To appear in the proceedings of the 5th International Symposium on High-Performance Computer Architecture (HPCA-5), Orlando, Flor-
ida, January 9-12, 1999.

Using Lamport Clocks to Reason About Relaxed Memory Models

Anne E. Condon, Mark D. Hill, Manoj Plakal, Daniel J. Sorin
Computer Sciences Department
University of Wisconsin - Madison
{condon, markhi ||, pl akal , sori n} @s. wi sc. edu

Abstract industrial product groups spend more time verifying their

Cache coherence protocols of current shared-memory mulSyStem than actually designing and optimizing it.
tiprocessors are difficult to verify. Our previous work pro- To verify a system, engineers should unambiguously
posed an extension of Lamport’s logical clocks for showingdefine what “correct” means. For a shared-memory sys-
that multiprocessors can implement sequential consistencyem, “correct” is defined by a memory consistency model.
(SC) with an SGI Origin 2000-like directory protocol and a A memory consistency modifines for programmers the
Sun Gigaplane-like split-transaction bus protocol. Many allowable behavior of hardware. A commonly-assumed
commercial multiprocessors, however, implement morememory consistency model requires a shared-memory
relaxed models, such as SPARC Total Store Order (TSO), aultiprocessor to appear to software as a multipro-
variant of processor consistency, and Compaq (DEC)grammed uniprocessor. This model was formalized by
Alpha, a variant of weak consistency. Lamport assequential consistend$C) [12]. Assume that

This paper applies Lamport clocks to both a TSO and an€aCh processor executes instructions and memory opera-
Alpha implementation. Both implementations are based orfiONS in @ dynamic execution order callptogram order

the same Sun Gigaplane-like split-transaction bus protocot*N €xecution is SC if there exists a total order of memory
we previously used, but the TSO implementation places 2Pgrations (reads and writes) in which (a) the program
first-in-first-out write buffer between a processor and its Orders of all processors are respected and (b) a read returns
cache, while the Alpha implementation uses a coalescing® valué of the last write (to the same address) in this
write buffer. Both write buffers satisfy read requests for 0rder- A system is SC if it only permits SC executions.
pending writes (i.e., do bypassing) without requiring the Our previous work [18,24] proved that abstractions of a
write to be immediately written to cache. Analysis showsSGI Origin 2000-like [5,13] directory protocol and a Sun
how to apply Lamport clocks to verify TSO and Alpha Gigaplane-like [22] split-transaction bus protocol both
specifications at the architectural level. implement SC. Instead of asking for the off-line existence
Hf a total memory order, wpretendto augment the hard-
ware with logicalLamport clockgo construct the needed
order dynamically as it executes memory operations (satis-
. fying requirement (a)). We then prove that every load (read
1 Introduction instruction) returns the value of the last store (write

Shared-memory multiprocessor systems are increasinglipStru,Ct'on) in this constructed order. Thus (b) is satisfied.
employed both as servers (for computation, databased:S With any formal method, our Lamport clocks approach

files, and the web) and as clients. To improve performanceCannot replace conventional testing and validation. Never-
multiprocessor system designers use a variety of compleX€€ss, itis our premise that Lamport clocks can be valu-

and interacting optimizations. These optimizations include@P!€ when reasoning about the correctness of a
specification of memory ordering semantics at the archi-

cache coherence via snooping or directory protocols, out: J .
of-order processors, and coalescing write buffers. Thesd€ctural level, thereby aiding in the protocol design process
optimizations add considerable complexity at the architec-2nd reducing time spent on validation later.
tural level and even more complexity at the implementationwhile work on SC is valuable, many commercial proces-
level. Directory protocols, for example, require the systemsors implement more relaxed memory consistency models
to transition from many shared copies of a block to onein an effort to improve performance. An example is the
exclusive one. Unfortunately, this transition must be imple-insertion of FIFO or coalescing write buffers between the
mented with many non-atomic lower-level transitions that processor and the cache. Processor consistent models,
expose additional race conditions, buffering requirementssuch as SPARC Total Store Order (TSO) [25], relax the SC
and forward-progress concerns. Due to this complexity,requirement (a): now, in the total ordering of memory
operations, a store (ST) can appear after a load (LD) that

This work is supported in part by the National Science Foundation with i
grants MIP-9225097, MIPS. 9625558, CCR 9257241 and CDA-9623632,(0//OWS it in program order. More relaxed models, such as

a Wisconsin Romnes Fellowship, and donations from Sun Microsystemscompag (DEC) Alpha [23], allow a processor great free-
and Intel Corporation.

Keywords: memory consistency models, cache coherenc
protocols, protocol verification

dom to re-order memory operations between “memory bar-2 Related Work1
riers.”

