
Space and energy efficient computation with DNA
strand displacement systems

Chris Thachuk and Anne Condon

Department of Computer Science, University of British Columbia, Vancouver, BC, Canada

Abstract. Chemical reaction networks (CRN’s) are important models of molec-
ular programming that can be realized by logically reversible, and thus energy
efficient, DNA strand displacement systems (DSD’s). Qian et al., [12] showed
that energy efficient DSD’s are Turing-universal; however their simulation of a
computation requires space (or volume) proportional to the number of steps of
the computation. Here we show that polynomially space bounded computations
can be simulated in both a space and energy efficient manner using logically
reversible CRN’s and DSD’s. A consequence of our proofs is that determining
whether a particular molecular species can be produced from an initial pool of
molecules of a CRN or DSD is PSPACE-hard, and thus also verifying the cor-
rectness of CRN’s and DSD’s is PSPACE-hard.

1 Introduction

The area of molecular programming enjoys active research from both theoreticians and
experimentalists due in part to its promise of embedded logical computation that can
naturally interface with biological systems. For instance, if a condition is detected in a
cell, then a certain therapeutic agent can be released. Molecular programs can be writ-
ten in the language of chemical reaction networks (CRN) which detail how sets of reac-
tant molecules can be transformed into new sets of product molecules. A most widely
studied and experimentally practical model of computation in molecular programming
entails so-called DNA strand displacement systems (DSD). DSDs leverage the fact that
substrings of DNA strands will hybridize to their perfect complements and can also
displace other bound strands sharing the same substring (see Fig. 1), and can in general
realize any CRN [12, 10]. By a careful, non-trivial design of strands one can realize a
complex, yet deterministic computation. DSDs have been experimentally implemented
and verified to simulate logic gates [14], neural networks [13], and DNA walkers [15],
among numerous other applications.

Aside from the potential biological and chemical applications, DSDs and CRNs are
also of independent interest due to their promise for realizing energy efficient compu-
tation. Rolf Landauer proved that logically irreversible computation—computation as
modeled by a standard Turing machine—dissipates energy proportional to the number
of bits of information lost, such as previous state information, and therefore cannot be
energy efficient [8]. Surprisingly, Charles Bennett showed that in principle energy effi-
cient computation is possible, by proposing a logically reversible universal Turing ma-
chine and by identifying nucleic acids (RNA/DNA) as a potential medium for reversible
computation [1]. A logically reversible computation is a chain from an initial state to

a final state where each intermediate state has exactly one predecessor and one suc-
cessor. Bennett’s seminal work was space inefficient as his reversible Turing machine
simulation required O(T (n)) space to simulate a non-reversible machine that required
T (n) steps to complete, regardless of its space usage. He later proved that PSPACE
equals reversible PSPACE [2]—the class of problems solvable in deterministic poly-
nomial space can be solved by a reversible Turing machine in polynomial space. This
result has since been generalized to prove DSPACE equals reversible DSPACE [9]. Un-
til recently, it remained unclear if a physical system could realize logically reversible
computation. Qian et al., [12] gave a DSD implementation of a stack machine capable
of energy efficient Turing universal computation. Similar to Bennett’s seminal work,
their implementation requires space proportional to the number of steps in the compu-
tation as it consumes fuel molecules to drive the overall process forward. Condon et
al., [4] demonstrated that, in principle, logically reversible and space efficient compu-
tations can be realized in CRNs and DSDs by giving an n-bit Gray code counter that
progresses through 2n states using only O(poly(n)) space.

In this work, we ask the question: can space and energy efficient computation be
realized? We answer in the affirmative by showing how any problem in PSPACE can be
solved by a logically reversible CRN using polynomial space. Our CRN can be realized
by an energy efficient DSD implementation. Not only do our results further character-
ize the computational power of CRNs and DSDs, they shed light on the complexity
of a number of important related problems such as CRN and DSD model checking
and verification [6, 7]. We show that even determining if an arbitrary state is reachable
from an initial state of a CRN or DSD—a question that must be solved when verify-
ing the correctness of a CRN or DSD—is PSPACE-hard. We show that the problem
is PSPACE-complete for restricted classes of CRNs and DSDs. Our results also gives
strong evidence that predicting low energy barrier folding pathways for multiple inter-
acting nucleic acid strands is PSPACE-complete.

In section 2, we give definitions and the necessary background information for our
results. In section 3 we develop our main result by showing how a PSPACE-complete
problem can be solved by a logically reversible CRN. In section 4 we show how our
CRN can be realized as an energy efficient DSD. In section 5 we demonstrate a num-
ber of consequence of our result and resolve the complexity of a number of related
problems. We summarize our results in section 6.

