
0018-9162/00/$10.00 © 2000 IEEE82 Computer

Mobile-Agent
Coordination
Models for Internet
Applications

E
ach year more applications shift from
intranets to the Internet, and Internet-ori-
ented applications become more popular. To
fully harness the Web’s advantages, we must
develop new design and programming para-

digms. Traditional distributed applications assign a
set of processes to a given execution environment that,
acting as local-resource managers, cooperate in a net-
work-unaware fashion. In contrast, the mobile-agent
paradigm defines applications as consisting of net-
work-aware entities—agents—which can exhibit
mobility by actively changing their execution envi-
ronment, transferring themselves during execution.1

Thus, mobile agents offer several advantages over
traditional approaches to Internet applications.
They can

• save significant bandwidth by moving locally to
the resources they need;

• carry the code to manage remote resources and
do not need the remote availability of a specific
server;

• proceed without continuous network connec-
tions, because interacting entities can be moved
to the same site when connections are available,
and can then interact without requiring further
network connections; and

• work with mobile computing systems.

Although mobile agents have recently attracted
widespread interest, several development obstacles
remain. The technology still lacks secure and efficient
execution support, standardization, appropriate pro-

gramming languages, and coordination models.2

Coordination—both between agents and between
other entities that agents can encounter during execu-
tion in the hosting environments—plays a fundamen-
tal role in mobile-agent applications.

We propose a taxonomy of possible coordination
models for mobile-agent applications, then use our
taxonomy to survey and analyze recent mobile-agent
coordination proposals. Our case study, which focuses
on a Web-based information-retrieval application,
helps show that the mobility of application compo-
nents and the distribution area’s breadth imply coor-
dination problems different from those concerning
traditional distributed applications.

In particular, we evaluate which coordination mod-
els have the necessary characteristics to suit both
mobility and the Internet scenario. Suitable models
include coordination paradigms based on fully uncou-
pling the interacting entities, such as Linda,3,4 possi-
bly enhanced with the ability to program specific
reactions in response to interaction events.5 Adopting
such models can lead to simpler application designs
than those derived from traditional coordination
models.

CASE STUDY APPLICATION
Our case study involves an information retrieval

application. We start with the assumptions that
HTML pages spread over the Internet store informa-
tion and that a given user wants to find all HTML
pages that include one specific keyword. The user
knows one site—the search’s starting point—at which
can be found documents that match the keyword. The

Internet applications face challenges that mobile agents and the adoption
of enhanced coordination models may overcome. To win the race,
coordination models have to be inspired by the Linda coordination model
and enriched by programmable reactivity.

Giacomo
Cabri
Letizia
Leonardi
Franco
Zambonelli
University of
Modena and
Reggio Emilia

R E S E A R C H F E A T U R E

user will find other sites containing this information
by following the links contained in the first site’s
HTML pages.

A traditional retrieval design might be based on
defining a user process that asks the starting Web
server for a page, retrieves and analyzes it, then repeats
the same task for each Web server linked to documents
that contain the user’s keyword. This approach is inef-
ficient, though, because the server must transfer large
amounts of data over the network, wasting bandwidth
and time. Further, the lack of network-connection reli-
ability will likely cause some site accesses to fail,
requiring repeated attempts to analyze some of those
sites’ documents.

The mobile-agent design, on the other hand, might
be based on searcher agents that move locally to a site,
analyze the stored documents, then follow the links
by cloning themselves. The user could begin this
process by creating an initial searcher agent and send-
ing it to the starting site. The agent would then ana-
lyze the HTML pages there and return the URLs of
those pages containing the user’s desired keyword. If
the first agent finds documents that contain both the
keyword and links to other sites, the agent clones itself
once for each link found. As Figure 1 shows, cloning
creates new agents with the same code, each one fol-
lowing its assigned link and eventually returning to
the home site with the information found. This
approach is more efficient and reliable than traditional
retrieval methods because it

• saves bandwidth by moving only aggregated data
over the Internet and avoiding the transfer of
large amounts of data; and

• does not require continuous network connections,
because analysis of a site’s documents can pro-
ceed even in the absence of network connections.

