
Policy Gradient Planning for Environmental Decision Making with Existing
Simulators

Mark Crowley and David Poole
University of British Columbia

crowley@cs.ubc.ca poole@cs.ubc.ca

Abstract

In environmental and natural resource planning do-
mains actions are taken at a large number of locations
over multiple time periods. These problems have enor-
mous state and action spaces, spatial correlation be-
tween actions, uncertainty and complex utility models.
We present an approach for modeling these planning
problems as factored Markov decision processes. The
reward model can contain local and global components
as well as spatial constraints between locations. The
transition dynamics can be provided by existing simula-
tors developed by domain experts. We propose a land-
scape policy defined as the equilibrium distribution of
a Markov chain built from many locally-parameterized
policies. This policy is optimized using a policy gra-
dient algorithm. Experiments using a forestry simulator
demonstrate the algorithm’s ability to devise policies for
sustainable harvest planning of a forest.

Introduction
In many environmental and natural resource planning do-
mains, an action needs to be taken at every point in a large
landscape at multiple time periods. Automated planning in
these domains is challenging because they can have enor-
mous state spaces and action spaces, there are spatial inter-
actions between actions, there is much uncertainty, and there
are rich utility functions. Additional challenges arise be-
cause the best models of the dynamics, those that have been
painstakingly built by researchers and practitioners, are of-
ten deterministic and do not conform to the sorts of models
that are usually studied by AI researchers.

Our goal here is to bridge the gap between concrete spa-
tial planning in environmental domains and the planning and
modelling techniques used in AI. Our solution provides a
flexible model for planning in large spatial domains which
satisfies many real world requirements for use by planning
practitioners.

We define a landscape policy in terms of local, parame-
terized policies. A distribution over global actions is defined
by the equilibrium of a Markov chain built from these lo-
cal policies. This approach allows the policy to account for
spatial correlations between actions at different locations. It

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is also provides an understandable, local justification for ac-
tions that can be used by practitioners on the ground when
implementing the policy.

We motivate and demonstrate the effectiveness of our ap-
proach in a forestry planning domain using policy gradient
planning to improve the policy parameters relative to a pro-
vided reward model. Many existing modelling techniques
used in forestry planning have difficulty dealing with spa-
tial interactions among decisions and with uncertainty in
the state or dynamics of a system. For the forestry plan-
ning community our approach suggests a way towards richer
modelling and planning than is currently the norm.

Spatial Planning as an MDP
We assume a landscape is divided into cells that have spa-
tial relations among them (including the neighbors relation).
Let C be the set of all cells. Let S be the set of states of a
single cell and A the set of actions that can be taken in a cell.
We perform planning for time periods t up to time T of an
inifinite horizon planning problem.

A spatial planning problem is a factored Markov decision
process(MDP) (Puterman 1994; Boutilier, Dean, & Hanks
1999) 〈S,A,r,∆〉 where:
• S, the set of landscape states, is SC, the set of functions

from C into S. A landscape state is denoted s.
• A, the set of landscape actions, is AC, the set of functions

from C into A. A landscape action is denoted a. The
action at a particular cell c is denoted ac.

• r(st ,at ,st+1) is a reward function which returns the reward
received by starting in landscape-state st , then taking ac-
tion at and ending up in state st+1 at the next time period.

• ∆(st ,at ,st+1) is the dynamics which specifies the proba-
bility of transitioning from landscape state st to state st+1

given landscape action at .
A trajectory is a series of states and actions over
the considered planning horizon, k = 〈s0:T,a0:T−1〉 =
〈s0,a0, . . . ,aT−1,sT〉. The total discounted return for a tra-
jectory is

R(k) =
T−1

∑
t=0

γ
tr(st ,at ,st+1) (1)

where γ ∈ [0,1] is a discount factor.

Example Domain : Forestry Planning
To see the difficulty of planning in this type of problem,
consider an example from the domain of forestry planning.
Forestry planning is the problem of deciding how to sus-
tainably manage forests while balancing complex economic,
ecological and societal values. Decisions need to be made
about management options for thousands or hundreds of
thousands of forest locations each year. For our testing we
use a forest landscape of 1880 cells, part of which is shown
in figure 1.