2 Preliminaries

A chemical reaction equation details a process whereby certain molecule types can be
consumed—the reactants—and others produced—the products—within some reaction
volume. For simplicity, we assume that the reaction volume is a closed system. A reac-
tion may also require the presence of catalyst molecules of certain types. We refer to all
three categories, generically, as signals. For example, the reaction A C→ B consumes a
signal of type A and produces a signal of type B in the presence of the catalyst signal

C. This reaction is irreversible; however, the reaction A
C

 B is reversible meaning

that a signal of type A can also be produced by consuming a signal of type B in the
presence of the catalyst signal C. A chemical reaction network (CRN) is a set of chem-
ical reactions, in addition to a multiset of signals present within the reaction volume,

prior to any reaction occurring, called the initial set. A CRN is proper if every reaction
consumes the same number of signals that it produces. The state of a CRN is the cur-
rent composition of signals within the reaction volume. The CRN can move from some
current state, S, to a new state, S′, by applying any reaction requiring reactants and cat-
alysts present in S. In general, many reactions may be applicable for the current state.
We define a computation of a CRN C, as a trace of the states from C’s initial state Sinit

to some final target state Send. We say that C is a logically reversible CRN if the com-
putation forms a chain from Sinit to Send such that in any non-terminal state along the
chain, exactly two reactions are possible: a reversal of the previous reaction, and one
other reaction. In the CRNs considered in this work, we assume applicable reactions
are selected with equal probability and with the same rate in the forward and reverse
direction. Thus, a computation of length n for a logically reversible CRN will perform
an unbiased random walk along the state chain and is expected to reach the end state
within O(n2) steps [5].

A B

Fig. 1: A gate implementing the reaction A
 B via toehold-mediated branch migration.

A DNA strand displacement (DSD) system is an implementation of a CRN, consist-
ing of single stranded signals and double stranded gates that facilitate reactions. Strands
in the system are composed of two types of domains: short toehold domains, and long
domains. Toehold domains bind reversibly, and long domains irreversibly, to comple-
mentary regions on gates. The fundamental operation in a DSD is toehold mediated
strand displacement, whereby the toehold of a signal strand can bind to an unbound
complementary toehold domain of a gate and, if the adjacent long domain is comple-
mentary, it can displace a currently bound signal strand of the same length (see Fig. 1).

Consider an example DSD where the initial state consists of two copies of the A
signal, but only one copy of the gate T is available in the reaction volume. It would be
impossible to produce two copies of signalB. To properly account for gates at the CRN
level of abstraction, we augment chemical reactions with unique tags. For example, the
reaction of Fig. 1 can be described by the tagged reactionA+T
 T ′+B, denoting that
a gate of type T is required to consume signal A, produce signal B, and results in the
gate being reversed—that is, the same gate can only be used next to consume aB signal,
produce an A signal, and reset itself to the forward orientation. We define the space
complexity of a trace for a tagged CRN as the sum of two quantities: the maximum
signal set size of any state in the trace, and the number of tags required to complete the
computation. Intuitively, this corresponds to the required size of the reaction volume. In
the remainder of the paper we only consider tagged CRNs; however, for simplicity we
omit the actual tag signals in the reaction equations. We observe the following obvious,
but useful property of proper CRNs.

Lemma 1. A proper CRN with initial set S will always have |S| free signals during a
computation.

CRNs can be implemented by DSDs in a number of ways. We will leverage one
such implementation in our results, which relies on the assumption that certain signals
only occur as a single copy within the reaction volume. The use of a single copy mutex
species is used to ensure that a strand displacement cascade which implements any
particular reaction will occur as a transaction and therefore appear atomic. Specifically,
either the entire cascade implementing a reaction will succeed, or it will return to the
state prior to beginning the cascade. Importantly, the mutex molecule is sequestered
during the cascade and therefore another reaction cannot begin.

Theorem 1 (Qian et al., [12], Condon et al., [4]). Any logically reversible tagged CRN
requiring O(s) space can be simulated by a DSD in O(poly(s)) space that ensures
reactions appear atomic and occur in the same logical reaction sequence.

Finally, we formally define three problems we reason about in this work.

CRN REACHABILITY (CRNR)
Instance: A chemical reaction network with initial state Sinit and an arbitrary state S′.
Question: Is S′ reachable from Sinit?

DSD REACHABILITY (DSDR)
Instance: A DNA strand displacement system with initial state Sinit and an arbitrary
state S′.
Question: Is S′ reachable from Sinit?

TOTALLY QUANTIFIED 3-SATISFIABILITY (Q3SAT)
Instance: A totally quantified boolean formula ψ of n variables in prenex normal form,
∀xn∃xn−1∀xn−2 . . . Q1x1 φ, where φ is an unquantified boolean formula ofm clauses
in conjunction normal form, each containing a literal for 3 distinct variables.
Question: Is the formula ψ satisfiable?

3 Space efficient CRN simulation of PSPACE

∀x3 ∃x2 ∀x1 (x1 ∨ x2 ∨ x3)∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

T

T

F

F

F

T

T

F

T

T

F

T

T

T

F

T

T

T

F

T

T

F

F

T

F

F

T

T

T

Fig. 2: Solving a Q3SAT instance. Edge labeled paths from root to leaf denote variable assign-
ments. Nodes are satisfied based on quantifier and satisfiability of left and right subtrees.