The mobile-agent design must be completed by
identifying the coordination needs of the application
components and meeting those needs with an appro-
priate coordination model.

COORDINATION MODEL TAXONOMY
In its nomadic life, a mobile agent must coordinate

its activities with other entities, both other mobile
agents and resources in the hosting environments. In
particular,

• an application may consist of several mobile
agents that cooperatively perform a task and
must thus exchange data and knowledge, and

• a mobile agent usually must roam through the
Internet to access remote resources and services
allocated on some network nodes.

In our case study application, we found that HTML
page cross-references can cause searcher agents to visit
the same sites several times, thus duplicating searches
and wasting resources. We used interagent coordina-
tion to avoid these multiple visits. Agent-to-execution-
environment coordination aims to define a precise
protocol for retrieving site information. Letting an
agent directly access the local HTML pages is not
viable, however, because agents may have no knowl-
edge of the local file system’s structure. Further, direct
access opens security loopholes.

Extensive study of coordination issues3 has led to the
definition of different coordination-model taxonomies.4

To analyze the effects of different coordination mod-
els in mobile-agent applications, we propose a new tax-
onomy based on the degrees of spatial and temporal
coupling induced by a coordination model:

• Spatially coupled coordination models require
that the interacting entities share a common
name space; conversely, spatially uncoupled
models enforce anonymous interactions.

• Temporally coupled coordination models imply
synchronization of the entities involved; con-
versely, temporally uncoupled coordination mod-
els achieve asynchronous interactions.

We can derive four main coordination-model cate-
gories from the combinations of these characteristics,

February 2000 83

Searcher
agent

HTML
Link

Link HTML
Link

Link

Searcher
agent

Searcher
agent

HTML

Link

Link

Cloned
searcher agent

Cloned
searcher agent

To
user
site

(a) (b) (c)

Figure 1. (a) An agent
arrives at a site, (b)
accesses the local
HTML pages, and,
before it returns to
the user site, (c) cre-
ates a new agent for
each link to be
followed.

84 Computer

as shown in Figure 2: direct, meeting-oriented, black-
board-based, and Linda-like.

Direct coordination
In direct coordination models, agents use spatial

coupling start a communication by explicitly naming
the partners involved. In the case of interagent coor-
dination, two agents must agree on a communication
protocol, typically peer-to-peer. Access to local
resources generally uses client-server coordination,
since a hosting environment usually provides local
servers for its resource management. Direct coordi-
nation usually implies temporal coupling—synchro-
nizing the entities involved.

Most Java-based agent systems—like Aglets and
D’Agents1—adopt the direct coordination model. At a
high level, such systems can exploit the client-server
mechanisms typical of the object-oriented paradigm—
even remote objects can coordinate through Java remote
message invocation. At a low level, these systems can
directly exploit TCP/IP, which, while flexible, requires
precise definition of a message-exchange protocol.

Direct coordination models do not work as well
with Internet applications. If two mobile agents com-
municate directly on a wide scale, they must be local-
ized by means of complex and highly informed routing
protocols. Further, repeated interactions require sta-
ble network connections, which makes communica-
tion highly dependent on network reliability and may
lead to failure or unpredictable delays. Finally,
dynamic agent creation makes it difficult to adopt a
spatially coupled model that requires identifying com-
munication partners.

Middleware systems, such as those that rely on
CORBA and DCOM, can solve the problems related
to agent location and naming. However, middleware
systems are mostly oriented to allow interoperability
among heterogeneous software components rather than
to define a globally distributed computing environment.

Thus, they still rely on direct communications, based
on remote procedure calls, for their services. Although
middleware systems can facilitate the use of indepen-
dently developed components, using them to enable
direct mobile-agent coordination risks causes latency
and reliability problems.

In our case study application, agents cannot know
how many other agents the application contains,
because the application creates searcher agents
dynamically, depending on the links found. Thus,
choosing a direct coordination model forces odd
design choices: Ad hoc application entities must be
introduced to avoid multiple visits to the same site. As
an example, a fixed entity on a given site—say, the
user’s site—can assume the communication server role
shown in Figure 3. Whenever a searcher agent arrives
at a site, it queries the communication server to find
if the site has already been visited. If it has been, the
searcher agent can simply terminate without investi-
gating the site further. Otherwise, it informs the com-
munication server to mark the site as visited.

