Parallel Implementation of Bor livka’s Minimum Spanning Tree Algorithm *

Sun Chung

Anne Condon

Computer Sciences Department
University of Wisconsin
1210 West Dayton Street
Madison, WI 53706 USA

Abstract

We study parallel algorithms for the minimum span-
ning tree problem, based on the sequential algorithm of
Borlivka. The target architectures for our algorithm are
asynchronous, distributed-memory machines.

Analysis of our parallel algorithm, on a simple model
that is reminiscent of the LogP model, shows that in prin-
ciple a speedup proportional to the number of processors
can be achieved, but that communication costs can be sig-
nificant. To reduce these costs, we develop a new random-
ized linear work pointer jumping scheme that performs bet-
ter than previous linear work algorithms. We also consider
empirically the effects of data imbalance on the running
time. For the graphs used in our experiments, load balanc-
ing schemes result in littleimprovement in running times.

Our implementations on spar se graphs with 64,000 ver-
tices on Thinking Machine's CM-5 achieve a speedup factor
of about 4 on 16 processors. On this environment, packag-
ing of messages turns out to be the most effective way to re-
duce communication costs.

1. Introduction

A dominant emerging parallel architecture consists of a
collection of fast processors, connected by a robust com-
munication network [7, 9, 12, 13, 14]. Properties of this
type of architecture include a distributed memory, parti-
tioned among processors whose i nterprocessor communi ca-
tion cost israther high compared with the computation cost.

For thisarchitecture, we describe our experience with de-
sign and implementation of parallel algorithmsfor the min-
imum spanning tree (MST) problem: Given a connected,

*Supported in part by NSF grant number CCR-9257241 and by match-
ing awards from Thinking Machines Corporation and Digital Systems
Corporation. E-mail addresses of the authors are: sunc@cs.wisc.edu,
condon@cs.wisc.edu.

undirected graph G with n vertices and m weighted edges,
find a spanning tree of minimum weight. We are interested
in the case that the number of processors p ismuch lessthan
the size of the graph, and the graph is distributed among the
processors. Our agorithms are based on the classica se-
quentia algorithm of Borlivka[4]. Using a simple perfor-
mance model, together with measurements of implementa
tions on Thinking Machine's CM-5, we analyze and com-
pare aternative implementations.

Briefly, our conclusions are as follows. In principle, a
speedup proportional to p can beachieved, but asimpleanal -
ysis pointsto two primary sources of dowdown, in addition
to the penalty for communication (Section 2). One arisesin
the use of pointer jumping, which is less efficient than the
sequentia technique of depth first search, and is very com-
munication intensive. The other is due to imbalance in the
distribution of data (and hence work) among processors. To
addressthefirst problem, we devel op anew randomized lin-
ear work pointer jumping scheme that performs better than
previouslinear work algorithmson lists (Section 3). Our al-
gorithmis similar to the list ranking algorithms of Vishkin
[15] and Cole and Vishkin [6], and shows how an idea de-
veloped for the PRAM model can be adapted to work effec-
tively in practice. To address the second problem, since a
precise analysis of the degree of imbalance of work seems
difficult, we consider empirically the effects of data imbal-
ance (Section 4). For the graphs used in our experiments,
load balancing schemes result in little improvement in run-
ning times.

First, we describe Borlivka's algorithm and our paralléel
mode!.

Boruvka’'s algorithm: This agorithm, aso known as
Sollin’s algorithm, constructs a spanning tree in iterations
composed of the following steps (organized here to corre-
spond to the phases of our parallel implementation).

Step 1 (chooselightest) : Each vertex selects the edge with the
lightest weight incident on it. Each of the connected components

thus created has one cycle of size two between two vertices that
each selects the same edge. Of this pair, the one with the smaller
number is designated as the root of the component and the cycleis
removed. The component is then atree.

Step 2 (find root) : Each vertex identifies the root of thetreeto
which it belongs.

Step 3 (rename vertices) : In the edgellists, each vertex is re-
named with the name of the root of the component to which it be-
longs.

Step 4 (merge edgelists) : Edgelists which belong to the same
component aremerged into the edgelist of theroot. In other words,
each connected component shrinksinto a single vertex.

