ATM Networks

Dr. Son Vuong

Computer Science Department University of British Columbia Cpsc 527 - Spring 2009 (adapted from Raj Jain)

- □ ATM: Overview
- □ ATM Protocol Layers
- Network Interfaces
- Adaptation Layers
- Physical Layers

Cell Switching (ATM)

- Connection-oriented packet-switched network
- □ Used in both WAN and LAN settings
- □ Signaling (connection setup) Protocol: Q.2931
- □ Specified by ATM forum
- □ Packets are called *cells*
 - □ 5-byte header + 48-byte payload
- □ Commonly transmitted over SONET
 - □ other physical layers possible

Labels vs addresses

 \Rightarrow Better scalability in number of nodes

- Switches vs routers
 - \Rightarrow Faster due to fixed size, short address, simplicity
- \Box Seamless \Rightarrow Same technology for LAN, MAN, WAN
- Data, voice, video integration
- Everyone else is doing it

ATM Network Interfaces

- User to Network Interface (UNI): Public UNI, Private UNI
- □ Network to Node Interface (NNI):
 - □ Private NNI (P-NNI)
 - Public NNI =Inter-Switching System Interface (ISSI) Intra-LATA ISSI (Regional Bell Operating Co)
 - □ Inter-LATA ISSI (Inter-exchange Carriers) ⇒ Broadband Inter-Carrier Interface (B-ICI)
- Data Exchange Interface (DXI)
 Between routers and ATM Digital Service Units (DSU)

Protocol Layers

- **The ATM Adaptation Layer**
 - □ How to break application messages to cells
- □ The ATM Layer
 - □ Transmission/Switching/Reception
 - Congestion Control/Buffer management
 - Cell header generation/removal at source/destination
 - Cell address translation
 - □ Sequential delivery

ATM Cell Header Format

□ GFC = Generic Flow Control

□ (Was used in UNI but not in NNI)

- □ VPI/VCI = $0/0 \Rightarrow$ Idle cell; $0/n \Rightarrow$ Signaling
- **HEC:** $1 + x + x^2 + x^8$

GFC/VPI	VPI				
VPI	VCI				
VCI					
VCI	PTI	CLP			
Header Error Check (HEC)					
Payload					

Connection Identifiers

- Each cell contains a 24/28-bit connection identifier First 8/12 bits: Virtual Path, Last 16 bits: Virtual Circuit
- □ VP service allows new VC's w/o orders to carriers

In		Out		
Port	VPI/VCI	Port	VPI/VCI	
1	0/37	3	1/23	
1	0/34	4	0/56	
2	0/23	5	0/65	
2	0/56	6	4/76	

Segmentation and Reassembly

□ ATM Adaptation Layer (AAL)

- □ AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
- □ AAL 3/4 designed for packet data
- □ AAL 5 is an alternative standard for packet data

AAL 3/4 - CS

Convergence Sublayer Protocol Data Unit (CS-PDU)

8	8	16	< 64 KB	0-24	8	8	16
CPI	Btag	BASize	User data	Pad	0	Etag	Len

- CPI: comm part indicator (version field)
- Btag/Etag:beginning and ending tag
- BAsize: hint on amount of buffer space to allocate
- Length: size of whole PDU

AAL 3/4 -	SAR	(Cell F	'ormat)
-----------	-----	---------	---------

40	2	4	10	352 (44 bytes)	6	10
ATM header	Туре	SEQ	MID	Payload	Length	CRC-10

– Type

- BOM: beginning of message
- COM: continuation of message
- EOM end of message
- SEQ: sequence of number
- MID: message id
- Length: number of bytes of PDU in this cell

AAL 5 Designed for data traffic □ Less overhead bits than AAL 3/4 \Rightarrow Simple and Efficient AAL (SEAL) □ No per cell length field, No per cell CRC User PAD Control Length CRC-32 Payload 0-64kB 0-40 2 2 $\mathbf{4}$ PTI bit indicates last cell

Classes of Service

- ABR (Available bit rate): Follows feedback Network gives max throughput with minimum loss.
 UBR (Unspecified bit rate):
 - User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.
- **CBR** (Constant bit rate): User declares required rate. Throughput, delay and delay variation guaranteed.
- VBR (Variable bit rate): Declare avg and max rate.
 rt-VBR (Real-time): Conferencing. Max delay and delay variation guaranteed.
 nrt-VBR (non-real time): Stored video.

Physical Media Dependent Layers (PMDs)

- Multimode Fiber: 100 Mbps using 4b/5b (TAXI), 155 Mbps SONET STS-3c, 155 Mbps 8b/10b
- □ Single-mode Fiber: 155 Mbps STS-3c, 622 Mbps
- □ Shielded Twisted Pair (STP): 155 Mbps 8b/10b
- Coax: 45 Mbps, DS3, 155 Mbps
- Unshielded Twisted Pair (UTP)
 UTP-3 (phone wire) at 25.6 Mbps, 51.84 Mbps
 UTP-5 (Data grade UTP) at 155 Mbps
 DS1, DS3, STS-3c, STM-1, E1, E3, J2, n × T1

- □ ATM Overview: History, Why and What
- Protocol Layers: AAL, ATM, Physical layers, Cell format
- □ Interfaces: PNNI, NNI, B-ICI, DXI

ATM Traffic Management

Dollar Day Sale

One Megabit memory, One Megabyte disk, One Mbps link, One MIP processor, one dollar each.....