Unfortunately, this solution produces high network
traffic, makes the communication server a bottleneck,
and requires stable network connections, thus nullify-
ing most mobile-agent advantages. When using mobile
agents, direct coordination models can be effectively
exploited only for agent-to-local environment interac-
tions, by providing local servers at each site.

Meeting-oriented coordination
This approach aims to define spatially uncoupled

models, which let agents interact in the context of
meetings without needing to explicitly name the part-
ners involved. Agents join either explicitly or implic-
itly known meeting points; afterward, they can
communicate and synchronize with the other agents
that participate in such meetings. Ever-open meetings
abstract the role of servers in an execution environ-
ment; application agents can open further meeting
points as needed. To avoid the problems related to
nonlocal communication, such as unpredictable delay
and unreliability, meetings often take place in a given
execution environment, which allows only local agents
to participate.

The Ara mobile-agent system implements a typical
example of meeting-oriented coordination.6 The con-
cept of event-based communication and synchroniza-
tion, defined by the Object Management Group and
implemented in the Mole mobile-agent system,7 offers
a sophisticated form of meeting-oriented coordina-
tion. Specific synchronization objects, which agents
must share the reference to, assume the role of meet-
ings. Accessing one of these synchronization objects
allows agents to implicitly join the meeting.

Meeting-oriented coordination models partially solve
the problem of exactly identifying the partners involved,

Temporal

Coupled Uncoupled

Direct Blackboard-
based

Aglets
D'Agents

Ambit
ffMAIN

Meeting-
oriented

Linda-like

Ara
Mole

PageSpace
Tucson
MARS

Coupled

Uncoupled

Spatial

Figure 2. Coordination
models for mobile
agent applications.

although they cannot achieve the anonymity of full spa-
tial uncoupling: Agents must share at least the common
knowledge of the meeting names. These models’ major
drawback, however, derives from their enforcing syn-
chronization among interacting agents. Since the sched-
ule and the position of agents cannot be predicted in
many applications, the models run a high risk of miss-
ing interactions. Further, if the meetings are not locally
constrained, they must be implemented by message
passing, thus inheriting the efficiency and reliability
problems of direct coordination models.

In our case study application, this coordination
model can most easily be exploited via a locally con-
strained meeting, introducing an additional agent for
each site visited. When a searcher agent has explored
a site, it creates a meeting agent before terminating
its task. The application forces the meeting agent to

reside on the creation site and to enter a predefined
meeting point: As Figure 4 shows, every time any
other searcher agent arrives at this site, it locally
enters the predefined meeting to check for the pres-
ence of the meeting agent and then to detect whether
or not the site has already been visited. With regard
to agent-to-local environment interactions, ever-open
meetings can assume the local Web servers’ role of
retrieving information about a site.

The meeting-oriented design solution produces less
network traffic than do direct coordination models
and is fully distributed. Nevertheless, the solution
forces one meeting agent to remain at each site vis-
ited, which leads to two drawbacks:

• A malicious agent can exploit its time on site to
send private information to the outside, and

February 2000 85

Figure 3. Searcher
agents 1 and 2 query
the user site’s com-
munication server,
which informs them
that sites B and C
have already been
visited. This knowl-
edge lets the two
searcher agents ter-
minate so that they
don’t duplicate the
effort of other agents.

Searcher agent 2

HTML HTML

Searcher agent 1

HTML

Communication
server

Visited

HTML

Site B
Site C

User site

A

B

D

C

HTML

(a)

WWW
server

First
searcher

agent

(b)

First
searcher

agent

Meeting
agent

Meeting point

(c)

Meeting
agent

Further
searcher

agent

Meeting point

Yes

Already
visited?

Figure 4. (a) The first
searcher agent
arrives at a site and
retrieves documents
containing the user’s
keyword, then (b)
leaves a meeting
agent that (c) will
notify further incom-
ing agents about the
previous visit.

