Universal Usability: CHILDREN

Gerwin Damberg, January 29th 2012
20 minutes of CHILDREN in HCI

Introduction

1 HCl Research involving children

3 How to bring children into the design process

8 Conclusions

18 Q&A

Conclusions
Motivation

- iPad (or similar) user groups in the US [R1]
 - 39% of children age 2-4
 - 52% of children age 5-8
- Opportunities
 - More engaging than TV
 - Can help children learn
- Concerns
 - Attention problems at later ages
 - Often, the application decides when task is complete
 - Little data from controlled HCI studies
HCI research topics involving children

- Information seeking / Search & Select tasks
- Motor Skills: Differences between Children and Adults
- Visualization Technologies for Children
- Design process
Information Seeking / Browsing [R2]

- Papers on digital library / encyclopedia projects
- Comparing hierarchical vs. keywords
- Example: Long-term (3 years) study with children on the Science Library Catalog Project

Results
- Need to support explorative behavior of kids
- Avoid need for typing, correct spelling, Boolean logic
- If hierarchy, then keep levels to a minimum
Information Seeking / Browsing [R2]
Children’s Motor Skills [R3, R4]

- Impact of age on point task performance
- Example: study mouse control ability
 - Differences in accuracy, efficiency, target re-entry, drag and drop.
- Reaction time well documented (Psychology)
- Recommendation:
 - Need custom interfaces for children
Visualization Techniques for Children [R5]

- Children as ‘series of cognitive communities’
- Pre-operational stage (2-7 years)
 - ‘cannot reason’
 - ‘can only hold one item in memory at a time’
 - ‘brief attention span’
- Concrete operational stage (7-11 years)
 - ‘Humans are kept Children by their slowness of physical development’
 - Motor skills are getting better
Visualization Techniques for Children [R5], cont.

- Focus on adapting adult design to disabilities rather than develop new technology to abilities of children.

- Results
 - Visualization strategies for adults can be adapted to children
 - Problem 1: children software designed to be sold to adults
 - Problem 2: institutional software designed by teachers with focus on formal learning rather than exploring
 - Suggests graphs using fisheye view and removal of some vertices
Role of Children in Design of New Technology [R6]

- Research by Allison Druin, U of Maryland in 1999
- Led to Children’s Digital Library

The Child as ...

- Design Partner
- Informant
- Tester
- User
The Child as USER

- **Definition**
 - Technology has been created
 - Child is *user of technology*
 - Adults observe to understand the impact technology **has had** on child’s learning experience

- **Methods**
 - Observation (direct, live video, recorded video, ...)
 - Recognize patterns in activities
The Child as USER, cont.

- **Example**
 - Mainframe computers in the early 70s
 - ‘Drill and practice’ learning exercises

- **Challenges**
 - Limited input to tech development process
 - Frustration with lack of control or uninterested in activities
 - Less timely feedback for development process

- **Strengths**
 - Scheduling relatively easy
 - Researchers accomplish goals fast
The Child as TESTER

- **Definition**
 - Children help shape technologies **before** commercial products released
 - ‘What did you like / find interesting / find too hard?’
 - Initial brainstorming and design phase by adults

- **Methods**
 - Similar to child as user, but with focus on immediate issues and design goals (bugs, likes, dislikes, confusion in interfaces, learning goals accomplished, …)
 - Interviews more than video recording
The Child as TESTER, cont.

- (Early) Example
 - LOGO programming language in the 70s
 - Child told computer what to do in ways that the child chose

```plaintext
repeat 4 [forward 50 right 90] to square
repeat 4 [forward 50 right 90] end

to CPSC554M
repeat 36 [right 10 square] end
```
The Child as TESTER, cont. 2

- **Challenges**
 - Children’s impact still limited
 - Initial design made by adults

- **Strengths**
 - Children feel empowered
 - Few special skills required (users of technology)
 - Can result in more usable technologies for children
The Child as INFORMANT

- **Definition**
 - Child plays some part in informing design process (e.g. using existing tech, input on paper sketches)
 - Interaction at different design stages

- **Methods**
 - Observing children using existing technologies or role play
 - Different from ‘users’ or ‘testers’ in that observations affect design directly
The Child as INFORMANT, cont.

- **Example**
 - Can children program their own interactive simulations?
 - Led to Stagecast Creator (kids make games, simulations, ...)

- **Challenges**
 - Ultimately adults are still in charge
 - Decide when to work with children on what

- **Strengths**
 - Can lead to technologies that are less frustrating to use for many
The Child as DESIGN PARTNER

- **Definition**
 - Child is an equal partner throughout the entire design process

- **Methods**
 - Semi-weekly meetings with children
 - Try to image ‘messiness’ of a child’s world into the design process (e.g. many parallel tasks by team, rather than sequential)
 - Change many existing methods (interviews, note taking, power structure)
The Child as DESIGN PARTNER, cont.

- Example
 - International Children’s Digital Library in 2001
 - More recently: Kori Inkpen, VideoPal 2012 [R7]

- Challenges
 - Adults are not in charge, neither are children (required role changes)
 - Very long term process, scheduling issues, small pool of researchers, many iterations

- Strengths
 - Children as inventors can create innovative technology
 - Instant feedback from children at every moment
Conclusions

- Adults can learn a lot from children in the design process of new technology.
- The entire design process can benefit from children’s input, but can also lead to a lengthy process.
- Technology might advance faster than studies can be executed.
References

[R1] Common Sense Media, San Francisco 2012 (http://www.commonsensemedia.org/)
Discussion and questions

- How can HCI keep up with increasing speed of change in technology?
- Opinions on computers for very young kids (e.g. toddlers)?