- □ Why worry about congestion?
- Congestion schemes for ATM
- Explicit Rate-based Control
- □ ABR Traffic Management

In 1990, the memory will be so cheap that you will not have to worry about paging, swapping, virtual memory, memory hierarchy, and....

Why Worry About Congestion?

- Q: Will the congestion problem be solved when:
- □ Memory becomes cheap (infinite memory)?
- □ Links become cheap (very high speed links)?
- □ Processors become cheap?

Conclusions:

- Congestion is a dynamic problem.
 Static solutions are not sufficient
- Bandwidth explosion
 - \Rightarrow More unbalanced networks
- □ Buffer shortage is a symptom not the cause.

Economic Reasons

- Network is a shared resource
 Because it is expensive and needed occasionally (Like airplanes, emergency rooms)
- □ Most costs are fixed.
 - Cost for fiber, switches, laying fiber and maintaining them does not depend upon usage
 - \Rightarrow Underutilization is expensive
- □ But overutilization leads to user dissatisfaction.
- □ Need a way to keep the network maximally utilized

Service Categories

ABR (Available bit rate):
 Source follows network feedback.
 Max throughout with minimum loss

Max throughput with minimum loss.

- **UBR** (Unspecified bit rate):
 - User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.
- CBR (Constant bit rate): User declares required rate. Throughput, delay and delay variation guaranteed.
- □ VBR (Variable bit rate): Declare avg and max rate.

ort-VBR (Real-time): Conferencing.

Max delay guaranteed.

o nrt-VBR (non-real time): Stored video.

Traffic Management Functions

- Connection Admission Control (CAC): Can requested bandwidth and quality of service be supported?
- □ Traffic Shaping: Limit burst length. Space-out cells.
- Usage Parameter Control (UPC): Monitor and control traffic at the network entrance.
- Network Resource Management: Scheduling, Queueing, virtual path resource reservation
- □ Selective cell discard:
 - Cell Loss Priority (CLP) = 1 cells may be dropped
 - Cells of non-compliant connections may be dropped
- □ Frame Discarding
- Feedback Control

- DECbit scheme in many standards since 1986.
- Forward explicit congestion notification (FECN) in Frame relay
- Explicit forward congestion indicator (EFCI) set to 0 at source. Congested switches set EFCI to 1
- Every nth cell, destination sends an resource management (RM) cell to the source

- □ Sources send one RM cell every n cells
- □ The RM cells contain "Explicit rate"
- Destination returns the RM cell to the source
- □ The switches adjust the rate down
- □ Source adjusts to the specified rate

ERICA Switch Algorithm

- **Explicit Rate Indication for Congestion Avoidance**
- □ Set target rate, say, at 95% of link bandwidth
- Monitor input rate and number of active VC s k
 Overload = Input rate/Target rate
- $\Box This VC's Share = VC's Current Cell Rate/Overload$
- **G** Fairshare = Target rate / k
- \Box ER = <u>Max(</u>Fairshare, This VC's share)
- $\Box \text{ ER in Cell} = \text{Min}(\text{ER in Cell}, \text{ER})$
- Ref: R. Jain, et al, "A Simple Switch Algorithm," AF-TM95-0179R1, February 1995.

ERICA Features

- □ Measured overload/load at switch
- □ Insensitive to source not using their allocated rates
- □ Small queue lengths during steady state
- □ Fast response due to optimistic design
- □ Parameters: Few, insensitive, easy
- Several options: Backward Explicit Congestion Notification
- □ Simplified switch algorithm
- Optimized all steps. Eliminated unncessary steps. Eliminated many parameters

ATM Congestion Control - ERICA Example

- FairAlloc-MaxMin = <33.3, 33.3, 33.3,
- UnfairAlloc = <20, 50, 30, 50>
- Given CurrentR = <20,25,30,50>
 Q1. Would S1's request <CR, ER> = <20,35> be granted ?
 Fairshare = 100/3 = 33.3 => underload = (20+25+30)/100 = 75%

•VC Share = 20/75% = 26.7 = ER = max (33.3, 26.7) = 33.3 Mbps

Congestion: Summary

- Traffic Management is key to success of ATM
- Several different methods: CAC, Shaping, UPC, Scheduling, ...
- Service categories:CBR, VBR, ABR, UBR
- ER switches provide much better
 performance than EFCI.

ATM vs. The Internet

- **ATM** supported by Telco
- **ATM** inherently designed to support highspeed, multimedia communications, e.g., VOD (Video on Demand)
- Complete, scalable ATM networking solution: LAN, MAN, and WAN
- Internet has huge infrastructure and large user population
- New Internet protocols (IPv6, RSVP, RTP)
- Conclusion:
 - Internet
 - TCP/IP over ATM
 - Wireless ATM

ATM vs. The Internet

- Connection oriented
- Constant-size cells
- Switching, thus scalable
- Quality of Service (QoS) guarantee (negotiable during VC setup)
- Support different classes of traffic (CBR, NRT-VBR, RT-VBR, ABR, UBR)- multimedia apllication
- Scalable
- Congestion control in ATM
 - rate-based
 - reservation / expl. Feedback
 - router / host centric
- Homogeneous (LAN, MAN, WAN) - by Telco

- Connectionless
- Variable-size packet
- Use routing
- Best effort (no QoS guarantee, RVSP supports dynamic resource reserv.
- No inherent support for different classes, but issues addressed in new protocols (RTP, RSVP, Mbone)
- Not easily scalable
- Congestion control in TCP
 - credit (window)-based
 - implicit feedback
 - host centric
- Heterogeneous (via gateways/routers)