality results for success. This is less of a problem in [10], as there was a 47% increase

in the amount of voluntary posting compared to their existing discussion board.

Future work in this domain includes the embedding of machine-readable contextual in-

formation in help documents, allowing fast and accurate retrieval. For example, if a tutorial

video is created, along with the video could be information about which menus and dialogs

were activated that could then be searched by the help system. There is also room for inves-

tigating how collaborative filtering can be applied to these systems, extending them beyond

the simplicity of recently used commands to determine the results. This would involve com-

paring the context and history of the current user against a larger community and using

what similar users found to be helpful when determining the list of topics to share.

Command Recommendations

The final area we will discuss is about systems that recommend new commands to users

to facilitate the development of expertise. In particular, these systems make use of person-

alization techniques to provide relevant recommendations, based off of the user’s history.

Linton et al.’s OWL (Organization-Wide Learning, 2000) was the first of such systems [8].

They collected Microsoft Word usage data of all employees across a company and compared

individuals against the whole. If a user under-used a command compared to the organiza-

tion’s average, a recommendation would be made. The major oversight with this project was

the assumption that all users across the organization should fit to the same usage patterns.

Subsequent work progressed along this vein, producing more personalized results [9, 11].

CommunityCommands (CC), the first related work to follow OWL, leveraged collabora-

tive filtering techniques to produce new, more personalized recommendation algorithms [9]

(Fig. 3). The system worked by comparing the command history of a single user against the

histories of thousands of other users. The results are filtered based on other users with similar

usage histories who also use additional commands (user-based filtering), or based on com-

mands that are similar to the active user’s history (item-based filtering). Both approaches

produced significantly more good recommendations than the algorithm used in [8].

Murphy-Hill et al. investigated augmenting the algorithms developed for CC with the

addition of command discovery information [11]. By modelling how users discover new com-

3



mands historically, relevant recommendations can be made corresponding to the order in

which commands are discovered. They propose four new algorithms, all of which are less

effective than the methods used in previous work when dealing with novice users. With

experts, however, their collaborative filtering based on discovery modelling works well, pro-

ducing the best balance of useful to not useful recommendations. This suggests that a hybrid

approach may be necessary, as novices do not have large enough discovery histories to make

the collaborative filtering effective.

A major issue in this area is the resistance existing users have in accepting recommen-

dations, as they are content with their current usage patterns. As such, it is important that

recommendations take place soon after introduction to the system to set up a positive track

record that encourages use after expertise is acquired. Another issue is that temporality of

use is not explored by current systems, introducing a problem where a command is recom-

mended and used once, and then forgotten about by the user. The command is now in the

user’s history, and consequently will not be recommended again.

Future work remains to be done exploring the use of temporality to support forgetfulness,

as well as to aid in the modelling of sequences. The prospect of recommending new sequences

of commands to replace or augment existing behaviour seems promising and is something

that needs to be researched further. There is also work to be done investigating different

weighting schemes for the recommendation algorithms, including adding new information

about adoption rates and user preferences (e.g., preferring commands that are used by people

you know). Finally, inefficiency-based recommendations, where a series of commands can be

replaced by a single one, are currently unexplored by the automated systems. They typically

require an expert to setup the models, but it may be worth investigating how this can be

done automatically.

Conclusion

We have discussed three areas where personalization has been used to aid in improving

learnability in systems: reduced-functionality interfaces, context-aware help, and command

recommendations. Each area has its own advantages, and much of the research has only

been done in recent years, leaving significant room for future work. The systems involving

collaborative filtering seem to be the most promising, but they are still immature. There

is currently a need to validate the existing research with longitudinal studies that provide

insight into how these techniques truly affect people over an extended period of time. All

users are different, and with the complex nature of learnability, personalizing our systems to

fit individual needs is an excellent approach.

4



References

[1] J. M. Carroll and C. Carrithers. Training Wheels in a User Interface. Communications

of the ACM, 27(8):800–806, 1984.