Our goal is to demonstrate that any problem in PSPACE can be solved by a space
efficient, logically reversible, tagged CRN. To that end, we will show how a CRN with

those properties can be constructed to solve any arbitrary instance of the Q3SAT prob-
lem. We present our solution in three logical parts. In section 3.1, we demonstrate how
to construct a CRN for verifying if a 3SAT formula is satisfied. In section 3.2, we present
an elegant solution for traversing a perfect binary tree in post-order that is both space
efficient and logically reversible. In section 3.3, we demonstrate how the two CRNs can
be integrated and then modified to capture the semantics of strictly alternating variable
quantifiers in the Q3SAT instance.

To understand the intuition behind our construction, consider that a perfect binary
tree of height n, with each level of the tree representing a variable, has 2n leaves, each
with a unique path from the root specifying a unique variable assignment. A tree defined
in this manner can be used to express the semantics of strictly alternating quantifiers
in the Q3SAT instance (see Fig. 2). Leaf nodes are considered satisfied if and only if
the current variable assignment satisfies the unquantified 3SAT formula of the Q3SAT
instance. Internal nodes can be used to propagate satisfiability of a partially solved in-
stance up the tree. For example, if an internal node represents a universally quantified
variable, then it is marked as true if and only if both of its subtrees are satisfied. Simi-
larly, a node representing an existentially quantified variable is marked false if and only
if both subtrees are not satisfied. In this straightforward manner, the overall quantified
formula can be determined to be satisfied or not, once the root is marked. Since the
satisfiability of a node can immediately be determined once that of its two subtrees is
known, we perform a post-order traversal of the tree. Furthermore, we exploit the fact
that once the satisfiability of a subtree is marked, the satisfiability of its descendants
is irrelevant and can be forgotten. This allows us to smartly reuse space in our tree
traversal procedure.

3.1 Verifying a 3SAT instance variable assignment

We first demonstrate how the formula φ can be verified as satisfied or unsatisfied for
a particular variable assignment. A variable assignment ensures exactly one signal for
each variable xi is present: xTi for a true assignment, and xFi otherwise. We first in-
troduce the necessary reactions to verify an individual clause and demonstrate how the
overall formula can be determined true or false.

Verifying an arbitrary clause. Recall that in a 3SAT instance, each clause consists
of exactly three literals, each for a distinct variable. As such, there are exactly eight
possible truth assignments and we create a reversible reaction for each. The reactions
for verifying the ith clause, containing literals for variables xj , xk and xl are given in
Fig. 3 (left). When the clause signal molecule C?

i is present, exactly one of the eight
reactions can be applied, specified by the current variable assignment. The variable
signals act as catalysts and the C?

i signal is consumed producing either a CT
i signal if

the clause is satisfied, or CF
i otherwise.

For example, suppose Ci represents the following clause: (xj ∨ ¬xk ∨ xl). The re-
action having catalysts xFj , xTk , and xFl will produce CF

i . The other seven reactions will
produceCT

i . Note that for a particular variable assignment, only one reaction will apply
in both the forward and reverse direction, ensuring the process is logically reversible.

(1) C?
i

xF
j +xF

k +xF
l

 C
[F/T]
i , 1≤i≤m

C?
i

xF
j +xF

k +xT
l

 C
[F/T]
i , 1≤i≤m

...

C?
i

xT
j +xT

k +xT
l

 C
[F/T]
i , 1≤i≤m

(2) φ?
 C?
1

(3) CT
i
 C?

i+1 , 1≤i<m

(4) H?
i + CF

i
 HX
i + φF , 1≤i≤m

(5) CT
m
 φT

Fig. 3: (left) Eight reaction equations to verify an arbitrary 3SAT clause Ci for each combina-
tion of variable assignments. The product of the reaction is CT

i for assignments that satisfy the
ith clause, and CF

i otherwise. (right) Reaction equations to verify the overall 3SAT formula φ,
consisting of m clauses.

φ? C?
1 C?

2

HX
1 + φF

· · ·

HX
2 + φF

C?
m φT

HX
m + φF

CT
1

H?
1 CF

1

CT
2

H?
2 CF

2

CT
m−1 CT

m

H?
m CF

m

Fig. 4: Flow control when verifying a formula φ having m clauses.

Verifying the overall formula. The overall process of verifying the formula φ can be
thought of as a process that is initiated by consuming the signal φ? and completes by
producing either the signal φT , if φ is satisfied, or φF otherwise. The variable assign-
ment signals are catalysts, and their values are maintained after the process completes.

For the formula to be true, all clauses must be satisfied. However, any combination
of unsatisfied clauses will result in φ being false. For this reason, care must be taken
that clauses are checked systematically to ensure reversibility. The overall process is
depicted in Fig. 4 and the reactions are given in Fig. 3 (right). The process checks
each clause, in sequence, and if the current clause is unsatisfied then the φF signal
is immediately produced in addition to a history signal denoting the first clause to be
unsatisfied. The sole purpose of the history signal is to ensure the reversibility of the
computation, should the φF signal be produced. Otherwise, all clauses are satisfied,
and thus the signal φT can be produced and is sufficient to ensure the computation is
reversible.

Lemma 2. A 3SAT boolean formula of m clauses over n variables can be verified by a
logically reversible tagged CRN in O(m) reaction steps using Θ(m+ n) space.