Step 5 (clean up) : Now the edge lists may have self loops and
multiple edges. All self loops are removed. Multiple edges are re-
moved such that only the lightest edge remains between a pair of
vertices.

The graph remaining after the ith iteration is the input
to the (i + 1)st iteration, unless it has just one vertex, in
which case the agorithm halts. The output spanning treeis
the union of the set of edges selected in step 1, taken over
all iterations. Using standard techniques (see [8]) the ago-
rithm can be implemented so that an iteration in which the
graph has n vertices and m edgestakes O(n + m) sequen-
tial time. Furthermore, the number of vertices of the graph
atthe (i 4 1)st iterationisat most half of the number of ver-
tices at the ith iteration. Hence, the number of iterationsis
at most log, n, yielding atotal runningtime of O(mlogn).

Paralld modd: We assume a distributed memory
model, in which processors communicate using messages.
However, our moddl could easily be adapted to other dis-
tributed memory machines such as the Cray T3D and to
shared memory abstractions that are built on top of dis-
tributed memory machines, such as the Split-C language,
where the distinction between local versus non-local datais
retained. The machine parameters that we will use are: p,
thenumber of processors, ¢, thetimefor initiatingtransmis-
sion of a message, and ¢,,,, the transmission time per word.
Typicaly, wecan expect that ¢ ; can be much greater thant,, ;
on the CM-5 message passing system using CMMD opera-
tions,t; ~ 80—300us,andt,, ~ 1—3us. Thereissynchro-
nization cost involvedin each synchronized step of aparallel
algorithm, but we will ignoreit in our model because in our
experiments, the cost is minima in the algorithms that we
study.

Background and related work: For ahistorical survey
of the classical MST agorithms and their variants, see [8]
and [11]. Knuth [10] and Moret and Shapiro [11] present
empirical assessments of sequential MST algorithms. The
work of Barr et al. [3] istheonly empirical study of paral-
lel implementation of MST algorithms which we found in
the literature that is related to ours. For further discussion
of related work on parallel modelsand graph al gorithms, the

reader isreferred to the full version of this paper [5].

2. A parallel Borlvka'salgorithm

We now describe a parallel version of each step of
Borlivka's algorithm.

Step 1 (chooselightest): Theedgelist of eachvertexis searched
to find the minimum weight edge from that vertex.

Step 2 (find root): Eachvertex findstheroot of thetreeto which
it belongs using the well known pointer jumping algorithm. The
input R to the algorithm is the set of root vertices, and the input .S
isthe set of non-root vertices.

Smple-Pointer-Jumping-Algorithm(S, R)
repeat until every vertex in S pointsto avertex in R
for each vertex 1 that does not point to
avertex in R do
perform a pointer jump on z

Step 3 (rename vertices): Each processor finds the new name
of all verticeslisted in its edgelists.

Step 4 (merge): The edges of all vertices in a component are
sent to the processor that has the edge list of the root. The edge
lists are then merged by that processor.

Step 5 (clean up): Each processor executesthe sequential algo-
rithm on its own edgelists.

In our implementation of the pointer jumping agorithm
of step 2, processors synchronize at each iteration of the re-
peat 1oop.

2.1. Running time

Consider the paralld running time of the first iteration,
in which there are n vertices and m edges. Note that there
is no communication needed in steps 1 and 5. The amount
of work done by a processor in steps 1 and 3islinear in the
number of edges at that processor at the start of theiteration.
Similarly, theamount of work done by aprocessor insteps 4
and 5islinear inthe number of edges at that processor, after
the edge listsare moved in step 3.