This paper shows that Lamport clocks can be used to verify2.1 Our Previous Work

shared-memory implementations that support the TSO and,,r previous work [18,24] proved that implementations
Alpha relaxed memory models. Towards this end, the paperygjng a SGI Origin 2000-like [5,13] directory protocol and
makes two primary contributions: a Sun Gigaplane-like [22] split-transaction bus protocol
1. We provide clean new memory model definitions, namelyboth implement SC. Both implementations use three-state
Wisconsin TSO and Wisconsin Alpha, that aid in reasoning invalidation-based coherence protocols.

about correctness of protocold/e show that protocols sat- 5 reasoning method associates logical timestamps with
isfying the Wisconsin TSO and Wisconsin Alpha memory 5545 stores, and coherence events. We call our method
models also satisfy TSO [25] and Alpha [23], respectively. | amport Clocks because our timestamping modestly
We consider the Wisconsin memory models to be more gytands the logical timestamps Lamport developed for dis-
intuitive than the original definitions for the following rea- i ;teq systems [11]. Lamport associated a counter with
sons. Unlike the TSO definition, LDs always get the values ¢4y host. The counter is incremented on local events and
of STS that occur earlier in the total order. Unlike the Alpha i value is used to timestamp outgoing messages. On mes-
definition, we use a total order. sage receipt, a host sets its counter to one greater than the
2. We extend our Lamport timestamping scheme to proto-maximum of its former time and the timestamp of the
cols for both the TSO and Alpha memory modélse key incoming message. Timestamp ties are broken with host
is determining at what point in the protocol an event is ID. In this manner, Lamport creates a total order using
timestamped, and it is in this determination that the proofs these logical timestamps where causality flows with
of this paper differ from our previous work on SC. For increasing logical time.

example, in the Alpha protocol, a LD that gets its value o, imestamping scheme extends Lamport's 2-tuple
f_rom a previous ST that is stlll_m the write buffer should be timestamps to three-tuples:giobal . local . node-id>
timestampedfterthe ST. But since the ST has not yetbeen \aregiohal takes precedence ovircal, andlocal takes
written to the cache, the ST is not yet timestamped when e cedence overode-id (e.g., 3.10.11 < 4.2.1). Coherence
the LD is issued. Our timestamping scheme handles thispegsages, or transactions, carry global timestamps. In
simply by waiting to timestamp the LD until the ST has gqgition, global timestamps order LD and ST operations
actually been written to the cache. relative to transactions. Local timestamps are assigned to
While the details of the timestamping scheme are necessarkD and ST operations in order to preserve program order in
ily different from previous work, a strength of our approach Lamport time among operations that have the same global
is that, with the timestamping scheme in hand, the proofstimestamp. They enable an unbounded number of LD/ST
of correctness of the protocols are almost identical to theoperations between transactions. Node-ID, the third com-
proofs in our previous work on SC. Our protocols for TSO ponent of a Lamport timestamp, is used as an arbitrary tie-
and Alpha are based on the same Gigaplane-like split-breaker between two operations with the same global and
transaction bus protocol that we considered in previouslocal timestamps, thus ensuring that all LD and ST opera-
work [24]. A similar result could easily be proved for a tions are totally ordered.

directory-based implementation, as in Plakal et al. [18]. o, prior proofs of SC use two timestamping claims that
In the rest of the paper, we assumeélackto be a fixed- show that LDs and STs are ordered relative to transactions
size, contiguous, aligned section of memory (usually equal“as intended by the designer.” One of these claims is that
to the cache line size). Also, LDs and STs operate onfor every LD and ST on a given block, proper access is
words where we assume that a word is contained in a blockensured by the most recent transaction on that block in
and is aligned at a word boundary. Our scheme could beLamport time. (In contrast, in real time, a processor may
extended to handle LDs and STs on sub-units of a wordperform a LD on a bloclafter it has answered a request to
(half-words or bytes) which need not be aligned. However, relinquish the block.) Roughly, the other claim is that, in
this makes the specification of the memory models very logical time, transactions are handled by processors in the
tedious without any gain in insight or clarity. order in which they are received. (In contrast, in real time, a
processor may receive transaction-related messages “out of

The rest of this paper is organized as follows. Section Zorder”.)

summarizes our previous work that used Lamport clocks to
reason about the correctness of shared memory systems$;equential consistency is established using the concept of
and discusses related work by others. We present ourcoherence epoch#&n epoch is an interval of logical time
results for TSO and Alpha in Sections 3 and 4, respectively. during which a node has read-only or read-write access to a
Section 5 summarizes our contributions and discusseddlock of data. The life of a block in logical time consists of
future work.

1. This section borrows from material in previous work [18,24].

a sequence of such epochs. Our proof shows that, in Lam-algorithm is proven correct assuming real-time synchro-
port time, operations lie within appropriate epochs. That is, nized clocks, then it must also be correct even if run with
each LD lies within either a read-only or a read-write logical clocks. One difference between this work and ours
epoch, and each ST lies within a read-write epoch. In addi-is that the protocols we consider are not clock-based.
tion, the “correct” value of a block is passed from one node Rather, we attach (logical) clocks to clock-free protocols,
to another between epochs. The proofs of these resultsn order to prove correctness of the protocols

build in a modular fashion upon the timestamping claims,

thereby localizing arguments based on specification details.3 Total Store Order (TSO)

The differences between the proofs for the bus and direc-

tory protocols differ only in the details of the timestamping SPARC Total Store Order (TSO) [25] is a varianfobces-

claims. sor consistency9,10] that has been implemented on Sun
multiprocessors for many years. TSO relaxes SC in that
2.2 Other Related Work LDs can be ordered ahead of STs which precede them in

program order (so long as there are no intervening memory
Our Lamport clock method complements related work on j,riers and the two operations are to different locations).
proving protocols correct. First, Lamport clocks are more We study TSO because it is formally and publicly defined
precise and formal than ad hoc reasoning or simulation. 1y + \we expect that our results can be mapped to the Intél
Second, we find Lamport clocks easier to use and moreArchitecture-32 (IA-32) memory model (Section 7.2 of
applicable to larger systems, but less rigorous than[4]), the other dominant processor consistency model.

appro.aches that use state-space search of finitejstatwe now define TSO, Wisconsin TSO, a TSO implementa-
machines or theorem-proving techniques. These are rigor

tion, a Lamport timestamping scheme for that implementa-
ous methods that can capture subtle errors, but they argion and its corresponding proof.

often limited to small systems because of the state space
explosion for large, complicated systems. For example, the .