Sustainable plans need to be devised over a horizon of
centuries. Plans are always being revised based on new data,
improved models and changing societal values or regula-
tions. This means that implementation of the actions advised
by a plan may only actually be carried out for the first one
or two years. However, this does not mean the future can
be ignored while planning; the future must be considered to
avoid long-term damaging outcomes.

Actions There are a small set of actions available at each
cell each year. The entire cell could be clear-cut, which in-
volves cutting all the trees and replanting. The cell could be
partially cut either by clear-cutting parts of a cell or thinning
the number of trees throughout the cell to reduce the dis-
tance between trees. Thinning can help reduce the spread of
pests. Other actions include treating trees for disease, build-
ing roads or doing nothing at all. Actions are generally car-
ried out in one year intervals with the actual implementation
of the year’s plan taking many months.

The space of possible landscape states and actions is huge.
Consider a relatively small spatial planning problem with
1000 cells, 10 binary features per cell and binary actions.
The number of possible landscape actions is 21000 ≈ 10300

while the number of landscape states is (210)
1000 ≈ 10100000.

Clearly any method that relies on enumerating states and ac-
tions is impractical.

Features Features describing the state of a cell could in-
clude : area of the cell, volume of the lumber, elevation,
climatic zone, distribution of tree species, average age of
trees in the cell, level of pest infestation and the number
of dead and living trees. The boundaries of cells are de-
fined so that the features apply fairly uniformly throughout
the area of a cell. Cell features can also include aggregate
features derived from the states and actions of other cells.
Some example aggregate features for a cell are: the num-
ber of neighboring cells being cut, the total pest infestation
rate of neighboring cells, the size of the largest neighbor,
the current fraction of the harvest target being cut across the
landscape and the age distribution of cells of within a region.

Rewards Forestry planners need to consider how to op-
timize a wide variety of objectives including harvest yields
and shortfalls, risk of fire and pest outbreaks, costs of build-
ing roads, the market value of lumber, employment levels in
different communities, recreational uses of forests as well as
satisfying ecological constraints.

These objectives are often embedded only in reports and
studies. Some objectives are considered only by strategic

1 km

5 km

Cell Cut in Year

unavail never 0-9 10-19 20-29 30-39 40-49

1 km

5 km

Cell Cut in Year

unavail never 0-9 10-19 20-29 30-39 40-49

Figure 1: Part of a region of forest in British Columbia used
for testing. Each colour indicates cells cut at some point in
each 10 year period for a run of the simulator. The policy
used is the AVR policy resulting in a sustainable cut level.

planners setting targets for a region while others are only
considered by those carrying out planning on the ground.
Rarely are all the relevant components of an objective model
written down in one location. Boyland, Nelson, & Bun-
nell (2005) provide a good overview of some planning meth-
ods and objectives used in forestry planning.

A challenging aspect of natural resource planning prob-
lems is the existence of spatial constraints over what action
can be performed. We express these constraints as part of the
reward model. Two such constraints commonly used are ad-
jacent cutting constraints and biodiversity age bounds. The
adjacent cutting constraint is simply a requirement that adja-
cent cells not be cut in the same year or within a “greenup”
period of several years. This is an attempt to reduce the eco-
logical impact of clear-cutting. We demonstrate this con-
straint in the reward model in our experiments. Some other
common spatial constraints that we do not look at here in-
clude biodiversity age bounds and connectivity constraints.
Biodiversity age bounds are targets for what portion of the
forest must fall within a particular age classification. There
might be a constraint that at least 30% of the forest is old
growth trees (over 200 years old) or that no more than 25%
is less than 10 years old. This type of constraint could be
applied globally or applied at multiple levels of abstraction
leading to different outcomes in each case. Mathey & Nel-
son (2007) provide a good description of these constraints
in more detail. Spatial constraints could also model require-
ments about which different types of connectivity are val-
ued. This could include managing firebreaks or ensuring
that a policy maintains a connected migration corridor for
wildlife.

Dynamics Many simulations of the dynamics for forestry
domains are painstakingly developed by expert practition-
ers, but they are often not designed with automated planning
in mind. Simulators are used by human planners to search
through possible plans and their outcomes. These simulators

1 km

5 km

Cell Cut in Year

unavail never 0-9 10-19 20-29 30-39 40-49

Figure 2: Part of a region of forest in British Columbia used
for testing. Each colour indicates cells cut at some point
in each 10 year period for a run of the simulator. The pol-
icy used is the HVR policy resulting in an unsustainable cut
level.

automate some tasks that are difficult or repetitive to perform
manually. They are often the best models of the domain and
so should be used for decision making.