If we make some simpl e assumptionsabout thegraph and
itsinitial distribution, we can show that theexpected parallel
time needed to complete steps 1,3,4 and 5 of the first itera-
tionisO((ts +tw)m/p). Supposea so that any vertex (and
itsedgelist) isinitially equally likely to be at any processor.
Then, we can expect that the maximum number of vertices
at a processor is within a constant factor of n/p. Thisfol-
lowsfrom a“ballsand bins’ analysis, where the processors
are the bins and the vertices are the balls. 1t iswell known
that if n balls are thrown randomly into p bins, then the ex-
pected maximum number of balls per binisclose to the av-
erageif n = Q(plogp). If, furthermore, the degrees of the
vertices are small (say, a constant independent of n), and

roughly equal, then theedges are split evenly among the pro-
cessors. Also, we can expect that the communication costs
are split fairly evenly among the processors in steps 3 and
4. In step 3, for example, each processor sends one message
to query the new name of each vertex occurring inits edge
lists. Sincethe degree of the verticesisconstant, the number
of distinct vertices arising in the edge lists of a processor is
linear in the number of edges. Therefore, ©(m/p) queries
are needed per processor.

Usingasimilar argument, we can expect that the commu-
nication workload in step 2 is fairly evenly distributed and
the expected timefor step 2is O((¢, + t.) (nlog n) /p) (for
details, see [5]).

Extendingeven thisheuristicanaysisto further iterations
is difficult, however. Only if the iterations for which the
dataisbadly distributed contribute very littleto the running
time can we hope to prove that the parallel running timeis
O((ts + tw)(mlogn)/p), that is, that a speedup factor of
Q(p) is obtained. One thing we can say is that we can ex-
pect the distribution of verticesto remain fairly evenly bal-
anced in later iterations, as long as the number of vertices
isstill large. Thisis because the location of vertices at the
ith iteration is the same as their location in the initid itera-
tion. However, theedgelistsare typically growinginlength
as the iterations progress, and there is more variance in the
distribution of thelengthsof theedgelists. Wedid someem-
pirical measurements of the edge distributionover time, and
present these in Section 4.3.

3. Parallel algorithmsfor step 2

Theparallel runningtimeof step 2 that uses pointer jump-
ing (O((ts + tw)(nlogn)/p)) is significantly slower than
that of the sequential algorithmwhich useslinear timedepth
first search. We now consider two new algorithmsfor step 2,
which aim at reducing the slowdown duetothet; and log n
factors respectively.

3.1. The packaging algorithm

In this algorithm, at each synchronized substep of step
2, al messages which are transmitted from a processor to
another processor are sent in a single package. Thus, each
processor sends at most p — 1 packages in a synchronized
substep, regardless of how many individua pointer updates
are performed. Therefore, the cost ¢ is charged a most
p times per synchronized substep, whereas in the smple
pointer jumping algorithm it is charged ©(n/p) times (as-
suming balanced communication). Therefore, if p << n/p,
we expect that the packaging scheme will be faster than the
simple pointer jumping scheme. For larger p, however, the
advantage of packaging may be lost.

3.2. A new pointer jumping algorithm

Both deterministic and randomized list ranking algo-
rithms that require only linear work are well known [2, 6,
15]. However, they are not well suited to our applicationbe-
cause they have large hidden constants and require that the
input data, which are rooted trees, be “linearized.”

We devel oped a new pointer jumping scheme, which we
cal the supervertex algorithm. This randomized scheme
can be applied to trees as well aslistsand requires only ex-
pected linear work.

Roughly, in our agorithm, each component is processed
as follows. A randomly chosen subset, SV, of the vertices
called supervertices are selected. Each vertex in S—SV per-
forms the simple pointer jumping agorithm until it points
to a supervertex. At this point, al vertices but the super-
verticesdrop out and the supervertices repeat the same algo-
rithmrecursively (with each vertex again randomly deciding
whether to be a supervertex in the next iteration). Once all
superverticesare pointingto theroot, the remaining vertices
update their pointersin one step so that they too point to the
root. Figure 1 illustrates the execution of this agorithm on
alist.

Level Linked Structure

1 0= 0-=0-0-0-0-=-0--=0—-0

2 O—= O O

Figure 1. Execution of the supervertex algo-
rithm on a list. The first three rows show the
linked structure at the start of the three re-
cursive calls. Vertices in squares are cho-
sen to be supervertices at each of these iter-
ations. The last three rows show the vertices
that point to the root at the end of each recur-
sive call, starting from the last (third) level of
recursion back to the first.

Theinputtothefollowingalgorithmisaset S of vertices,
each with an associated pointer, forming arooted tree. As-
sume that theroot of thetreeisalready identified and points
to itsalf.