86 Computer

• the meeting agent cannot possibly know when to
terminate, unless the system provides global
garbage collection mechanisms.

Blackboard-based coordination
In this model type, agents interact via shared data

spaces, using them as common repositories to store
and retrieve messages. In this sense, interactions are
fully temporally uncoupled, but, because agents must
agree on a common message identifier to communi-
cate and exchange data via a blackboard, they remain
spatially coupled. To overcome scalability problems,
a local blackboard can be associated with each host-
ing environment.

Several systems propose and implement black-
board-based coordination models for mobile-agent
applications. In Ambit,8 a formal model for mobile
computations, agents can attach messages to a black-
board on a given site; another agent can retrieve and
read these messages when arriving at the same site.
The ffMAIN (Frankfurt Mobile Agent Infrastructure)
agent system9 defines mobile agents that interact—
both with each other and with local resources—via an
information space accessed through HTTP. In this
space, data—identified via URLs—can be stored, read,
and extracted.

Messages can be left on blackboards, no matter
where the corresponding receivers are or when they
read messages. This temporal uncoupling suits a
mobile scenario in which the position and scheduling
of the agents cannot be either easily monitored or
granted. Further, since all interagent interactions must
be performed via a blackboard, hosting environments
can easily monitor and control them, thus leading to
a more secure execution model than possible with pre-
viously mentioned coordination models.

Our case study application could exploit the black-
board model to avoid multiple visits. When a searcher
agent arrives at a site, it checks the blackboard for a
marker message, to detect whether another agent of
the same application looking for the same keyword
has already visited the site. Such a message could have
the form (application_id, search_keyword). If the

agent finds the message, it notices that the site has
already been visited and it terminates; otherwise, it
must leave a marker message on the blackboard, as
shown in Figure 5.

With regard to agent-to-local environment interac-
tions, a blackboard can be exploited to let agents
retrieve the information needed without requiring the
presence of specialized resource managers. The black-
board also lets the local environment provide all the
data it wants to publish while protecting private data.
In our application example, the local environment can
provide the pathnames of all its publicly accessible
files in the form of messages, without using a Web
server. However, because of spatial coupling, the
blackboard cannot be effectively used to access infor-
mation about the local HTML pages. There is no way
for an agent to retrieve only the HTML files’ path
names: It is bound to read all messages and succes-
sively select only those that correspond to HTML files.

Linda-like coordination
This model type uses local tuple spaces as message

containers similar to blackboards. In addition, a tuple
space bases its access on associative mechanisms.3 The
system organizes information in tuples and retrieves it
using associative pattern-matching. This approach
enforces full uncoupling, requiring neither temporal
nor spatial agreement.

The PageSpace coordination architecture for inter-
active Web applications10 adopts the concept of an
associative blackboard. PageSpace lets both mobile
and fixed agents use a multiplicity of distributed
object-based tuple spaces to store and retrieve object
references. Other systems, such as TuCSoN12 (Tuple
Centres Spread over Networks) and MARS5 (Mobile
Agent Reactive Spaces), also adopt a Linda-like coor-
dination model and extend it by defining a reactive
tuple space model.

Associative coordination suits mobile-agent appli-
cations. In a wide and dynamic environment like the
Internet, a complete and updated knowledge of host-
ing environments and other application agents may
be difficult or impossible to achieve. Agents are likely

HTML

(a)

Blackboard

First
searcher

agent

HTML

(b)

Blackboard

First
searcher

agent

(c)

Put

Blackboard

Further
searcher

agent

Read

"10A8:22", "MARS" "10A8:22", "MARS"

Figure 5. The first
searcher agent (a)
arrives at a site and
retrieves all docu-
ments containing the
user’s keyword. It
then leaves a marker
message (b) on the
blackboard, which is
read by further
searcher agents (c).

to require pattern-matching mechanisms to deal adap-
tively with uncertainty, dynamicity, and heterogene-
ity. Consequently, integrating these mechanisms
directly in the information space itself will provide
much-needed simplification of agent programming
and reduction of application complexity.