The particular simulator used in our evaluation (described
in more detail later) is a forest harvest simulator called the
Forest Service Spatial Analysis Model (FSSAM)1 which is
used by the British Columbia Forest Service to analyze the
impact of different harvest levels on sustainable ecological
and economic goals. We treat FSSAM as a (mostly) black
box which provides the dynamics ∆ for our MDP.

Simulators used in forestry often have essentially aspatial
dynamics, modelling the growth of each stand of trees in-
dependently as this is a reasonable approximation for trees
alone. FSSAM can also model the predicted growth of pests,
such as the Mountain Pine Beetle, which can spread across
the landscape and are a significant factor in forest develop-
ment. For the experiments presented here this feature has
been disabled.

Our Approach
The challenge is to develop a general spatial planning al-
gorithm for environmental and natural resource problems.
Distributions over actions at different locations can be cor-
related by spatial rewards, such as spatial constraints, and
spatial dynamics, such as pest spread. Any representation
of the policy needs to model these correlations. The scale
of the domain makes any kind of state based optimization
method infeasible so we need to use a factored approach.
The dynamics are also inaccessible so analytical methods
which require an explicit form for the dynamics will not be
available to us.

We address these problems by using policy gradient (PG)
planning (Sutton et al. 2000) to optimize a stochastic spatial

1http://www.barrodale.com/bcs/timber-supply-model

policy which models the the spatial correlations explicitly.
PG algorithms attempt to optimize a parameterized policy
by following the gradient of its expected value and do not
require an analytical formulation for the transition dynam-
ics. The policy we optimize represents spatial correlations
in terms of an equilibrium distribution over local, interacting
policies. This allows for a small number of interpretable pa-
rameters with an equilibrium semantics for the distribution.

The Equilibrium Spatial Policy
A spatial policy is composed of interacting local cell poli-
cies. Each local cell policy definition answers the question:
“What action would you take at this location if you could
wait until all the actions at other locations were already de-
cided.” The landscape policy is then built from local cell
policies.

The Cell-Policy
A cell policy, πc(ac|a−c,s,θ), is a distribution defined by
parameters θ over the actions ac at cell c, conditioned on
the landscape state s and actions at all other cells a−c. In-
tuitively, πc models the probability the policy would choose
action ac if c were the ’last’ cell to be decided after the ac-
tions for all other cells, a−c, had been decided.

We assume a set F of features such that for each f ∈F ,
the value fc(a−c,s) can depend on the actions from other
cells as well as the states of all cells. Feature values are
normalized to fall within [0,1]. We model a cell-policy as
a log-linear distribution over the actions at cell c given the
state of the cell and other cells. The policy parameters θ f (a)
associate a weight with each combination of cell-actions and
features f . 2 A potential function ψ combines these policy
weights with each feature and action for a single cell:

ψ(ac,a−c,s,θ) = ∑
f

θ f (ac) fc(a−c,s) (2)

The cell-policy is then:

πc(ac|a−c,s,θ) =
exp(ψ(ac,a−c,s,θ))

∑bc∈A exp(ψ(bc,a−c,s,θ))
(3)

The policy parameters are used across all cells, and so are
spatially- stationary; each cell depends on the states and ac-
tions of its surroundings using the same function. The iden-
tity of the cell is not used.

The Landscape Policy
The cell policy above is a cyclic definition with each cell
depending on the actions at other cells. Thus (3) does not
directly define the conditional probability of an action at a
cell given the actions at other cells. Instead, these local cell

2In the binary case is it not necessary to model a policy pa-
rameter for each combination of feature and action, the same ex-
pressiveness could be achieved with one parameter per feature. We
need F ×|−1| parameters for the general case if we do not want
to impose any kind of ordering on cell actions. We choose to add
the additional action to provide a uniform structure for the policy
model. This may aid practitioners interpreting the policy directly
as we show in table 2.

policies are interpreted as the transition model of a Markov
chain.

To define the Markov chain, we use a sample ordering
which is a total ordering of the cells. Samples of actions
at different steps in the Markov chain will be indexed as aτ

or with other letters while actions at different time periods
during the planning will always be indexed with t. Each
sample step, τ , goes through all of the cells according to
the sample ordering and uses (3) to update the action for
cell c given the current actions for all other cells. This can
be interpreted as partitioning the cells into c−, those before
c in the sample ordering, and c+, those after c, so that (3)
becomes πc(ac|aτ

c−∪aτ−1
c+ ,s,θ).

