Universal Usability: CHILDREN

Gerwin Damberg, January 29th 2012

20 minutes of CHILDREN in HCI

Motivation

- iPad (or similar) user groups in the US [R1]
 - 39% of children age 2-4
 - 52% of children age 5-8
- Opportunities
 - More engaging than TV
 - Can help children learn
- Concerns
 - Attention problems at later ages
 - Often, the application decides when task is complete
 - Little data from controlled HCI studies

) ZDNet, Jason D. O'Grady

HCI research topics involving children

- Information seeking / Search & Select tasks
- Motor Skills: Differences between Children and Adults
- Visualization Technologies for Children

Design process

Information Seeking / Browsing [R2]

- Papers on digital library / encyclopedia projects
- Comparing hierarchical vs. keywords
- Example: Long-term (3 years) study with children on the Science Library Catalog Project)
- Results
 - Need to support explorative behavior of kids
 - Avoid need for typing, correct spelling, Boolean logic
 - If hierarchy, then keep levels to a minimum

Information Seeking / Browsing [R2]

Children's Motor Skills [R3, R4]

- Impact of age on point task performance
- Example: study mouse control ability
 - Differences in accuracy, efficiency, target re-entry, drag and drop.
- Reaction time well documented (Psychology)
- Recommendation:
 - Need custom interfaces for children

Visualization Techniques for Children [R5]

- Children as 'series of cognitive communities'
- Pre-operational stage (2-7 years)
 - `cannot reason'
 - `can only hold one item in memory at a time'
 - 'brief attention span'
- Concrete operational stage (7-11 years)
 - 'Humans are kept Children by their slowness of physical development'
 - Motor skills are getting better

Visualization Techniques for Children [R5], cont.

- Focus on adapting adult design to disabilities rather than develop new technology to abilities of children.
- Results
 - Visualization strategies for adults can be adapted to children
 - Problem 1: children software designed to be sold to adults
 - Problem 2: institutional software designed by teachers with focus on formal learning rather than exploring
 - Suggests graphs using fisheye view and removal of some vertices

Role of Children in Design of New Technology [R6]

- Research by Allison Druin, U of Maryland in 1999
- Led to Children's Digital Library

The Child as USER

Definition

- Technology has been created
- Child is user of technology
- Adults observe to understand the impact technology has had on child's learning experience
- Methods
 - Observation (direct, live video, recorded video, ...)
 - Recognize patterns in activities

The Child as USER, cont.

Example

- Mainframe computers in the early 70s
- 'Drill and practice' learning exercises
- Challenges
 - Limited input to tech development process
 - Frustration with lack of control or uninterested in activities
 - Less timely feedback for development process
- Strengths
 - Scheduling relatively easy
 - Researchers accomplish goals fast

The Child as TESTER

Definition

 Children help shape technologies before commercial products released

- What did you like / find interesting / find too hard?'
- Initial brainstorming and design phase by adults
- Methods
 - Similar to child as user, but with focus on immediate issues and design goals (bugs, likes, dislikes, confusion in interfaces, learning goals accomplished, ...)
 - Interviews more than video recording

The Child as TESTER, cont.

- (Early) Example
 - LOGO programming language in the 70s
 - Child told computer what to do in ways that the child chose

The Child as TESTER, cont. 2

Challenges

- Children's impact still limited
- Initial design made by adults

Strengths

- Children feel empowered
- Few special skills required (users of technology)
- Can result in more usable technologies for children

The Child as INFORMANT

Definition

- Child plays some part in informing design
 process (e.g. using existing tech, input on paper sketches)
- Interaction at different design stages

Methods

- Observing children using existing technologies or role play
- Different from 'users' or 'testers' in that observations affect design directly

The Child as INFORMANT, cont.

- Example
 - Can children program their own interactive simulations?

- Led to Stagecast Creator (kids make games, simulations, ...)
- Challenges
 - Ultimately adults are still in charge
 - Decide when to work with children on what
- Strengths
 - Can lead to technologies that are less frustrating to use for many

The Child as DESIGN PARTNER

Definition

- Child is an equal partner throughout the entire design process
- User Tester Informant Design Parimer

- Methods
 - Semi-weekly meetings with children
 - Try to image `messiness' of a child's world into the design process (e.g. many parallel tasks by team, rather than sequential)
 - Change many existing methods (interviews, note taking, power structure)

The Child as DESIGN PARTNER, cont.

Example

- International Children's Digital Library in 2001
- More recently: Kori Inkpen, VideoPal 2012 [R7]
- Challenges
 - Adults are not in charge, neither are children (required role changes)
 - Very long term process, scheduling issues, small pool of researchers, many iterations

Strengths

- Children as inventors can create innovative technology
- Instant feedback from children at every moment

Universal Usability: CHILDREN

USER

TESTER

Conclusions

- Adults can learn a lot from children in the design process of new technology.
- The entire design process can benefit from children's input, but can also lead to a lengthy process.
- Technology might advance faster than studies can be executed.

References

[R1]	Common Sense Media, San Francisco 2012 (<u>http://www.commonsensemedia.org/</u>)
[R2]	Borgman, C., Hirsh, S., et al. (1995). Children's Searching Behavior on Browsing and Keyword Online Catalogs: The Science Library Catalog Project. JASIST, 46 (9), 663-684
[R3]	Hourcade, J., Bederson, B., et al. (2004). Differences in Pointing Task Performance between Preschool Children and Adults Using Mice. ACM Transactions on Computer-Human Interaction, 11 (4), 357-386.
[R4]	Thomas, J. (1980). Acquisition of Motor Skills: Information Processing Differences Between Children and Adults. Research Quarterly for Exercise and Sport, 51 (1), 158-173.
[R5]	Schneider, K. (1996). Children and Information Visualization Technologies. Interactions, 3 (5), 68-74.
[R6]	Druin, A. (1999). The Role of Children in the Design of New Technology. Behaviour and Information Technology, 21 (1), 1-25.
[R7]	Kori Inkpen, Honglu Du, Asta Roseway, Aaron Hoff, and Paul Johns, Video Kids: Augmenting Close Friendships with Asynchronous Video Conversations, in CHI 2012, ACM, May 2012

Discussion and questions

- How can HCI keep up with increasing speed of change in technology?
- Opinions on computers for very young kids (e.g. toddlers)?