SGI Origin 2000 coherence protocol is verified for a 4- 3.1 Defining TSO

cluster system with one cache block [7], the memory sub- TSO applies to a system with multiple processors issuing a
system of the Sun S3.mp cache-coherent multiprocessowariety of instructions. For our purposes, we are concerned
system is verified for one cache block [19], and the SPARC with word loads (LDs), word stores (STs) and memory bar-
Relaxed Memory Order (RMO) memory consistency riers (MBs) issued to regular memory (i.e., excluding 1/0
model is verified for small test programs [16]. Park and space). We consider only memory barriers at least as strong
Dill [17] propose using transaction aggregation to scale as type “MB #StoreLoad,” i.e., barriers which guarantee
beyond finite-state methods. Our approach can preciselythat all prior STs are completed before any future LD,
verify the operation of a protocol in a system consisting of while weaker memory barriers are regarded as no-ops (e.g.,
any number of nodes and memory blocks. “MB #LoadLoad"”). Appendix D of the SPARC Architec-
ture Manual Version 9 [25] defines TSO by defining
Relaxed Memory Order (RMO) and then adding con-
straints to form TSO. We give the combined result.

Another formal approach devised by Shen and Arvind uses
term rewriting to specify and prove the correctness of
coherence protocols [21]. Their technique involves show-
ing that a system with caches and a system without cached et <, denoteprogram order Program order totally orders
can simulate each other. This approach lends itself toall L[gjs, STs, and MBs at the same processor and it is thus
highly succinct formal proofs. We find Lamport clocks eas- a partial order over all processors.

ier to grasp, while not lacking expressive power. Term
rewriting relies on an ordering of rewrite rules (each of
which corresponds to an event) and, as such, may benefiThen <, is said to be irtotal store order(TSO) if the fol-
from the Lamport clock technique which can order events. lowing constraints hold. The first two constraints are called
“memory order constraints.” Let X and Y be a pair of LD
or ST operations.

Let <, be a total ordering of all LD and ST operations.

Third, we find Lamport clocks easier to use and of similar
formal power to many of the other methods used to define
and verify relaxed memory models [1, 2, 3, 6, 8, 9, 20]. Of 1) If X <p Y and either X isa LD or Y is a ST, then X5
particular note are the approaches of Collier [3] and Ghara- Y.

chorloo et al. [8] that model a write gssub-operations to

each ofp processors. We find their approaches more gen-2) |f X <p MB <p Y then X < Y.

eral but harder to use than our approach that splits TSO

stores (writes) into two components and leaves Alpha ryg fingl constraint restricts possible values of LDs:
stores atomic.

Finally, Lamport Clocks have also been used in other
research, including a paper by Neiger and Toueg [15]. They
describe a class of problems for which, if a clock-based

3) Let X be a LD of wordw. Then the value of X is the Xin <, or
value of the greatest ST, say Y, to waréh memory

order, taken over all STs to wond that either occur b) the most recent §ipjic to wordw, otherwise.
before X in memory order or occur before X in program
order (but possibly after X in memory order). An execution of an implementation satisfies Wisconsin

TSO if there exists an ordering of the LDs, jaes and

Intuitively, constraints 1 and 2 say that memory order may STpuplic S in the execution that satisfies Wisconsin TSO. An
0n|y violate processor order to de|ay a ST after a Subse_lmplementatlon satisfies Wisconsin TSO if all executions
quent LD when there is no intervening MB. In all other Of that implementation satisfy Wisconsin TSO.

cases, memory order respects program order (i.e., D < Gj| Neiger [14] has developed an alternative TSO defini-
LD’, LD <, ST, and ST § ST’ are preserved by memory tjon as a total order of LDs and STs in which a LD always
order). Constraint 3 says that a LD should return the Iastget the value of the most recent ST. This is done by moving

value written to the same word in memory unless there is agach LD that returns a value from a Silatet0 be after the
pending ST to the same word (earlier in program order) corresponding Siblic-

that has not yet occurred in memory order. In this case, the .) . - . .

value from the pending ST should be returned. So if one Claim 1: An implementation that satisfies Wisconsin TSO

looks at the memory order, éppearsas if the LD gets its ~ also satisfies TSO.
value from a ST that “happens in the future.” A proof of this claim can be found in Appendix‘A.

An execution of an implementation satisfies TSO if there] i)
exists an ordering of the LDs and STs in the execution that3.3 TSO Implementation With FIFO Write
satisfies TSO. An implementation satisfies TSO if all exe- Buffers

cutions of that implementation satisfy TSO. A common TSO implementation approach separates each

. . processor from its cache with a FIFO write buffer. Caches
3.2 Wisconsin TSO are kept coherent with a write-invalidate coherence proto-

We now define some properties of an ordering which col sufficient for implementing SC. A MB can be imple-
makes verification easier. TSO’s condition 3 allows a load mented by having a processor flush its write buffer before
to get a value from a “future” store. Wisconsin TSO elimi- Pproceeding past a MB, without the caches or coherence
nates this oddity by splitting each store into a,geand Protocol ever seeing MBs. We use this approach here in a
a STyuplic both of which have the same value. Each LD manner similar to the Sun Ultra Enterprise 6000 with
gets its value from the past but may return the value of a UltraSPARC Il processors.