In our case study application, associative mecha-
nisms may not be necessary for interagent interactions:
As shown previously, agents know exactly which mes-
sage to retrieve. However, if the application consists of
several agent types searching for different keywords,
an associative mechanism permits an agent to check
the tuple space for the presence of marker messages
whose keyword field matches the agent’s own key-
word. Conversely, the associative mechanism makes
the agent ignore those messages left by agents search-
ing for different keywords.

Agent-to-local environment interactions occur as
shown in the following example: If the pathnames of
all public-readable files reside in the tuple space in the
form (name, extension, date, filepointer), agents can
simply look for tuples that correspond to pathnames
that match the “html” extension, as shown in Figure
6. The actual content of the document can be retrieved
by examining the tuple field that refers to the corre-
sponding file.

ADDING REACTIVITY
The coordination models we’ve described can be

enriched with reactivity. By embodying computational
capacity within the coordination media, reactivity lets
the application issue specific programmable reactions
that can influence the behavior of agent interactions.

In active networks and active messages,11 reactivity
makes it possible for messages to themselves embody
the code the system needs to handle them, which
implies a move toward dynamic and programmable
direct coordination models. In event-based, meeting-
oriented coordination models,7 reactivity lets syn-
chronization objects embody specific policies to
influence the interactions among the agents involved
in a meeting. For example, synchronization objects
can be programmed to asynchronously notify agents
of events, thus achieving a partial form of temporal
uncoupling, as in Mole.

In a reactive-tuple-space model, the tuple space
transcends its role as a mere tuple repository with a
built-in and stateless associative mechanism. Instead,
tuple spaces can also have their own state and can
react with specific actions to the accesses performed by
mobile agents. Reactions can access the tuple spaces,
change their content, and influence the semantics of
the agents’ accesses.

In this context, the TuCSoN model12 defines pro-
grammable logic tuple spaces for the coordination of
knowledge-oriented mobile agents. Tucson programs

reactions as first-order logic tuples. The MARS sys-
tem implements a portable reactive tuple space model
for the coordination of Java-based agents.5 MARS
first defines the tuple space interface according to the
JavaSpaces specification, then programs reactions as
Java methods associated to tuples.

Tuple space reactivity can provide several advan-
tages in mobile-agent applications. It can be used to
implement specific local policies for the interactions
between the agents and the hosting environments, to
achieve better control, and to defend the integrity of
the environments from malicious agents. In addition,
reactions can adapt the interactions’ semantics to the
hosting environments’ specific characteristics, mak-
ing agent programming much simpler than when
using the fixed pattern-matching mechanism of Linda-
like models.

More generally, being able to adapt the tuple spaces’
behavior to specific accesses adds distributed intelli-
gence to the whole system. Given that Internet agents
require intelligence and adaptive behavior to function
effectively, we believe the same properties can enrich
Internet sites. For example, in the same way that an
intelligent agent can dynamically evaluate the char-
acteristics of a hosting environment to plan appro-
priate resource access patterns, a reactive tuple space
can dynamically change both its content and the struc-
ture of its tuples to adapt it to agent accesses.

February 2000 87

TXT

HTML

(a)

("Doc", "html", 12/8/98, File@A56)

("Doc", "txt", 12/8/98, File@2E7)

Tuple space

IN(?, "html", ?, ?)

TXT

HTML

(b)

("Doc", "html", 12/8/98, File@A56)

("Doc", "html", 12/8/98, File@A56)

("Doc", "txt", 12/8/98, File@2E7)

Tuple space

Figure 6. The
searcher agent (a)
asks for a tuple that
matches the given
template; the tuple
space (b) returns a
matching tuple with
the reference to an
HTML file.

88 Computer

In our case study application, we can exploit a reac-
tive tuple space in several ways, even if we take into
account only simple reactions that lack peculiar intel-
ligent behavior. Suppose that one hosting environment
represents a local Web server whose HTML pages are
replicated at one or several mirror sites. In this case,
not only must the other searcher agents of the same
application avoid multiple visits to a site, but they
should also avoid visiting the mirror sites. The local
administrator can program a reactive tuple space to
react to the local insertion of marker messages by coor-
dinating itself with mirror sites and replicating the
agents’ marker messages there. The site administrator
could also decide to exploit the reactivity to delete, on
an allowed-lifetime basis, the marker messages left
locally by searcher agents. This provision could be use-
ful because of the intrinsic difficulty searcher agents
have in knowing if a visited site’s marker message will
be needed by other searcher agents.