Proof. Importantly, we must now establish that the process is logically reversible. We
argue formally by induction on m, the number of clauses of the 3SAT formula φ. In
addition to the clause history domains, we assume initially that the signal φ? is present
and exactly one signal for each variable xi denoting its truth assignment—xTi or xFi .
Consider the base case when m = 1. Given the initial set of signals, only reaction (2)
can be applied which produces C?

1 . At this point, exactly two reactions can occur: a
reversal of the previous reaction, or the clause checking reaction that consumes C?

1

and corresponds to the current variable assignment of the three variables in clause 1.
If clause 1 is satisfied (not satisfied), CT

1 (CF
1) is produced. In both cases, other than

reversing the previous reaction, only one reaction is possible. If the clause is satisfied,
φT is next produced ending the process. If the clause is unsatisfied, φF andHX

1 are next
produced, ending the process. Note that in both cases, only the reverse of the previous
reaction could be applied next. Thus, the process is logically reversible. Suppose the
same holds for m−1 clauses and consider the case when φ has m clauses. We consider
two cases:

Case 1 (The first m− 1 clauses of φ are satisfied). By the inductive hypothesis, signal
C?

m will eventually be produced, in a logically reversible manner. As before, other than
the reverse of the previous reaction, only one clause reaction will be applicable and will
produce either CT

m or CF
m. If CT

m is produced, the reverse of the previous reaction can
be applied, or φT is next produced, ending the process. Similarly, if CF

m was produced,
either the reverse of the previous reaction can be applied, or φF +HX

m is next produced,
ending the process. Note that in either case, only one reaction can be applied next: the
reverse of the last reaction. Thus, the process is logically reversible.

Case 2 (At least one of the first m − 1 clauses of φ are unsatisfied). By the inductive
hypothesis, this case will correctly produce φF and a history signal denoting the first
unsatisfied clause. The new reactions pertaining to clause m are not applicable and thus
inconsequential.

It is easy to see that in the worst case, O(m) reactions steps are required. Finally,
we establish the space claim. The initial set of signals has size Θ(m+ n) as it consists
of the n variable signals, m clause history domains and the signal φ?. The CRN is
proper, therefore by Lemma 1 the number of signals will remain the same throughout
the computation. The CRN has Θ(m) reactions since there are a constant number for
each of them clauses and the overall formula verification. Since each reaction is applied
at most once when verifying a formula, one tag per reaction is sufficient, therefore
establishing the Θ(m+ n) space bound. ut

3.2 A space efficient post-order tree traversal

Next we demonstrate how to perform a post-order traversal of a perfect binary tree
in a space-efficient manner. Importantly, the procedure must be logically reversible.
The intuition is captured in Fig. 5. For any node with a left and right child, once the
descendants of the left child have been recursively traversed (Fig. 5 (a)), the left child
can be marked (Fig. 5 (b)). Any information stored in those descendant nodes is no
longer required and the whole traversal of that subtree can be reversed (Fig. 5 (c)), the
traversal can move to the right child (Fig. 5 (d)), the right subtree can be recursively
traversed (Fig. 5 (e)), and finally the right child marked (Fig. 5 (f)).

Lemma 3. Given a perfect binary tree of height h, all descendants of the root can be
traversed in post-order, by a logically reversible tagged CRN, in Θ(3h) reaction steps,
using Θ(h) space.

(6) l?i
xF
i +r?i+rXj

 lXi , 1≤i≤h
1≤j<i

(a) recursively solve
tree rooted at li

(b) mark li

(7) xFi
lXi +r?i+l?j

 xTi , 1≤i≤h
1≤j<i

(c) reverse all steps
from (a)

(d) move to right sub-
tree

(8) r?i
r?i+1+lXi +xT

i +rXj

 rXi , 1≤i≤h

1≤j<i

(e) recursively solve
tree rooted at ri

(f) mark ri

Fig. 5: A logically reversible post-order traversal of all descendants of the root of a height h
perfect binary tree.

Proof. As each reaction of the CRN is reversible, after every reaction step, the reverse
of the previous reaction can always be applied. To demonstrate the CRN is logically
reversible, we need to demonstrate that at any point there is at most one other reaction
that can be applied. We will further establish the invariant that each reaction strictly
alternates in being applied in the forward and reverse direction, ensuring at most one
tag is required for each type of reaction. We will argue by structural induction. Let sh
denote the number of reaction steps required for a tree of height h.

Consider the base case when h = 1 with initial set
{
r?2, x

F
1 , l

?
1, r

?
1

}
. Reaction (8)

cannot be applied until the signal xT1 is present which is produced by reaction (7).
Similarly, reaction (7) cannot be applied until signal lX1 is present. Thus, it is easy
to see that reaction (6) must first be applied—marking the left subtree—followed by
reaction (7)—moving to the right subtree—and finally reaction (8)—marking the right
subtree and completing the traversal in s1 = 3 reaction steps. Each reaction was only
applied once, in the forward direction, so the strictly alternating invariant is trivially
maintained.