STorivate for which the corresponding Sipiic has not yet e pegin with a brief summary of the SC implementation
occurred. The goal in this case is to model write buffer ynat Sorin et al. [24] describe for a Gigaplane-like split-
bypassing where stores enter the write buffer on gi@fe transaction bus (the overall approach would be similar for
and exit with a S pjic. the directory-based implementation described by Plakal et

Let <, denote an ordering of LDs, $faeS and STypjicS. al. [18]). Memory blocks may be cachedlasalid, Shared,

We say that g is in Wisconsin total store ordgiisconsin ~ Of Exclusive The A-state(address state) records how the
TSO) if the following conditions hold. block is cached and is used for responding to subsequent

, . . . bus transactions. The protocol seeks to maintain the
1') The ordering (s,) of LDs and STyjyateS is consistent gynected invariants (e.g., a block Exclusivein at most
with program order. That s, if X and Y are either a LD one cache) and provides the usual coherence transactions:

or a STyivate then X ¢ Y if and only if X <, Y. Get-Shared (GETS), Get-Exclusive (GETX), Upgrade
(UPG, for upgrading the block from Shared to Exclusive),
2') For each ST, Sfivate <w STpublic and Writeback (WB). As with the Gigaplane, coherence
transactions immediately change the A-state, regardless of
3)If Xand Y are STs and XY then Xoublic <w Y public when the data arrives. If a processor issues a GETX trans-

action and then sees a GETS transaction for the same block
by another processor, the processor’s A-state for the block
_ will go from Invalid to Exclusive to Shared, regardless of
then Supiic <w LD- when it obtains the data. In an SC implementation, the pro-
cessor checks the A-state of a block before executing LDs
and STs on that block. On a miss, the processor ensures the

4’) If an MB occurs between ST and LD in program order

5") Let X be a LD of wordw at processorjpThen the value
of X is the value of the most recent STwain <, that is
either:

a) the most recent Sfareto wordw at , if for some 1. The converse of this claim can also be proved, but it is not nec-

ST <, X to word w, the corresponding $lpjic is after essary for our proof of correctness, and we omit it here due to
space constraints.

appropriate A-state for that block by sending a coherenceing of the LD completes when the processor establishes
transaction on the bus. that the A-state of the block is Shared or Exclusive. We
assume that LDs do not overlap with $fjics to the same

address, in the sense that the interval during which a LD is
issued cannot overlap with the §ic flushing interval,

oads] S8 oads] S10res load| stores starting when the processor establishes that the A-state is
— | R0 FFO — |0 Exclusive and continuing until the flush is completed.
— | WRITE — | WRITE — | WRITE . . i i .
— | BUFFER — | BUFFER — | BUFFER MBs: Upon issuing a MB, our implementation simply

flushes all entries in the write buffer to the cache before
issuing any more operations. A more aggressive implemen-
CACHE CACHE CACHE tation could perhaps mark all the entries in some way and
then ensure that subsequent coherence transactions are
allowed to happen only when all marked entries have been
flushed from the write-buffer.

Coherence Protocol
Bus / Network

Memory 3.4 Timestamping for TSO Implementation

FIGURE 1. Our TSO Implementation We now present a scheme that assigns logical timestamps
to the events of interest that occur during any execution of a

To convert this SC implementation into a TSO implementa- Program on our implementation of TSO. We definelan

tion, we insert a FIFO write buffer between a processor andOPeration(or simply an M-op) to be a LD or Siaie M-

its cache (as shown in Figure 1), and we add a MB instruc-OPS are ordered by program order at a single processor. Our
tion. The rest of the implementation (external to the proces- Scheme assigns timestamps to M'Opsg)éﬂ'c‘-‘ and coher-

sor and write-buffer) obeys the coherence protocol outlined €Nce protocol transactions (GETX, GETS, UPG, WB).

above. The processor issues LDs, STs, and MBs in pro-we define a notion obinding for M-ops and STublicS
gram order. Below, we specify exactly what happens whenwhich is useful for presenting the timestamping scheme.
the processor issues one of these instructions. The procesntuitively, the binding time of an operation is the point in
sor completes issuing an instruction before proceeding toreal time when that operation has been “committed” by the

issue the next one in program order. processor. Sfiars are bound when the corresponding
Stores: A ST issues into a FIFO write buffer (considered €ntries enter the write buffer. JJy s are bound at the

Entries in the write buffer are the size of processor words. lished by the processor. LDs that hit in the write buffer are
Eventually, these entries are flushed from the write-buffer bound at the time that the correspondingieCk(LD)

to the cache in the same order that they entered the write?ccurs. LDs that miss in the write buffer are bound at the
buffer, and this activity is independent of the issuing of STs time that the A-state for the corresponding block is estab-
by the processor. The event whereby an entry is flushedlished by the processor. Both g s and LDs that miss in
from the write buffer to the cache, once the processor hasthe write buffer are said to bgound tothe coherence trans-
establishedhat the corresponding block’s A-state is Exclu- action that obtained the block in the appropriate A-state.