As a further example, recall that the Linda model
defines a disruptive “in” operation that extracts
matching tuples from the space. Suppose a malicious
attempt to extract HTML tuples from a site occurs.

The local administrator could decide not to raise any
exception, but to program its local tuple space to
transform this disruptive, foreign-agent operation into
a nondisruptive read operation. Doing so lets the mali-
cious agent proceed without alerting it to the innocu-
ous effect of its access, while the administrator
preserves the local environment’s safety.

Further advantages could be provided by installing
reactions in the tuple spaces of the visited sites that let
agents decide their own coordination rules. For exam-
ple, in our case study application, a searcher agent
could install a reaction in the visited tuple space. This
reaction prohibits further incoming searcher agents
from accessing those HTML files whose correspond-
ing pages have not been modified since the last visit.

In general, an application’s ability to install its own
reactions into tuple spaces permits a clear separation
of concerns between algorithmic and coordination
issues:3 The agents embody the problem-solving algo-
rithms; the reactions represent the application’s spe-
cific coordination rules. This arrangement simplifies
both application design and agent coding by allowing
the programmer to separate algorithmic and coordi-
nation issues. For example, the code for a basic search
algorithm may reside in the agents, while the code to
avoid multiple visits resides in the tuple space reac-
tions.

The choice of coordination model greatly affects
the design of mobile-agent applications. In par-
ticular, a Linda-like coordination model—possi-

bly enriched with programmable reactive capa-
bilities—can lead to a clean, flexible, and scalable appli-
cation design. We do not claim that reactive tuple
spaces must be the exclusive model for every kind of
application, however. Performance reasons may, for
example, suggest using direct communication among
distant agents instead of forcing agents to move to the
same site to interact via a tuple space. In this context,
a quantitative analysis—constructed via simulation
tools or in the field by measuring the performance of
different design solutions —would help designers iden-
tify these situations and select the most suitable
approach.

Additional challenges must be overcome before
both mobile agents and coordination technologies can
gain wide acceptance. In general, mobile-agent infra-
structures should integrate appropriate tools to deal
with problems such as distributed agents’ termination
and garbage collection, agents’ recovery protocols,
and protection of the agents’ internal information
from malicious hosts. In particular, a coordination
infrastructure must address the following issues:

• Effective security policies must be defined to rule
agent interactions. In the case of reactive tuple

Selected URLs for Mobile Agents
The following Web sites contain useful infor-

mation about various mobile-agent technologies.

Ambit
http://www.luca.demon.co.uk/Ambit/Ambit.html

Ara
http://www.uni-kl.de/AG-Nehmer/index_e.html

D’Agents
http://agent.cs.dartmouth.edu

General Magic
http://www.genmagic.com

IBM Aglets
http://www.trl.ibm.co.jp/aglets

MARS
http://sirio.dsi.unimo.it/MOON

Mole
http://mole.informatik.uni-stuttgart.de

PageSpace
http://flp.cs.tu-berlin.de/pagespc

TuCSoN
http://www-lia.deis.unibo.it/Research/TuCSoN

spaces, the spread of application-specific reactions
over foreign Internet sites must be ruled, too.

• Letting mobile agents access a node and its local
resources implies resource consumption and,
therefore, should be properly monitored and reg-
ulated, possibly via the definition of coordination
models enriched with contracting and currency-
exchange capabilities.

• Any coordination proposal must be well inte-
grated with the current Web infrastructure,
including CORBA applications and Web services
and browsers. Such a proposal must also be made
compliant with existing standards, such as HTTP
and XML, to facilitate interoperability with exist-
ing components.

These issues represent important areas for study
and opportunities for new product development. ❖

Acknowledgments
We thank the anonymous referees for their helpful

suggestions. This work has been supported by the
Italian Ministero dell’Università e della Ricerca
Scientifica, within the framework of the MOSAICO—
Design Methodologies and Tools of High-Performance
Systems for Distributed Applications—project.