Super vertex-Pointer-Jumping-Algorithm(.S)
if |S| >2then
for eachvertex z € S do
with probability 1/2, make = a supervertex
let SV be the set of supervertices, plus the root
execute Smple-Pointer-Jumping-Algorithm(S —SV,SV)

for eachvertex z in SV do

perform one pointer jump on z
comment: at this point the superverticesform
arooted tree

recursively apply the algorithm to SV
comment: at this point, all verticesin SV point
to the root

for eachvertex = in S—SV do

perform a pointer jump on =
comment: at this point, all vertices point
to the root

Itis straightforward to show that the expected work per-
formed by thisalgorithmislinear in the number of vertices,
regardless of thetree structure of the vertices (for proof, see
the full paper [5]). The expected number of levels of re-
cursionisO(log n). Also, the expected number of synchro-
nized substeps at each recursive level may be © (log log n).
Thisisbecauseinalistof size©(n), the expected maximum
distance between two superverticesis ©(log n). Hence the
total expected number of synchronized substepsintheworst
case (that is, alist) is©(log n log logn).

Our supervertex algorithmis similar to some of the list-
ranking algorithms of Vishkin [15] and Cole and Vishkin
[6]. Their agorithms (defined for lists only) can aso be
thought of as selecting superverticesthat proceed to another
iteration of pointer jumping while the remaining vertices
drop out. Their method is designed to ensure that the work
per vertex at each recursive step is constant and the total
number of synchronized stepsis O(log n) as opposed to the
O(lognloglogn) steps of our agorithm. However, their
method of choosing supervertices is more complicated, re-
quiring communication between each vertex and its parent.

The differences between them nicely illustrate how the
choice of paralel mode influences paralel agorithm de-
sign. It also showsthat although PRAM algorithmsmay not
be tailored for more practical environments, they do con-
tain valuableideas that can be adapted to real machines. In
thiscase, the valuableideaisthat of using randomization to
eliminate vertices from the pointer jumping process.

4. Experimental results

In this section we present the implementation results on
the CM-5. The program was written in the C language.

For interprocessor communication, message passing rou-
tines provided by CM-5's CMMD library were used.

In Section 4.2, we give running times for step 2, imple-
mented using the simple pointer jJumping a gorithm, the su-
pervertex algorithm, and the packaging algorithm. Sincethe
packaging algorithm is the clear winner, we adopt packag-
ing of data at every phase of our agorithm. In Section 4.3
and 4.4, we examine the increase in imbalance of the data
and in the communi cation needed in the pointer jumping al-
gorithms, as the algorithm proceeds. Finaly, in Section 4.5
we present our results on thetotal running time of our algo-
rithm on up to 64 processors (for detailed resultsincluding
figures not shown here, see [5]).

name description

strO | Ateachiteration with n vertices, two verticesform
apair (n/2 components).

str1 | Ateachiteration with n vertices, /n verticesform
alinear chain (approx. 1/n components).

str2 | Ateachiterationwith r vertices, n/2 verticesform
alinear chain and the other n /2 verticesform pairs
(approx. n/4 components).

str3 | Ateachiteration with n vertices, /n verticesform
acomplete binary tree (approx. 4/n components).

Table 1. Structured graphs

4.1. Graph types

We ran our algorithm on four kinds of graphs: random
graphs (G,), random geometric graphs (U5,), structured
graphs and TSP graphs. The TSP graphs arise in an appli-
cation of the traveling salesman problem.

A random G, , graph has n vertices with each pair con-
nected independently with probability p. A geometric graph
Un,r has n vertices, each with outdegree k. The connec-
tions are determined as follows: n points corresponding to
the vertices are chosen randomly and uniformly on the unit
squarein the Cartesian plane. Each vertex isthen connected
toitsk nearest neighbors. These graphswere used by Moret
and Shapiro [11] intheir empirical study of sequential MST
algorithms. We tested our algorithm on graphs with 32,000
and 64,000 vertices, with average degree ranging from 1.6
to 12.8.