An early attempt at using a reduced-functionality interface to reduce errors by novices.

[2] R. Catrambone and J. Carroll. Learning a word processing system with training wheels

and guided exploration. In CHI ’87 Proceedings of the SIGCHI/GI Conference on

Human Factors in Computing Systems and Graphics, pages 169–174, 1986. ISBN

0897912136.

Extends the results of Training Wheels to show positive transfer effects when users

migrate to the full featured interface.

[3] M. Ekstrand, W. Li, and T. Grossman. Searching for software learning resources using

application context. In UIST 2011 Conference Proceedings: ACM Symposium on User

Interface Software & Technology, pages 195–204, 2011. ISBN 9781450307161.

Describes a system for integrating application context into web search to aid user’s in

finding relevant help documents. Also includes a context taxonomy.

[4] L. Findlater and J. McGrenere. Evaluating reduced-functionality interfaces according

to feature findability and awareness. Human-Computer Interaction - INTERACT 2007,

pages 592–605, 2007.

Breaks down performance into two metrics, findability and awareness, and runs a study

demonstrating their strengths and weaknesses.

[5] L. Findlater and J. McGrenere. Beyond performance: Feature awareness in personalized

interfaces. International Journal of Human-Computer Studies, 68(3):121–137, Mar.

2010. ISSN 10715819. doi: 10.1016/j.ijhcs.2009.10.002.

Demonstrates the importance of measuring awareness when evaluating personalized

interfaces by showing user’s have negatively impacted performance on new tasks.

[6] T. Grossman, G. Fitzmaurice, and R. Attar. A survey of software learnability: metrics,

methodologies and guidelines. In UIST 2009 Conference Proceedings: ACM Symposium

on User Interface Software & Technology, 2009.

Constructs a taxonomy of learnability and gives evidence supporting a new evaluation

technique: question-suggestion.

[7] R. Leung, L. Findlater, and J. McGrenere. Multi-layered interfaces to improve older

adults’ initial learnability of mobile applications. ACM Transactions on Accessible Com-

5



puting, 3(1):1–30, 2010. doi: 10.1145/1838562.1838563.http.

Tests the effectiveness of a reduced-functionality interface on a mobile device with older

users, discovering positive initial learning effects, but no transfer effects when switching

to the full-featured interface.

[8] F. Linton, D. Joy, H. Schaefer, and A. Charron. Owl: A recommender system for

organization-wide learning. Educational Technology & Society, pages 65–69, 2000.

Describes a year-long study of a system used to recommend commands to users based

on their usage compared to the average across the organization.

[9] J. Matejka and W. Li. CommunityCommands: command recommendations for software

applications. In UIST 2009 Conference Proceedings: ACM Symposium on User Interface

Software & Technology, pages 193–202, 2009. ISBN 9781605587455.

Describes a system for recommending new commands to users based off of collaborative

filtering, effectively doubling the number of good suggestions made over previous work.

[10] J. Matejka, T. Grossman, and G. Fitzmaurice. IP-QAT: in-product questions, answers,

& tips. In UIST 2011 Conference Proceedings: ACM Symposium on User Interface

Software & Technology, pages 175–184, 2011. ISBN 9781450307161.

Describes an integrated help system that makes use of the user’s current context to

suggest relevant topics.

[11] E. Murphy-Hill, R. Jiresal, and G. Murphy. Improving Software Developers’ Fluency

by Recommending Development Environment Commands. In SIGSOFT 2012/FSE-20

Conference Proceedings: ACM International Symposium on the Foundations of Software

Engineering, pages 1–11, 2012. ISBN 9781450316149.

Compares eight algorithms for recommending commands to users, with emphasis on

using command discovery as input. Results show a hybrid between previous work and

the new algorithms is ideal.

6



Appendix: Figures

Figure 1: IP-QAT panel displaying tooltip with an image on mouseover

7



Figure 2: Context augmented web search results

8



Figure 3: CommunityCommands panel listing recommended commands with notes

9