The equilibrium of the Markov chain defines the land-
scape policy, π(a|s,θ), the distribution over landscape ac-
tions a∈A. To simplify notation we treat s and θ as fixed for
now and we recursively define the κ-step lookahead proba-
bility:

pκ(aτ−κ ,aτ) =
1.0 if κ = 0

∏
c

πc(aτ
c |aτ

c−∪aτ−1
c+) if κ = 1

∑
aτ−κ+1∈A

p1(aτ−κ ,aτ−κ+1)pκ+1(aτ−κ+1,aτ) otherwise

The equilibrium of the Markov chain in terms of pκ is then:

π(aτ) = lim
κ→∞

pκ(aτ−κ ,aτ) (4)

The equilibrium can also be represented in a recursive form
which we will use for defining the gradient:

π(aτ) = ∑
aτ−1

π(aτ−1)p1(aτ−1,aτ) (5)

We can sample from the equilibrium using Gibbs sam-
pling following the sample ordering. Because all of the
probabilities from (3) are greater than zero, this Markov
chain is ergodic, having a nonzero probability of reaching all
landscape actions. Ergodic Markov chains are guaranteed to
converge to a unique equilibrium distribution as τ→∞ (Bre-
maud 1999).

Crowley, Nelson, & Poole (2009) define the landscape
policy as the direct product of local cell policies similar to
(3) rather than as an equilibrium. That approach focuses on
the impact of different parameterizations on the quality of
the output but did not adequately represent spatial interde-
pendencies.

Spatial Policy Gradient Planning
We assume we are given an initial state s0 representing the
current state of the world. We begin with a set of param-
eters θ (usually randomly selected) and an empty set of
trajectories K. The spatial policy gradient planning algo-
rithm involves two interacting processes which are iterated
until convergence of the gradient or some maximum time is
reached.

I Generate sample trajectories :

i Generate k = 〈s0:T,a0:T−1〉 using the simulator as im-
plementation of the dynamics ∆(st ,at ,st+1) sampling
an action for each time period t from the landscape dis-
tribution π(at |st ,θ).

ii Add k to the set of simulated trajectories K.

II Update the policy:

i Compute gradient relative to a single trajectory: For
each trajectory k∈K compute the combined gradient of
the current policy for each state and action encountered
at each timestep in k:

∇θ logπ(ak|sk,θ) = ∑
t

∇θ logπ(ak,t |sk,t ,θ) (6)

where ak,t and sk,t are the landscape action and state
at time t from the trajectory k. How to estimate the
gradient ∇θ logπ(ak,t |sk,t ,θ) is described in the next
section.

ii Combine gradients from multiple trajectories: The ex-
pected policy value, V θ , weights the total return, R(k),
received for each trajectory by the probability of that
trajectory under the current policy. In practice we
choose a subset H⊆ K containing trajectories with the
highest R(k). The gradient of V θ is:

∇θ V θ ≈ 1
|H| ∑k∈H

R(k)∇θ logπ(ak|sk,θ) (7)

iii Update policy parameters:

θ
′ = θ +λ∇θ V θ (8)

where λ is a learning rate.

The subset H has a fixed size and serves the purpose of
ensuring the computation time for the gradient estimate
doesn’t grow without bound as the number of trajectories
grows. It also allows us to focus on the high reward trajec-
tories to improve the policy more directly.

One of the attractive properties of this algorithm for large
problems is that its components can be carried out in paral-
lel. Multiple instances of Step I can be carried out indepen-
dently from a seperate instance of Step II. Step I generates a
new trajectory using the latest policy parameters and stores
the trajectory. Meanwhile, Step II updates the policy using
the gradient computed against the set of simulated trajecto-
ries. This results in new policy parameters that consider all
of the simulated trajectories scenarios seen so far. When es-
timating the gradient, each time period within II(i) can also
be run as seprate parallel computations.