sive, is called a Sfpjic. By establish we mean that the Qur timestamps are 3-tuples: <global-time.local-time.pro-
processor checks the A-state of the block and if it is not cessor ID>. We give rules below for assigning global and
Exclusive, then the coherence protocol is invoked to |ocal times to the various events that we timestamp. The
change the A-state to Exclusive. Note that the Exclusive A- processor ID acts as a tie-breaker. Conceptually, each pro-
state is a prerequisite for a G fjic but not for a STijyate cessor has a global and a local clock which get updated in

Loads: To issue a LD, the processor first checks in its write €@l time for transactions as well as M-ops and, s
buffer for a ST to the same word. We refer to this action as 'espectively.

a GHECK(LD). If the LD hits in the write buffer, then the Transactions are totally ordered by the bus in real time and
LD gets the value of the most recent suchyRliein Pro- we define the global time of a transaction to be its rank in
gram order. Note that a LD cannot overtake a ST to the this ordering, with the first transaction being assigned a
write buffer, because the protocol does not start to issue aglobal time of 1. At the moment that the A-state of a pro-
LD until issuing of all previous STs (in program order) has cessor changes due to a transaction, the global clock of that
been completed. If the LD misses in the write buffer, then it processor is incremented to equa| the g|oba| time of that

is treated just like a LD in the SC protocol and has to go to transaction, while the local clock (and the local component
the cache. That is, the processor establishes that the A-statgf the transaction’s timestamp) are set to 0.

of the block in the cache is Shared or Exclusive; if neces- . . . :
sary, it invokes the coherence protocol (the details of which E&ch M-0p and Sjypiic is assigned a timestamp at the time

are as described by Sorin et al. [24]). In this case, the issu-hat it is bound. If an M-op and $jjic happen to be
bound at the same moment in real time, we assume that

they are assigned timestamps in some arbitrary (but deter4 Alpha

ministic) ordering (e.g., M-ops are always timestamped)

first). Note that a LD that misses in the write buffer and a The Compag (DEC) Alpha memory model [23] is a weakly
STpublic CaN never be bound at the same time because of theconsistent model that relaxes the ordering requirements at a
real-time ordering properties of the protocol. The local given processor between any accesses to different memory
clock is incremented by 1 to equal the local component of locations unless ordering is explicitly stated with the use of
the timestamp assigned. The global timestamp is the value2 Memory Barrier (MB). We first define the Alpha memory

of the global clock at the moment that the M-op orSic model, introduce a collection of constraints on orderings
is bound. which we refer to as Wisconsin Alpha, and prove the rela-

tionship between Alpha and Wisconsin Alpha. We then
3.5 Proof of Correctness of TSO Implementation describe an Alpha implementation, present a timestamping
) _ _ scheme for the implementation, and prove that the ordering
We show that for any execution of our implementation, the produced by the timestamping scheme satisfies Wisconsin
timestamps of SfiyateS, STouplicS: and LDs produce a Alpha, thus showing that the implementation correctly

Lamport ordering g, that satisfies properties 1" to 5" of the implements the Alpha memory model.
Wisconsin TSO definition. That properties 1" to 4" are sat-

isfied follows from the rgal—time ordering properties_ of th_e 4.1 Defining Alpha

protocol, the timestamping scheme, and the order in which]))

events are bound. Property 5 is proved as follows. We con-As with TSO, we are concerned mainly with a system con-
sider two possible situations for LD X: taining multiple processors issuing word LDs, word STs

and MBs (ordered by program order at a single processor)
to regular memory (not 1/O space). The Alpha memory
model is formally defined through the use of two orders
that must be observed with respect to memory accesses.
The first order, progranssue orderis a partial order on the
memory operations (LDs, STs) issued by a given processor.
Sssue order relaxes program order in that there is no order
between accesses to different locations without intervening

! . > MBs. Issue order enforces order between accesses to the
in the write buffer when pperforms GiECK(X); otherwise, game |ocation, order between any access and an MB, and

at the moment the check is dong, gjic would already be 4er hetween MBs. The second order, access order, is a
bound, causing X to be bound (to a transaction) inreal ime ;o141 order of operations on a single memory location

AFTER Z, pjic Is bound. Since timestamps are consistent (.o ardiess of the processors that issued them
with binding order, this would contradict the fact that ¥ < (g- P) i) .
Zpuplic Hence, X must get the value Gfate A third order, the “before” order, is defined to be the transi-

tive closure over all of the issue orders and access orders.
An execution of an implementation obeys the Alpha mem-
ory model if:

1) Suppose that for some ST, X, both to the same word,
X <y STouplic: L€t Zyrivate b€ the most recent i ate to
word w at p (prior to X in <). It must be that £pjic
occurs after X in §, by property 3" of Section 3.2. We

are non-overlapping, ivateliS in p's write buffer before p
performs GECK(X). We claim that Zate iS Still present

2) Suppose that for all ST,<X, both to the same word,
SToublic <w X. It cannot be the case that X takes the value
of any STyvate if X were to take the value of a $fyate)]
say Zyivate then X would be bound BEFORE,Zyi, Since * for every memory location, there exists an access order
the interval in which X is issued does not overlap with the ~ for which there are no two memory operations A and B
interval in which Z,pic occurs. This contradicts our (not necessarily to the same address) such that A is
assumption in the previous sentence because binding order before B, and B is also before A.

is consistent with §. Hence X gets the value of some o 3 |gad returns the value of the most recent store to the

SToublic and is bound to some transaction. nggjc be the same location in access order.
most recent Sfpiic before X in <, (not necessarily at pro- i) - . .
cessor [). We need to show that X gets the valug, i An implementation satisfies Alpha if all executions of that