Suppose the traversal completes in sh−1 reactions steps, is logically reversible, and
the strictly alternating invariant is maintained for a tree of height h − 1. Consider a
tree of height h, having initial set S = {r?h+1} ∪

⋃
1≤i≤h

{
xFi , l

?
i , r

?
i

}
. Before reac-

tion (6) (and thus reaction (7) and (8)) can be applied, the signals
⋃

1≤j<h

{
rXj
}

must
be present. As the left subtree is selected, the signal r?h is present, and by the induc-
tion hypothesis, the only available action is to produce these signals in sh−1 logically
reversible reaction steps, that maintain the strictly alternating invariant, by traversing
the subtree rooted at lh (see Fig. 5 (a)). Importantly, the signals

⋃
1≤j<h−1

{
r?j
}

are
now absent and therefore no reaction affecting levels 1, . . . , h−2 can occur. Other than
reversing the previous reaction, which produced signal rXh−1, only reaction (6) can be

applied for level h, thus producing lXh (see Fig. 5 (b)). Next, observe that reaction (7)
cannot be applied until the signals

⋃
1≤j<h

{
l?j
}

are present. Other than reversing the
previous reaction, only a reversal of all sh−1 reaction steps that traversed the left subtree
can be applied next, yielding the required signals to next apply reaction (7), producing
signal xTh , denoting a move to the right subtree (see Fig. 5 (c) and (d)).

Note that the reversal of the left subtree will maintain the strictly alternating invari-
ant as it ensures all lower level reactions have been reset to their initial state, in order to
be used again in the right subtree. Similar to reaction (6), reaction (8) cannot be applied
at level h until the right subtree is traversed in sh−1 logically reversible reaction steps
(see Fig. 5 (e)). Other than reversing the previous reaction, only reaction (8) can next be
applied at level h producing the signal rXh and ensuring no further reactions on lower
levels can occur. The traversal is complete and no reaction, other than the reverse of the
previous, can occur. Thus, the overall traversal is logically reversible, and is clearly in
post-order. As the strictly alternating invariant was maintained for all lower level reac-
tions, and all reactions at level h have been applied for the first time, and only once, the
invariant is maintained for a tree of height h.

Exactly 3 reactions occurred at level h, and 3sh−1 reactions were required for the
two traversals and one reversal of the height h − 1 subtrees, giving us the recurrence
sh = 3sh−1+3. Solving sh with s1 = 3 gives us the closed form expression 3

2 (3
h−1),

establishing the claimed Θ(3h) reaction steps.
Finally, consider the space claim. As we have shown that reactions strictly alternate

being applied in the forwards and reverse direction, at most one tag for each of the
Θ(h) reactions is sufficient. Consider that the initial set for a tree of height h is S =
{r?h+1} ∪

⋃
1≤i≤h

{
xFi , l

?
i , r

?
i

}
and therefore |S| = 3h + 1. Since the CRN is proper,

we immediately establish the space claim by Lemma 1. ut

3.3 Solving a Q3SAT instance

We now have the means to verify if a variable assignment satisfies a 3SAT formula φ.
We can also traverse a perfect binary tree in post-order, and in the process enumerate
all possible variable assignments for φ. What remains is to combine these processes
together in order to determine if a Q3SAT instance can be satisfied. We approach the
integration in two parts. First, we will demonstrate how the formula verification pro-
cess can be triggered immediately prior to the tree-traversal marking a leaf node and
how the verification reactions can be entirely reversed, prior to the next time the verifi-
cation procedure must run. This effectively demonstrates how any problem in NP can
be solved by a logically reversible CRN in polynomial space, if we specify the end of
computation as the presence of the signal φT , or the signal φF in conjunction with the
signals for the final variable assignment to be enumerated. Finally, we demonstrate how
the tree traversal reactions of Fig. 5 can be augmented in order to capture the semantics
of alternating universal and existential quantifiers, thus demonstrating how any problem
in PSPACE can be solved in polynomial space by a logically reversible CRN.

Integrating formula verification and tree traversal. Recall the sequence of logical
steps in traversing level 1 of the tree, i.e., the leaves: (1) mark left, (2) move right, (3)
mark right. We augment the reactions for level 1 to force the following sequence: (1a)

verify φ, (1b) mark left, (2a) reverse (1a), (2b) move right, (3a) verify φ, (3b) mark
right. This new sequence ensures two invariants: (i) the current variable assignment is
verified prior to marking the current leaf, and (ii) the verification procedure is fully
reversed prior to the next verification.

The augmented reactions are given in Fig. 6. Both reactions marking a leaf have
been split into two variants, each ensuring the verification procedure has completed by
requiring as a catalyst one of the two possible outcomes of the verification process.
In addition, we add new signals to record whether or not the variable assignment for
a particular leaf is a satisfying assignment for φ. These signals will be used later to
propagate satisfiability up the tree, once quantifiers have been integrated. Note that the
reaction to move to the right leaf now requires the signal φ? as a catalyst. This forces
all steps performed in the previous verification to reverse. After moving to the right
leaf, and thus swapping the value of variable x1, the verification process can again run
immediately prior to marking the right leaf. Importantly, we want to ensure that the
verification procedure is completely integrated into the leaf level reactions and cannot
perform any reactions while the traversal is marking higher level nodes. This is easily
accomplished by augmenting reactions (2)-(5) to require r?2 as a catalyst. Note that the
augmented variants of the tree traversal reactions are also fully distinguishable by their
catalysts (and products), thus ensuring the process is logically reversible.