Gradient of Policy
To complete our algorithm we need the gradient of the land-
scape policy from equation (6). This can be worked out by
taking the gradient of the recursive form of the policy equi-
librium from (5). After applying the recurrence ω times and
grouping terms this becomes:

∇θ π(aτ) =

∑
aτ−ω

∇θ π(aτ−ω)pω(aω ,aτ)+
ω

∑
κ=1

∑
aτ−κ

π(aτ−κ)

∑
aτ−κ+1

∇θ p1(aτ−κ ,aτ−κ+1)pκ−1(aτ−κ+1,aτ) (9)

where κ iterates over the lengths of Markov chains from 1
up to a maximum length of ω .

Note that the gradient in equation (9) is cyclic, requiring
the gradient for all possible actions aτ−ω ∈ A in order to
compute the gradient for aτ . We can eliminate this cycle by
using (4) to note that as ω → ∞

∑
aτ−ω

∇θ π(aτ−ω)pω(aτ−ω ,aτ) = ∑
aτ−ω

∇θ π(aτ−ω)π(aτ)

= π(aτ) ∑
aτ−ω

∇θ π(aτ−ω)

= 0

Thus, the first term in (9) can be removed, leaving us with
the following approximation for finite ω:

∇θ π(aτ)≈
ω

∑
κ=1

∑
aτ−κ

π(aτ−κ)

∑
aτ−κ+1

∇θ p1(aτ−κ ,aτ−κ+1)pκ−1(aτ−κ+1,aτ) (10)

The remaining term we need is the gradient of the transi-
tion probability, ∇θ p1(aτ−1,aτ). The parameters of the lo-
cal cell policy θ are broken down into action and feature
components α and f .

∇α f log p1(aτ−1,aτ)

= ∑
c

∇ logπc(aτ
c |aτ

c−∪aτ−1
c+)

= ∑
c∈C

g(α,aτ
c−,a

τ−1
c+) f (α,aτ

c−,a
τ−1
c+) (11)

where

g(α,aτ
c−,a

τ−1
c+ f) =

{
1−πc(α|aτ

c−∪aτ−1
c+) if α = aτ

c
−πc(α|aτ

c−∪aτ−1
c+) if α 6= aτ

c

A full derivation of a similar policy can be found in Crowley,
Nelson, & Poole (2009). The gradient (11) can be included
into the policy gradient in (10) by using the fact that ∇ f (x)=
f (x)∇ log f (x).

The gradient is essentially gathering the expected contri-
butions from many different cells and combining them. Each
parameter is modified in proportion to how often the asso-
ciated action occurred at different locations and at different
times weighted by the likelihood of that outcome for some
length of the Markov chain. So, parameters are increased
in proportion to their consistency with the given trajectory
and decreased in proportion to their mismatch with the tra-
jectory.

The overall effect in the planning algorithm in equations
(7) and (8) is to alter the policy to make the good trajectories
more likely and the bad trajectories less likely.

Estimating the Gradient Computing the gradient ap-
proximation in (10) is difficult since it involves sums over
exponential numbers of landscape actions and the true equi-
librium distribution of the policy. To estimate this we gener-
ate samples, a0:ω , from a single Markov chain and store the
transition probabilities p1(ai,ai+1) for samples i ∈ [0,ω) as
well as computing p1(ai,σ) for each sample; this provides
inputs from chains of different lengths all ending in σ . We
add together all the gradients of these sample chains so that
our gradient estimator is:

∇π̂(σ) =
ω−1

∑
i=0

p1(ai,σ)∇θ log p1(ai,σ)+ (12)

ω−1

∑
κ=1

[
ω−κ−1

∑
i=0

p1(ai+κ ,σ)∇ log p1(ai,ai+1)

κ−1

∏
j=0

p1(ai+ j,ai+ j+1)

]
We use this estimate of the gradient divided by the estimate
of π̂(σ) from the chain to provide an estimate of the gradient
needed in (6) as ∇ logπ(σ)≈ ∇π̂(σ)

π̂(σ)

This method provides estimates of the relative direction of
the gradient for each parameter after a small number of steps
(50-100) compared to the length of runs for sampling the
equilibrium (1000s). For increased stability we also replace
the sum in (7) with the natural gradient method described by
Riedmiller, Peters, & Schaal (2007).