The proof of this is identical to the proofs of the main theo- Implementation satisfy Alpha.

rems in our SC research [18,24], except that STs need to be i)

replaced by Sfpics and the definitions of binding and 4.2 Wisconsin Alpha

timestamping there need to be replaced by the definitionsa|hoyugh the Alpha memory model seems to have little in

of binding and timestamping in Section 3.4. common with the stricter sequential consistency, we will

Hence all executions of the implementation satisfy Wiscon- show that the differences between the two models can be

sin TSO and so the implementation satisfies Wisconsinconstrained to behavior internal to the processor (i.e.,

TSO. By Claim 1, the implementation also satisfies TSO. everything not including the cache and the rest of the mem-
ory subsystem). An execution of an implementation satis-
fies the Wisconsin Alpha memory model if there exists a
total ordering of all loads, stores, and MBs, such that:

¢ all of the issue orders are respected. required to issue a store to the write buffer, but it is required

* aload returns the value of the most recent store to theto flush the store from the write buffer to the cache.

same location in this total order. A LD that hits in the write buffer returns the value that is
found there, and this action does not require that line to be
flushed from the buffer to the cache. The Alpha model, like
most weak memory models, is tailored to include non-
Claim _2: An implementation that satisfies Wisconsin blocking caches. This optimization allows the processor to
Alpha also satisfies Alpha. overlap read latency with other useful work, so LDs that
A proof of this claim can be found in Appendix18. miss_in the Writ_e buffer are issued to a load queue which we
consider to be internal to the processor. These LDs are han-

dled by our existing SC coherence protocol with the fol-
lowing difference: a reply from the memory system
satisfies all LDs to that location that are in the load queue at
‘ S — : the moment that the processor establishes that the A-state
C is Shared or Exclusive. If the data was already in the cache

P P ‘ in the appropriate A-state, then the LD can be satisfied
immediately. We assume that there is no overlap between
the issuing of LDs and the flushing of STs to the same
address once Exclusive permission is obtained.

An implementation satisfies Wisconsin Alpha if all execu-
tions of that implementation satisfy Wisconsin Alpha.

4.3 An Alpha Implementation Using Coalescing
Write Buffers

— | Coalescing
— | Wiite

This implementation uses a simple mechanism for handling
MBs, which is to stall the processor until the load queue
and the write buffer are empty. Figure 2 illustrates our
Alpha implementation, where everything outside of the
dotted boxes is exactly the same as in our earlier sequen-
tially consistent implementation.

Coherence Protocol

Bus / Network
4.4 Timestamping for Alpha Implementation

The timestamping scheme for the Alpha implementation is
FIGURE 2. Our Alpha Implementation quite similar to that used for the TSO implementation.
Coherence transactions affect the processors’ global clocks
Each processor in an Alpha implementation internally in the same fashion. Each LD and ST is timestamped at the
observes issue order. It can reorder loads and stores to difmoment that it is bound, and it is in this determination of
ferent memory locations as long as there is no interveningwhen a LD or ST is bound where Alpha differs from TSO.
MB. The multiprocessor implementation includes some A ST is considered to be bound when the Exclusive A-state
number of these processors connected together either by af the target block is established by the processor. Since an
shared bus or a network. The cache coherence protocoéntire cache line is written at once, all of the stores in a
used in either case is the same as the shared bus protocdluffer entry (including coalesced stores to the same word)
[24] or the directory protocol [18] that we described in pre- are bound at the same time, but they are timestamped so as
vious work. Our implementation is loosely modeled after a to preserve issue order. A LD that hits in the write buffer is
multiprocessor using the Compag (DEC) Alpha 21264 bound exactly when that ST was bound, but it is times-
Mmicroprocessor. tamped after that ST to preserve issue order. If the LD
misses in the write buffer, it is bound when the block
becomes present in the appropriate A-state. At the moment
that each LD or ST is bound, the local clock is incremented
Qy 1 and the local component of the timestamp is set to the
Updated value. The global timestamp is the value of the
global clock at the moment that the event is timestamped.

Memory

Each processor issues LDs and STs in program order,
Stores are issued to a coalescing write buffer which is con-
sidered to be internal to the processor. Entries in the write
buffer are the size of cache lines. Stores to the same cach
line are coalesced in the same entry and if two stores write
to the same word, the corresponding entry will hold the

value written by the store that was issued later. Entries are .
eventually flushed from the write buffer to the cache, 4-5 Proof of Correctness of Alpha Implementation

although not necessarily in the order in which they were we show that each execution of the Alpha implementation
issued to the write buffer. Exclusive permission is not satisfies Wisconsin Alpha. In previous work [18,24], we

proved that an split-transaction bus protocol and a directory
protocol obeyed sequential consistency. Parts of these
1. The converse of this claim can also be proved, but it is not nec-proofs rely on the processors binding memory accesses in

essary for our proof of correctness, and we omit it here due to program order. To prove that our target Alpha implementa-
space constraints.

tion obeys the Wisconsin Alpha memory model, we can
use either proof (depending on whether our interconnect is
a bus or a network) as long as we consider that binding
order is now a partial order rather than a total order. Specif-
ically, we need to modify the proofs of claims made about
the binding of memory operations to coherence transac-
tions so that references to the earliest memory operation ar?s]
replaced with references tany of the earliest memory
operations, since there could be more than one that is
bound at the same time. Hence all executions of the imple-
mentation satisfy Wisconsin Alpha and so the implementa-

