A tentative outline for cs406

Term 1 of 2016/17, Tue Thu 11:00-12:30pm

Uri Ascher

1. Introduction

- (a) Types of problems, and what we concentrate on
- (b) Basics: convexity, gradient and Hessian, Taylor expansions, linearity, optimality
- 2. Unconstrained optimization
 - (a) Necessary and sufficient conditions
 - (b) Basic methods: gradient descent and Newton
 - (c) Line search and trust region
 - (d) Quasi-Newton: secant; BFGS
 - (e) Derivative-free optimization; Nelder-Mead
 - (f) Linear and nonlinear least squares; Truncated SVD; Gauss-Newton
 - (g) Case study: Kalman filter
- 3. Constrained optimization
 - (a) Necessary and sufficient conditions; KKT; duality
 - (b) Linear programming: simplex
 - (c) Linear programming: primal-dual; interior point
 - (d) Augmented Lagrangian; proximal method and ADMM
 - (e) Case study: sparse solution to unconstrained equations via ℓ_1
 - (f) Convex quadratic programming
 - (g) Sequential quadratic programming
- 4. Very large problems (time permitting)
 - (a) Preconditioned conjugate gradient method
 - (b) Krylov subspace methods
 - (c) Inexact Newton applications
 - (d) Limited memory BFGS
 - (e) Large scale least squares and saddle point