The FSSAM Simulator
For our experiments we model the dynamics of forest growth
using the FSSAM simulator which is used by human plan-
ners to explore the effects of different yearly harvest targets.
FSSAM takes as input an initial forest state and the desired
harvest level for each year in cubic meters. At each time
period the simulator uses a deterministic policy to sort the
cells, by age or volume, for example. It’s cut selection mod-
ule then attempts to cut enough cells to achieve the desired
harvest target for that year while not violating any enabled
constraints. Tree growth and other processes are then simu-
lated forward to determine the state of the forest in the fol-
lowing year.

The FSSAM simulator uses detailed knowledge of for-
est growth patterns and is a tool that practitioners know and
trust. We integrate FSSAM into our planning algorithm by
interfacing with its cut selection module and using it as a
(mostly) black box for the dynamics of the MDP.

Integrating with the Simulator
To integrate our planner with FSSAM we provide an inter-
face to the cut selection module of the simulator to call our
policy whenever it needs an action sample. The simulator
provides the current state of the forest in its simulation to
our policy. MCMC is then run to sample a landscape ac-
tion a from the equilibrium of the policy. For cells where
ac = Cut we use the MCMC estimate of the conditional
probability of that cell action as the sorting key for cell c.

0 20 40 60 80 100
year

0

1000000

2000000

3000000

4000000

5000000

6000000
V

o
lu

m
e
 (

m
3

)
Total Forest
Available to harvest
Actual Harvest

Figure 3: Example run of FSSAM simulator with an unsus-
tainable fixed harvest level of 200,000 m3 per year. Cells
which are too young to be cut or in reserve areas will not be
available for harvest.

We return to the simulator a list of all the cells in descending
order with the actions having the highest confidence coming
first. Cells where ac = NoCut in our sample are placed at
the end of the order and are blocked from being selected by
the simulator for cutting.

Evaluation
Figure 3 shows what happens if an unsustainable fixed har-
vest level, in this case 200,000m3, is entered into the FS-
SAM simulator. The simulator will assign the maximum
level of cut until it collapses the forest population. The avail-
able harvest line includes the volume of all trees that are old
enough to be cut or are not in a reserved area.

The goal is to set a harvest level that maintains a healthy
forest ecosystem while providing a steady utilization of an
important natural resource. While harvest targets do not
need to be completely uniform year to year it undesirable to
have wild swings in either the amount of lumber harvested
or the overall size of the forest.

Setting a fixed target that is lower could avoid the col-
lapse seen here but might underutilize a resource that is an
important part of the economy. Given a very low, fixed tar-
get it may also be difficult to satisfy spatial constraints using
a greedy allocation method.

Experimental Setup
We demonstrate our algorithm on the forest model described
earlier by considering the goal of finding regular harvest lev-
els that can be sustained over decades without compromising
overall forest health.

We focus on the first 50 years of planning since by that
time it can already be clear the harvest level is unsustainable.
Actions will be binary, A = {Cut, NoCut}, where Cut re-
moves all trees and replants new trees and NoCut puts off
any activity for this year. There are 1880 cells in the forest
model we are using.

We use the following set of features:

1:Volume - the total available volume of lumber in the cur-
rent cell

2:Age - the average age of the dominant group of trees in
the cell

3:Maximum adjacent volume (MaxAV) - the volume of
lumber in the largest adjacent cell which is available for
cutting

4:Adjacent cut flag (AnyAdj) - true if any adjacent cell is
being cut under the current landscape action

Here we see different types of features which model lo-
cal state information (features 1 and 2), state information
from spatial neighbors (feature 3) and action information
from spatial neighbors (feature 4). The initial policy is set
with uniform weighting of all features at a moderate/low cut
level.

We define three reward models:

Harvest Volume Reward (HVR) - penalizes irregular har-
vest volumes over time

Available Volume Reward (AVR) - penalizes irregular
available volume of the forest over time

Harvest and Available Volume Reward (HAVR) - penal-
izes both irregular harvest and available volumes over
time

Each reward model also provides positive reward for the to-
tal harvested volume and penalizes adjacent cutting. For
runs of the FSSAM simulator we enable adjacency con-
straint checking.

All experiments were carried out on a Quad-Core Intel i5
2.66GHz machine with 3GB of RAM. All planning and sam-
pling code was written in python 2.6 while the forestry sim-
ulator and connecting code was written in Java 5. Each pol-
icy from our algorithm was generated after about 18 hours of
runtime using 500 MCMC steps for each action sample and
15 gradient update steps running the gradient estimator for
100 samples. The algorithm consults the top 5 stored trajec-
tories in addition to the most recently generated trajectory
so |H|= 6.