[7]

tion satisfies Wisconsin Alpha. By Claim 2, the (9]
implementation also satisfies Alpha.
5 Conclusions and Future Work

[10]

High performance shared-memory multiprocessors often
incorporate relaxed memory consistency models. These
implementations may use many hardware optimizations, [11]
such as write buffers and out-of-order issue, and it is diffi-
cult to verify that a complex implementation satisfies a [12]
given relaxed consistency model. We have extended our
Lamport clock verification technigue to handle two relaxed
consistency models: processor consistency and weak con-
sistency. Reasoning with Lamport clocks, we have shown [13]
that two sample implementations satisfy a processor con-
sistent model (Total Store Order) and a weakly consistent

model (Alpha), respectively. [14]

Future work with Lamport clocks will extend the method to [15]
reason about consistent 1/0 and the detection of deadlock
and livelock. We are interested in automating the verifica-
tion process.

6 Acknowledgments

This work has benefited from feedback from many people, [17]
including Robert Cypher, James Goodman, Erik Hagersten,
Daniel Lenoski, Paul Loewenstein, Gil Neiger, and David

Wood.
[18]

7 References

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering—A
New Definition. In Proceedings of the 17th Annual [19]
International Symposium on Computer Architecfure
pages 2-14, Seattle, Washington, May 28-31, 1990.

[2] Hagit Attiya and Roy Friedman. A Correctness Condition
for High-performance Multiprocessors. Rroceedings of
the 24th Annual ACM Symposium on the Theory of
Computing pages 679-690, May 1992.

[3] William W. Collier. Reasonin About Parallel
Architectures Prentice-Hall, Inc., 1992. [21]

[4] Intel Corporation. Pentium Pro Family Developer's
Manual, Version 3: Operating System Writer's Manual
January 1996.

[5] David Culler, Jaswinder Pal Singh, and Anoop Gupta. [22]
Draft of Parallel Computer Architecture: A Hardware/
Software Approachchapter 8: Directory-based Cache
Coherence. Morgan Kaufmann, 1997.

[6] Michel Dubois, Christoph Scheurich, and Faye Briggs

[20]

" [23]

Memory Access Buffering in Multiprocessors. In
Proceedings of the 13th Annual International Symposium
on Computer Architecturgpages 434—-442, June 1986.

Asgeir Th. Eiriksson and Ken L. McMillan. Using Formal
Verification/Analysis Methods on the Critical Path in
Systems Design: A Case Study. Rroceedings of the
Computer Aided Verification Conferendgege, Belgium,
1995. Appears as LNCS 939, Springer Verlag.

Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta,
John L. Hennessy, and Mark D. Hill. Specifying System
Requirements for Memorg Consistency ~ Models.
Technical Report CS-TR-1199, University of Wisconsin —
Madison, December 1993.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon,
Phillip Gibbons, Anoop Gupta, and John Hennessy.
Memocriy Con3|stenc|y_ and Event Ordering in Scalable
Shared-memory Multiprocessors. Rroceedings of the
17th Annual [nternational Symposium on Computer
Architecture pages 15-26, May 1990.

J. Goodman. Cache Consistency and Sequential
Consistency. Technical Report6l, IEEE Scalable
Coherent Interface Working Group, 1989.

Leslie Lamport. Time, Clocks and_the_Orderin% of Events
in a Distributed SystemCommunications of the ACM
21(7):558-565, July 1978.

Leslie Lamport. How to Make a Multiprocessor Com;l)zuter
that Correctly Executes Multiprocess ProgranisE
'{g%sactlons on Computer8-28(9):241-248, September

James P. Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly Scalable Server. IRroceedings of the
24th International Sym;;osmm on Computer Architecture
Denver, CO, June 1997.

Gil Neiger. Private communication, October 1998.

Gil Neiger and Sam Toueg. Simulating Synchronized
Clocks and Common Knowledge in Distributed Systems.
Journal of the Association for Computing Machingry
40(2):334-367, April 1993.

Seun?joon Park and David L. Dill. An Executable
Specification, Analgzer and Verifier for RMO (Relaxed
emory Order). InProceedings of the 7th Annual ACM
Symposium on Parallel Algorithms and Architectyres
pages 34-41, Santa Barbara, California, July 17-19, 1995.

Seungjoon Park and David L. Dill. Verification of FLASH
Cache Coherence Protocol by Aggregation of Distributed
Transactions. InProceedings” of the 8th Annual ACM
Symposium on Parallel Algorithms and Architectyres
pages 288-296, Padua, Italy, June 24—-26, 1996.

Manoj Plakal, DanielJ. Sorin, Anne E. Condon, and
Mark D. Hill. Lamport Clocks: Verifying a Directory
Cache-Coherence Protocol. Rroceedings of the 10th
Annual ACM Symposium on Parallel Architectures and
Algorithms Puerto Vallarta, Mexico, June 28—July 2 1998.

Fong Pong, Michael Browne, Andreas Nowatzyk, and
Michel Dubois. Design Verification of the S3.mp Cache-
Coherent Shared-Memory SysteBEE Transactions on
Computers47(1):135-140, January 1998.

Dennis Shasha and Marc Snir. Efficient and Correct
Execution of Parallel Programs that Share Mem@gzM
Transactions on Pr_ogirammlng Languages and Systems
10(2):282-312, April 1988.