L?
1+l

?
1

···

 lX1 +LF

1 L?
1+l

?
1

···

 lX1 +LT

1

xF1
···

 xT1

R?
1+r

?
1

···

 rX1 +RF

1 R?
1+r

?
1

···

 rX1 +RT

1

move right

mark right

mark left

φ? φF φT

New Catalysts

Fig. 6: Integrating the 3SAT verification procedure into the leaf level reactions of the tree traversal
procedure. Two reaction variants are created for marking leaf nodes as either satisfied or unsat-
isfied based on the result of the verification procedure. The move right reaction requires φ? as
a catalyst, thus ensuring the verification procedure is reversed prior to the next verification step.
Existing catalysts omitted for space.

Integrating quantifiers into the tree traversal. Integrating quantifiers in non-leaf
levels of the tree is relatively straightforward. Recall that the levels of the tree strictly
alternate between universal and existential quantification. For each level, we create four
variants of the correct quantifier for both the left and right node marking reactions to
additionally produce a signal indicating if the current subtree is satisfied. The reaction
variants for marking a left node are given in Fig. 7. These reactions require as catalysts
the signals indicating if the left and right subtree of the current node is satisfied and
therefore four variants are sufficient to consider all cases, for each type of quantifier. As
with the leaf level reactions, the augmented reaction variants can be fully distinguished
by their catalysts ensuring the computation remains logically reversible, and the correct
reactions are reversed.

L?
i+l

?
i

···

 lXi +LF

i L?
i+l

?
i

···

 lXi +LF

i L?
i+l

?
i

···

 lXi +LF

i L?
i+l

?
i

···

 lXi +LT

i

L?
i+l

?
i

···

 lXi +LF

i L?
i+l

?
i

···

 lXi +LT

i L?
i+l

?
i

···

 lXi +LT

i L?
i+l

?
i

···

 lXi +LT

i

∀ levels

∃ levels

LF
i−1 +RF

i−1 LF
i−1 +RT

i−1 LT
i−1 +RF

i−1 LT
i−1 +RT

i−1

New Catalysts

Fig. 7: Integrating quantifiers to non-leaf levels of the tree traversal. For both universal and exis-
tential levels, four variants of the left node reactions are created to process the four combinations
of left and right subtree satisfiability. The integration is identical for right node reactions. Existing
catalysts omitted for space.

Ending the computation. Once both subtrees of the root have been solved the output
signal can be produced based on the satisfiability of the subtrees and on the quantifier
imposed on the root level variable xn. The reaction equations for the universal quantifier
are shown in Fig. 8. Modifying the reactions for an existential quantifier is straightfor-
ward.

Recall that reactions at level n − 1 cannot proceed unless the signal r?n is present.
We could have the reaction producing the solution signal also consume r?n. This would
end the computation chain as only reversing the previous reaction would be possible
next. However, for reasons we will make clear in the following section, the signal r?n
is never altered and therefore after the solution signal is produced, the entirety of the
tree traversal steps will be reversed before reaching the end of the computation chain.
The entire configuration of the CRN system will appear identical to the initial configu-
ration, with the exception that the output has been written (i.e., the ψ? signal has been
consumed and been replaced by ψF or ψT). See Fig. 9 for a schematic of the logically
reversible computation chain.

(9) ψ?
LF

n−1+RF
n−1+rXj

 ψF , 1≤j<n

ψ?
LF

n−1+RT
n−1+rXj

 ψF , 1≤j<n

ψ?
LT

n−1+RF
n−1+rXj

 ψF , 1≤j<n

ψ?
LT

n−1+RT
n−1+rXj

 ψT , 1≤j<n

(a) visit descendants

(b) produce output

Fig. 8: After both subtrees of the root have been solved a solution can be determined based on
the quantifier of the root level. Equations are shown assuming the root variable xn is universally
quantified.

Theorem 2. Any arbitrary instance of Q3SAT with n variables and m clauses can be
solved by a logically reversible tagged CRN inO(m 3n) reaction steps usingΘ(m+n)
space.

Proof. Let ψ be the totally quantified boolean formula of the instance and φ be the un-
quantified 3SAT formula. By Lemma 2 a set of Θ(m) reactions can be created to verify
if φ is satisfied, or not, for a particular variable assignment. By Lemma 3, a set of Θ(n)
reactions can be created to traverse the height n tree representing all possible assign-
ments of the n variables. Furthermore, the above modifications demonstrate how these
two processes can be integrated into one logically reversible computation chain, and
how quantifiers can be added to the non-leaf levels to determine if there is a satisfying
solution for ψ by propagating satisfiability of subtrees up to higher levels. Importantly,
the modifications only increase the number of reactions by a constant factor and are
designed to maintain the property that the computation is logically reversible. Consider
that the number of reaction steps acting on a tree node, prior to reaching the root, has
not increased. However, prior to marking every leaf in the traversal, the verification pro-
cedure is run for the current variable assignment (and reversed in between). Therefore,
by Lemmas 2 and 3, the root of the height n tree can be reached, and a solution signal
produced, within O(m 3n) reaction steps. As forcing the entire tree traversal to reverse
prior to the end of computation only doubles the number of reaction steps, the claim on
computation length is established.