Results
We ran our planning algorithm using each of the three re-
ward models to generate a policy. The total harvest summed
over the entire period for each policy plus two fixed target
levels are provided in table 1.

Total Harvest Volume (m3)
HAVR 817,456
AVR 1,765,900
HVR 4,915,846
FSSAM-200k 5,000,000
FSSAM-100k 6,038,651

Table 1: Comparison of the Total Harvested volumes
summed over 50 years for each policy.

0 10 20 30 40 50
year

0

1000000

2000000

3000000

4000000

5000000

6000000
V

o
lu

m
e
 (

m
3

)

FSM100k
FSM200k
HVR
AVR
HAVR

Figure 4: Comparison of total forest volume that is available
for harvest under each policy over 50 years.

0 10 20 30 40 50
year

0

50000

100000

150000

200000

250000

V
o
lu

m
e
 (

m
3

)

FSM100k
FSM200k
HVR
AVR
HAVR

Figure 5: Comparison of total harvested volume under each
policy over 50 years.

Figure 4 shows the impact of each of these policies on
the overall size of the forest. We can see clearly the unsus-
tainable direction of the two fixed targets of 100,00m3 and
200,000m3. The policy obtained by targeting a regular har-
vest volume using HVR comes in somewhere between these
fixed targets with the maintainable size of the forest begin-
ning to flatten out after 50 years.

Using the AVR and HAVR reward functions we learn two
policies that attempt to maintain a regular total forest size.
Both achieve a sustainable forest volume. The policy using
AVR has no penalties for an irregular harvest so it achieves
its goal by planning larger periodic larger cuts followed by
years of low level cutting. The policy using HAVR on the
other hand is trying to optimize for both harvest and total
forest regularity and ends up cutting slightly less as a result.

Figures 1 and 2 show the cells which were chosen for har-

vest by the AVR and HVR policies showing actions within
each ten year period with the same colour. The resulting
harvest volumes of lumber per are shown in figure 5.

A fixed harvest target near the mean volume cut by the
HAVR policy, around 30,000m3, will yield a similar forest
profile. While in this simple case it may not be too difficult
to manually search for such a sustainable harvest target, the
complexity of this search increases with each new constraint
and dimension added to the model. Our policy model and
algorithm provide a general way to explore these tradeoffs
by specifying values and meaningful features rather than di-
rectly tuning the harvest level directly.

Looking at the final policy parameters for the policies in
Table 2 we can also see how the weights might be interpreted
directly. Each weight describes the correlation between the
value of the feature and probability of taking the associated
action. For example, the AVR and HAVR policies strongly
favor cutting less for cells with larger volume. This would
favor cutting smaller cells and cutting less overall. We can
also determine if a feature is relevant for planning if feature
weight does not change over many runs then it is not relevant
for planning.

θ f (a) Parameters - Initial Values
Action Age Max AV AnyAdj Volume
0 1.0 1.0 1.0 1.0
1 5.0 5.0 5.0 5.0

θ f (a) Parameters - HVR Reward
Action Age Max AV AnyAdj Volume
0 -2.98 -3.32 -2.03 -3.70
1 0.95 1.64 2.24 2.24

θ f (a) Parameters - AVR Reward
Action Age Max AV AnyAdj Volume
0 1.10 -1.28 -1.75 -3.58
1 9.27 10.13 9.20 10.24

θ f (a) Parameters - HAVR Reward
Action Age Max AV AnyAdj Volume
0 -3.42 -2.77 1.45 -2.63
1 7.75 6.69 6.60 6.13

Table 2: Example of final policy parameters after 10 gradient
updates for HVR , AVR and HAVR reward functions. Action
0 is Cut and 1 is NoCut

Related Work
There has been work on general planning approaches that
apply to the types of spatial domains we address here. Pow-
ell (2010) provides a good summary connecting the various
methods used for planning in operations research and arti-
ficial intelligence, some of which can deal with rich, fac-
tored MDPs. They propose a way to use linear program-
ming to solve very large resource planning problems which
may be applicable to our domain. Guestrin, Lagoudakis, &
Parr (2002) demonstrate a model based reinforcement learn-

ing approach for solving factored MDPs. This is a powerful
technique but requires exact inference on the value function
so is limited to small problem sizes.