Xiaowei Shen and Arvind. Specification of Memory
Models and Design of Provably Correct Cache Coherence
Protocols. Group Memo 398, Massachusetts Institute of
Technology, June 1997.

A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price,
L. Yuan, C.Cheng, D.Doblar, S.Fosth, N.Agarwal,
K. Harve%/, E. Hagersten, and B. Liencres. Gigaplane: A
High Performance Bus for Large SMR4ot Interconnects
IV, pages 41-52, 1996.

Richard L. Sites, editorAlpha Architecture Reference

Manual Digital Press, 1992. occurs before X in program order (since there are no

[24] Daniel J. Sorin, Manoj Plakal, Mark D. Hill, and Anne E. STs Z in category (ii) that are not already in category
Condon. Lamport Clocks: Reasoning About Shared- (). Hence Y = W.
Memory Correctness. Technical Report CS-TR-1367, ' '

University of Wisconsin-Madison, March 1998. e Suppose that W is a %-rli-vate call it Wyiyate Since
[25] David L. Weaver and Tom Germond, editoffie SPARC W.... ... satisfies the constraints of 5 must be
C > : private private ' T ;
é%ﬂg%ﬁ%&grﬁgﬁgﬁg',’ |X§_rs'°n -9Prentice Hall, 1994. the most recent %‘ﬁvateat processor p before X in Wis-
' consin order (and so W must be the most recent ST
Appendix A: Proof of relationship between before X in program order by 1), and jfijc must

. . occur after X in Wisconsin order. Since the timestamps
Wisconsin TSO and TSO of STpupiics agree with the order of the corresponding
Claim 1: An implementation that satisfies Wisconsin TSO ~ STs in program order (by 3°), Wi is the greatest
also satisfies TSO. SToubiic In Wisconsin order, taken over all §icS
Zyypiic to word w for which either (i) Zp)ic 0Occurs

Proof: Suppose that an implementation satisfies Wisconsin pefore X in Wisconsin order or (i) Z occurs before X in
TSO, i.e., for every execution on that implementation, there program order. Therefore, Y = W.

exists a total ordering,zof the LDs, ST iyates, and Sfp.] . .

icS satisfying Wisconsin TSO. We claim that the imple- Appendix B: Proof of relationship between
mentation satisfies TSO. To show this, we show that each\Wisconsin Alpha and Alpha

execution that satisfies Wisconsin TSO also satisfies TSO. _ _ . _ _

This is done by defining a new ordering,of just LDsand Claim2: An implementation that satisfies Wisconsin Alpha
STs by removing all ST and using the order of model also satisfies Alpha.

STpubiic to define the order of each ST. We claim that the proof: Suppose that an implementation satisfies Wisconsin
resulting ordering g, satisfies TSO. To see this, consider a|pha i.e., for each execution of that implementation, there
the requirements of TSO: exists a total ordering of LDs, STs and MBs that satisfies
1.IfX<pYand XisalDorY isa ST, then X the constraints of Wisconsin Alpha. We show that the
. implementation also satisfies Alpha by showing that each
* First, suppose that X is a LD. There are two possibilities g,c, execution also satisfies the constraints of Alpha.
forY:(a) YisalD. Th's foI,Iovv.s from 1 ',(b) YisaST. Gienan ordering of LDs, STs and MBs in an execution
This follows from 1" and 2°, since by 1, X,;<Yprivate that satisfies Wisconsin Alpha, let us define the access
and by 2, Yyivate <w Y public order for wordw to be the ordering of LDs and STs on that
* The other possibility is that X and Y are STs. In this word in <,, and the issue order at a processor to be the
case, Xupiic <w Y public BY property 2" and hence X« ordering of LDs, STs and MBs issued at that processor in
Y. <y The “before” ordering is the transitive closure of issue
order and access order. We now show that the two con-

2.1t an MB occurs between X and Y in program order, then straints of Alpha are met by these definitions of access

X<m Y. order and “before”™

Qrgea'“n’ we have separate cases depending what X and Y, Let A and B be any 2 memory operations in the execu-
' tion. Without loss of generality, suppose that operation

* XisalD. Then X Y and so by our argumentin 1, X A is before operation B. Since the before order is the
< Y. transitive closure of the access and issue orders, and

since <, respects both access and issue orders, then A

* XisaSTandYisa ST. Follows from 3", <w B. Hence, it cannot be that B is also before A,

* XisaSTandYisalD. Follows from 4". because otherwise B,<A, which is impossible since

3. Let X be a LD of word, and Y be the ST to wordin Wisconsin Alpha order is a total order.

memory order (7, satisfying the constraints of property 3. ¢ A LD returns the value of the most recent store to the
Let W be the ST (either a $pjic OF & STyrivate to Wordw same location in the g ordering which, from our defi-

in Wisconsin order (g) satisfying the constraints of prop- nition of access order above, is also the most recent
erty 5'. We need to show that Y = W. store to the same location in access order.

* Suppose that Wis a $piic: call it Wyypjic Then, from
the constraints in 5" on W, no ST before X in program
order has its SJpjic after X in Wisconsin order. There-
fore, Woypiic is the greatest §p)ic in Wisconsin order
(and hence W is the greatest ST in memory order),
taken over all SfypicS Zpupiic to word w for which
either (i) Zyypjic occurs before X in Wisconsin order
(i.e. Z occurs before X in memory order) or (ii) Z