The TSP graphs used in the experiments, usal3509.tsp
and fnl4461.tsp, are from the Electronic Library (eLib)
for Mathematical Software of Konrad-Zuse-Zentrum Berlin
(http://elib.zib-berlin.de/). The data does not show con-
nections between cities, but indicates “Euclidean 2D.” We
chose the edges randomly, for a range of probabilities.

The structured graphs described in Table 1 are designed
totest extreme cases of thealgorithmin different ways. Note

60

T
"simple” —
“super’ —+-

"packaging” -B--

50 |
a0
30
20

10

. . al (ST |
sequential 1 2 4 8 16 32 64

Figure 2. Running time of step 2 for str 1
graph, n = 64,000. The x-axis is the number
of processors; the y-axis is the running time
of step 2 in seconds.

that the shape of the components affects the running time
of the pointer jumping algorithmin step 2. Also, the num-
ber of components formed at an iteration, which becomes
the number of vertices at the next iteration, affects the total
number of iterationsof thea gorithm. To vary the density of
the structured graphs, we also added edges of high weight
such that they do not affect the structure of the components
formed during the algorithm.

4.2. Alternative implementations of step 2

We implemented the following algorithms for step 2:
the simpl e pointer jumping al gorithm, the supervertex a go-
rithm, and the packaging a gorithm.

On al graph types and sizes we used, we observe that,
for al agorithms except the packaging agorithm, there is
a huge increase in the running time on 2 processors, as op-
posed to 1 processor. Figure 2, which shows the running
time of step 2 for str 1 graph, is very typica of al casesin
thisregard.

Asexpected, the supervertex agorithm showed the most
improvement over the simple pointer jumping scheme on
structured graphs in which components contain long paths,
such as the str 1 and str 2 graphs. However, it performed
dlightly worse on the structured graph str 0, the TSP graphs
and the random graphs. The reason for the relatively good
performance of the simple pointer jumping a gorithm onthe
latter graphsis because the components formed at each iter-
ation of the algorithm are very shallow, and thus the ago-
rithm performs only O(n) work. For example, in the str O
graphs, every vertex does just at most one jump in order to
find the root of its component.

On al graph types and sizes we used, the packaging

8.0

40 ‘|7

20+

—

1.0 L
0 20 40 60 80 100

Figure 3. Imbalance in the distribution of
edges among 64 processors (y-axis, in log
scale) as a function of the percentage of total
running time (x-axis) for random (n = 64,000,
d = 3.2), geometric (n = 64,000, d = 4.9), TSP
(n=13509, d =13.5), str 0 and str 1 (n= 64,000,
d = 4.0) graphs. The steps correspond to the
moments when imbalance changes, as a re-
sult of moving from one iteration to the next
in the algorithm.

scheme has by far the best performance. As p increases,
however, the running time remains fairly constant, though
the message lengths are decreased. Thisis because the in-
creased number of messages, which is proportional to p,
cancels out the speedup effect of the decreased message
lengths.

4.3. Imbalance in graph distribution

We computed at each iteration the ratio of the maximum
number of vertices and edges at a processor, over the aver-
age number of vertices and edges at a processor.

We use thisratio as our measure of imbalance of the data
a an iteration. Consideration of the balls and bins anal-
ogy where the vertices are balls and the processors are bins
leads us to expect that the imbalance would increase as p
increases. Thisis because, as the number of binsincreases
from a constant up to the number n of balls, the ratio of the
expected maximum number of balls per bin over the aver-
age goes from a constant to O(log n/ loglog n). Our mea:
surements show that the imbal ance does indeed increase as
the number of processors increases. However, even with 64
processors, therate of increase of imbal anceismoderate un-
til the last few iterations, when it increases rapidly.

In Figure 3, we plotted the imbalance in the number of
edges among 64 processors. Since severa graphs are su-
perimposed in the figure, it is not possibleto identify which

graph iswhich, but the general trends are portrayed. On all
of the random graphs, even when p = 64, theimbalance is
lessthan 1.3 for 75% of the running time. The TSP and str
1 graphsare worse, but in genera we see that the imbal ance
islessthan 2 after 90% of the running time. Therelatively
poor imbaance in the str 1 graphs after thefirst iterationis
because the size of the graphs decreases by a factor of \/n,
and the small size of the graph by the second iteration leads
to poor imbalance.