Next, consider the space required of the combined CRN. The modified verifica-
tion procedure requires the following initial set, where T3sat is the set of required
tags: S3sat =

⋃
1≤i≤m

{
C?

i , H
?
i

}
∪
{
φ?, r?2

}
∪ T3sat. The augmented tree traversal

procedure requires the following initial set, where Ttree is the set of required tags:
Stree =

⋃
1≤i<n

{
l?i , x

?
i , r

?
i , L

?
i , R

?
i

}
∪
{
r?n, φ

?, ψ?
}
∪ Ttree. The space required for

the combined CRN is therefore |Sq3sat| = |Stree ∪ S3sat|. As the combined CRN
maintains the property that reactions strictly alternate being applied in the forward and
reverse direction, then one tag for each of the Θ(m + n) reactions is sufficient and
|Stree| ∈ Θ(m+ n). ut

As Q3SAT is a complete problem for PSPACE [11], we immediately have the following.

Corollary 1. Any problem in PSPACE can be solved by a logically reversible tagged
CRN using polynomial space.

4 Space and energy efficient DSD simulation of PSPACE

The remarkable consequence that Bennett’s work demonstrates is that energy consump-
tion is not necessarily an intrinsic cost of computation. In particular, if the computation
is logically reversible, there is no theoretical energy expenditure. However, there must
be a reasonable probability the actual solution can be observed. This can be problematic
in a logically reversible computation which is free to immediately reverse once reach-
ing a solution state. Qian et al., [12] solved this problem by using fuel to provide a
slight bias for remaining in a solution state once the computation completes. However,
in our result, since reactions must be reused efficiently in both directions to maintain a
polynomial space bound, they cannot be biased in general.

To overcome this, we have designed our reactions that produce an output signal
to ensure the next logical step in the computation is to reverse the tree traversal. This
effectively doubles the length of the logically reversible computation chain and estab-
lished the important property that the output signal can be observed in strictly more than

half of the states (see Fig. 9). Notice that this was also the case for Bennett’s original
reversible Turing machine implementation1. As the computation performs an unbiased
random walk along the logically reversible computation state space, the steady state
probability of observing the output signal is p > 0.5. This probability can be further
increased in a number of ways. For instance, at the DSD level, we could design the
gates which implement the reactions producing the output signal to have a slight bias in
the forward direction, by manipulating relative toehold lengths, effectively biasing our
overall computation towards the second half of the chain shown in Fig. 9 [17]. As this
reaction is only performed once, the gate implementing the reaction is not reused and
therefore, the bias is not problematic for the overall computation to complete.

· · · · · ·

reach root and produce answer

traversing descendants of root

t states

reversing traversal

t+ 1 states

Fig. 9: The logically reversible computation chain of the Q3SAT CRN. In more than half of the
states, the output signal is present (shown shaded).

Combining Theorem 1 and Corollary 1 we have the following.

Theorem 3. Any problem in PSPACE can be solved by a space and energy efficient
DSD.

We note that the CRN and DSD description given here is a non-uniform model of
computation. Specifically, the CRN description is dependent on, and encodes, a par-
ticular problem instance. Therefore, different problem instances will result in different
CRN descriptions and thus a different DSD implementation. Particularly at the DSD
level, where synthesizing strands and gates is challenging, it would be desirable if only
the input strands differed between unique instances. This may be achievable by con-
structing a more general quantified boolean formula that is within a polynomial size of
the original encoding described here. In such a construction, part of the input would
describe which clauses are active for the particular problem instance. The generalized
formula would be for a fixed number n of variables and could be used to solve any
instance having at most n variables. We will explore the details of such a construction
in the full version of this manuscript.

5 Complexity of verifying CRNs and DSDs

Next we show there exists a polynomial time and space reduction from an arbitrary
Q3SAT instance I into an instance I ′ of the CRN reachability problem (Q3SAT ≤p

CRNR), such that I can be solved if and only if I ′ can be solved.
1 The forward traversal of the tree, production of the output signal, and reversal of the traversal

are analogous to the compute, copy output, and retrace phases of Bennett’s original reversible
Turing machine simulation [1].

Theorem 4. The reachability problem for CRNs (CRNR) is PSPACE-hard.

Proof. Given an arbitrary Q3SAT instance, construct the CRN of Theorem 2 which is
of polynomial size and can therefore be constructed in polynomial time and space. Ask
the question of whether the state Sinit/{ψ?} ∪ {ψT } can be reached from Sinit, where
Sinit is the initial state of the CRN. ut

By Lemma 1 it is easy to see the reachability problem for proper CRNs is in PSPACE.
Whether other forms of CRNs are in PSPACE is dependent on their definition and
how the required space to complete a computation is accounted for. Any tagged CRN
accounts for the necessary fuel as part of the size of the reaction volume and therefore,
by this interpretation, is in PSPACE.