In the particular domain of forestry planning Mathey &
Nelson (2007) present a local optimization algorithm for
finding a single, approximately optimal plan in the pres-
ence of spatial constraints such as biodiversity constraints.
Forsell et al. (2009a; 2009b) point out the need for scalable,
model-free planning methods that can take advantage of ex-
isting simulators for natural resource planning problems.
They compare a number of linear programming and rein-
forcement learning approaches on forestry planning prob-
lems using Graph-based Markov decision process (GMDP)
models, another form of factored MDP. They use GMDPs to
address the problem of minimizing wind damage to trees by
using extensive domain knowledge to simplify the problem
and solve portions of it with linear programming. These ex-
act solutions are then used as solutions to subproblems in a
policy iteration process.

Our approach attempts to addresses the same need with-
out requiring extensive domain knowledge to engineer an
efficient problem representation.

Conclusions
We have demonstrated an approach for casting the com-
plex policy space of spatial planning into a locally-
parameterized, spatially-stationary policy. The algorithm
requires domain experts to provide the dynamics through
(existing) simulators, a set of features to model the relevant
state information for the policy and a reward model describ-
ing what they value.

An important challenge in environmental planning is to
develop methods for exploring, debugging and implement-
ing policies for sustainable planning in complex spatial en-
vironments. These methods need to enable different stake-
holders in the decision making process to more clearly de-
fine their values, explore the outcomes of different policies
and understand what a given policy is advising to do and
why. The approach shown here contributes to addressing
this challenge and hopefully will lead to further discussion
in the AI community into how to use the tools at our dis-
posal to make progress in these very challenging planning
domains.

Acknowledgements
We would like to thank the anonymous reviewers who pro-
vided several helpful comments which helped us to improve
the focus of this paper. We would also like to thank the Min-
istry of Forests, Lands and Natural Resource Operations of
the Province of British Columbia for access to their FSSAM
tool and datasets. This research was conducted with the as-
sistance of a grant to David Poole from the Natural Sciences
and Engineering Research Council of Canada.

References
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and compuata-

tional leverage. Journal of Artificial Intelligence Research
11:1–94.
Boyland, M.; Nelson, J.; and Bunnell, F. L. 2005. A test
for robustness in harvest scheduling models. Forest Ecology
and Management 207(1-2).
Bremaud, P. 1999. Markov Chains: Gibbs Fields, Monte
Carlo Simulation and Queues. Springer.
Crowley, M.; Nelson, J.; and Poole, D. 2009. Seeing the
forest despite the trees: Large scale spatial-temporal deci-
sion making. In Proceedings of the 25th Annual Conference
on Uncertainty in Artificial Intelligence.
Forsell, N.; Wikström, P.; Garcia, F.; Sabbadin, R.;
Blennow, K.; and Eriksson, L. 2009b. Management of the
risk of wind damage in forestry: a graph-based Markov de-
cision process approach. Annals of Operations Research 1–
18.
Forsell, N.; Garcia, F.; and Sabbadin, R. 2009a. Reinforce-
ment learning for spatial processes. In 18th World IMACS /
MODSIM Congress, 755–761.
Guestrin, C.; Lagoudakis, M.; and Parr, R. 2002. Coordi-
nated reinforcement learning. In ICML, 227–234.
Kersting, K., and Driessens, K. 2008. Non-parametric pol-
icy gradients: A unified treatment of propositional and rela-
tional domains. In ICML.
Mathey, A.-H., and Nelson, J. 2007. Decentralized forest
planning models - a cellular automa framework. In Gadow,
K., and Pukkala, T., eds., Designing Green Landscapes.
Springer. 167–183.
Powell, W. B. 2010. Merging AI and OR to solve High-
Dimensional stochastic optimization problems using ap-
proximate dynamic programming. INFORMS Journal on
Computing 22(1):2–17.
Puterman, M. 1994. Markov Decision Processes. New York:
John Wiley & Sons.
Riedmiller, M.; Peters, J.; and Schaal, S. 2007. Evalua-
tion of policy gradient methods and variants on the cart-pole
benchmark. In IEEE Symposium on Approximate Dynamic
Programming and Reinforcement Learning, 254–261.
Sutton, R. S.; Mcallester, D.; Singh, S.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning
with function approximation. In NIPS, volume 12, 1057–
1063. MIT Press.