References
1. N.M. Karnik and A.R. Tripathi, “Design Issues in

Mobile-Agent Programming Systems,” IEEE Concur-
rency, July-Sept. 1998, pp. 52-61.

2. A. Fuggetta, G. Picco, and G. Vigna, “Understanding
Code Mobility,” IEEE Trans. Software Eng., May 1998,
pp. 342-361.

3. D. Gelernter and N. Carriero, “Coordination Languages
and Their Significance,” Comm. ACM, Feb. 1992, pp.
96-107.

4. G.A. Papadopoulos and F. Arbab, “Coordination Mod-
els and Languages,” Advances in Computers, Academic
Press, Orlando, Fla., Aug. 1998, pp. 329-400.

5. G. Cabri, L. Leonardi, and F. Zambonelli, “Reactive
Tuple Spaces for Mobile Agent Coordination,” Proc.
2nd Int’l Workshop Mobile Agents, Lecture Notes in
Computer Science, No. 1,477, Springer-Verlag, Stuttgart,
Germany, 1998, pp. 237-248.

6. H. Peine, “Ara—Agents for Remote Action,” Mobile
Agents: Explanations and Examples, W.R. Cockayne
and M. Zyda, eds., Manning/Prentice Hall, Upper Sad-
dle River, N.J., 1997, pp. 96-161.

7. J. Baumann et al., “Mole—Concepts of a Mobile Agent
System,” World Wide Web J., Vol. 1, No. 3, 1998, pp.
123-137.

8. L. Cardelli and D. Gordon, “Mobile Ambients,” Foun-
dations of Software Science and Computational Struc-

tures, Lecture Notes in Computer Science, No. 1,378,
Springer-Verlag, Stuttgart, Germany, 1998, pp. 140-155.

9. P. Domel, A. Lingnau, and O. Drobnik, “Mobile Agent
Interaction in Heterogeneous Environments,” Proc. 1st
Int’l Workshop Mobile Agents, Lecture Notes in Com-
puter Science, No. 1219, Springer Verlag, Stuttgart, Ger-
many, Apr. 1997, pp. 136-148.

10. P. Ciancarini et al., “Coordinating Multi-Agent Applications
on the WWW: A Reference Architecture,” IEEE Trans. Soft-
ware Eng., May 1998, pp. 362-375.

11. D. Tennenhouse et al., “A Survey of Active Network
Research,” IEEE Communications, Jan. 1997, pp. 80-86.

12. A. Omicini and F. Zambonelli, “TuCSoN: A Coordina-
tion Model for Mobile Agents,” J. Internet Research,
Vol. 8, No. 5, 1998, pp. 400-413.

Giacomo Cabri is a PhD student in computer science
at the University of Modena and Reggio Emilia. His
research interests include tools and environments for
parallel and distributed programming, wide-scale net-
work applications, and object-oriented programming.
He has a Laurea degree in electronic engineering from
the University of Bologna. He is a member of the Ital-
ian Association for Object-Oriented Technologies
(TABOO).

Letizia Leonardi is an associate professor in the
Department of Engineering Science at the University
of Modena and Reggio Emilia, where she teaches
basic and advanced computer science courses. Her
research interests include object-oriented program-
ming environments; parallelism and distribution
issues, especially as they apply to object systems; and
design and implementation of parallel object envi-
ronments in distributed, massively parallel, and het-
erogeneous architectures. Leonardi has a Laurea
degree in electronic engineering and a PhD in com-
puter science from the University of Bologna. She is
vice-president of TABOO and a member of AICA.

Franco Zambonelli is a research associate in com-
puter science at the University of Modena and Reg-
gio Emilia. His research interests include parallel,
distributed, and Internet programming; distributed
algorithms for fault-tolerance; and debugging. Zam-
bonelli received a Laurea degree in electronic engi-
neering and a PhD in computer science from the
University of Bologna. He is a member of the IEEE,
ACM, EuroMicro, and TABOO.

Contact Cabri, Leonardi, and Zambonelli at {giacomo.
cabri, letizia.leonardi, franco.zambonelli}@ unimo.it.

February 2000 89