Corollary 2. The reachability problem for proper/tagged CRNs is PSPACE-complete.

We note that other results are known for unrestricted CRNs which are not studied
here. (Un-tagged) reversible CRNs correspond to reversible Petri nets where the reacha-
bility problem is EXPSPACE-complete [3]. CRN reachability has also been studied for
the probabilistic case [16, 18] and nondeterministic case [18] and the connection with
Petri nets was also explored [18].

By Theorem 1 and Theorem 4 we immediately have the following analogous results
for DSDs.

Corollary 3. The reachability problem for DSDs (DSDR) is PSPACE-hard.

Clearly the reachability problem is PSPACE-complete for the set of DSDs imple-
menting a proper CRN. When fuel molecules are considered part of the space usage,
as would be the case for closed volumes that are studied here, then the reachability
problem is PSPACE-complete. We also conjecture that a DSD instance created by the
above chain of reductions (i.e., Q3SAT ≤p CRNR ≤p DSDR), can be adapted to show
the minimum energy barrier folding pathway prediction problem is PSPACE-complete.
The challenge in achieving this result is to properly consider the possibility of blunt-end
displacements, which are generally assumed to not occur when reasoning about DSD
systems. We will explore the details of the proof for the full version of the manuscript.

Conjecture 1. The minimum energy barrier pseudoknot-free folding pathway problem
for multiple interacting nucleic acid strands is PSPACE-complete.

6 Conclusions

In this work, we asked the question: can space and energy efficient computation be
realized by chemical reaction networks (CRN) and DNA strand displacement systems
(DSD)? We have shown this can be achieved in general by giving a logically reversible
space efficient CRN implementation capable of solving any problem in PSPACE—the
class of all problems solvable in polynomial space. Furthermore, our CRN can be re-
alized by a space and energy efficient DSD. In addition to further characterizing the
computational power of standard molecular programming systems, our result has a
number of important consequences. For instance, we show that even determining if

a certain state is reachable in a CRN, such as a desirable or undesirable configuration,
is PSPACE-hard, effectively demonstrating the intrinsic complexity of model checking
and formal verification of chemical reaction networks. We further show the problem is
PSPACE-complete for a restricted class of CRNs. The results also hold at the DSD level
and give strong evidence of the hardness at the sequence level for the related problem
of predicting minimum energy barrier folding pathways between two configurations of
multiple interacting nucleic acid strands.

References

1. C.H. Bennett. Logical reversibility of computation. IBM journal of Research and Develop-
ment, 17(6):525–532, 1973.

2. C.H. Bennett. Time/space trade-offs for reversible computation. SIAM Journal on Comput-
ing, 18(4):766–776, 1989.

3. E. Cardoza, R. Lipton, and A.R. Meyer. Exponential space complete problems for Petri
nets and commutative semigroups. In Proceedings of the eighth annual ACM symposium on
Theory of computing, pages 50–54. ACM, 1976.

4. A. Condon, A. Hu, J. Maňuch, and C. Thachuk. Less haste, less waste: on recycling and its
limits in strand displacement systems. DNA Computing and Molecular Programming, pages
84–99, 2011.

5. W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 1. Wiley, 1971.
6. M. Lakin and A. Phillips. Modelling, simulating and verifying Turing-powerful strand dis-

placement systems. DNA Computing and Molecular Programming, pages 130–144, 2011.
7. M.R. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and A. Phillips. Design and analysis of

DNA strand displacement devices using probabilistic model checking. Journal of The Royal
Society Interface, 2012.

8. R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal of
research and development, 5(3):183–191, 1961.

9. K.J. Lange, P. McKenzie, and A. Tapp. Reversible space equals deterministic space. Journal
of Computer Systems Science, 60(2):354–367, 2000.

10. L.Cardelli. Two-domain DNA strand displacement. In Proc. of Developments in Computa-
tional Models (DCM 2010), volume 26 of Electronic Proceedings in Theoretical Computer
Science, pages 47–61, 2010.

11. Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

12. L. Qian, D. Soloveichik, and E. Winfree. Efficient Turing-universal computation with DNA
polymers. In Proceedings of the Sixteenth Annual Conference on DNA Computing and
Molecular Programming, pages 123–140, 2011.

13. L. Qian, E. Winfree, and J. Bruck. Neural network computation with DNA strand displace-
ment cascades. Nature, 475(7356):368–372, 2011.

14. G. Seelig, D. Soloveichik, D.Y. Zhang, and E. Winfree. Enzyme-free nucleic acid logic
circuits. Science, 314(5805):1585–1588, 2006.

15. J.-S. Shin and N.A. Pierce. A synthetic DNA walker for molecular transport. J Am Chem
Soc, 126:10834–10835, 2004.

16. D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Computation with finite stochastic
chemical reaction networks. Natural Computing, 7(4):615–633, 2008.

17. Erik Winfree. Personal communication, 2012.
18. G. Zavattaro and L. Cardelli. Termination problems in chemical kinetics. In Proceedings of

the 19th International conference on Concurrency Theory, pages 477–491, 2008.