We a so found that the edge imbalance is worse than the
vertex imbalance. This appears to be because the length of
the edge lists varies more over time.

We implemented several simple schemes that rebalance
data at the end of each iteration of the algorithm. One
scheme, which we call the E-balancing scheme, redis-
tributes edge lists such that, for 90% of the graphs used, the
edge imbalance for p < 32 islessthan 1.1 for 90% of the
running time. For p = 64, theimbalanceislessthan 1.2 for
80% of therunning timefor all but the TSP graphs. Without
the time for rebalancing taken into account, the average im-
provement, taken over all runsin which improvement was
made, was less than 2%. In less than 5% of the runs we
made, mostly on TSP graphs with p = 64, more than 5%
improvement was observed, with amaximum of 8.2% (5.8%
with rebalancing time counted) and an average of less than
4%. The TSP graphswe used (n = 13509, d = 13.5) have
the property that the number of edges does not decrease in
the second and third iterationsas fast as the other graphs do,
and conseguently the runningtimesfor thetwo iterationsare
not much smaller than the first iteration. Moreover, their
relatively greater density results in greater variation in the
lengths of edge lists and greater imbalance of edge list dis-
tribution among processors. We conclude that an edge bal-
ancing scheme isworthwhileonly on graphswith properties
such asthose just listed for the TSP graphs.

4.4. Imbalance in pointer jumps

For the same graphs of Section 4.3, we measured the dis-
tribution of pointer jumpsin the simple pointer jumping and
supervertex agorithms. Inthiscase, we counted the number
of queries and responses each processor makes, and defined
theimbal anceto be the ratio of the maximum, taken over al
the processors, divided by the average. As with the imbal-
ance of edge distribution, theimbal ance becomes worse as p
increases, but evenfor p = 64, showninFigure4, thereisal-
most no imbalancein any of our graphs until almost 80% of
the running time of step 2 is completed. Thisis because the
time taken by step 2 in thefirst iteration of the algorithmis
large compared with further iterations, and initialy vertices
are very evenly distributed. For 95% of the running time,
the imbalance istypically much less than 2.

8.0

40

20
TSP_simple

TSP_super

10 T L n
0 20 40 60 80 100

Figure 4. Imbalance in the distribution of
pointer jumps among 64 processors.

4.5. Total running time

We measured the total running time of our parallel algo-
rithm, using packaging of messages at every step of the al-
gorithm. For all graph types, we observe thefollowing: The
1-processor paralle agorithmis somewhat slower than the
sequentia agorithm (run on one CM-5 processor), and the
running time on 2 processors is not much better than on 1
processor. This is because the communication costs are al-
ready high even with 2 processors. However, on 4 proces-
sorsthe parallel algorithmis always better than the sequen-
tial Borlivka salgorithm and good speedup continues up to
32 processors. The results for 64 processors are not much
better than for 32 processors. Thisisin part because of our
use of the packaging scheme, in which the number of mes-
sages per processor stays constant for al p, and thefact that
the number of messages, rather than their size, affects the
running time. (For denser graphs, we would expect good
speedup for 64 processors and more.) All thisisillustrated
infigure 5 which shows for random graphs the running time
of the sequential versions of Kruskal’s and Borlivka's algo-
rithm, as well as the running time of the parallel Borlivka's
algorithm on 1 to 64 processors. (Due to insufficient mem-
ory on the machine and/or contention during communica-
tion, results were not obtainablefor (d) and (f) on 2 proces-
SOrs.)

On geometric graphs with average degree 9 and 32,000
vertices, for all the TSP graphs, and for other graphs with
fewer vertices but higher average degree, we observed a
speedup factor of about 4, on 16 processors, over the sequen-
tial Borlivka's algorithm. In general, Kruskal's sequential
algorithmran 2 ~ 3 times faster than Boruvka's sequential
algorithm. For most of our sparse graphs, Boruvka's algo-
rithm startsto beat Kruskal’s sequential algorithm at 8 pro-
Cessors.

45

20+

35

30

25 -

20

15 -

10

Figure 5. Total running time of packaged
Bortvka’s algorithm for random graphs: n =
32,000, average degree d = 1.6 (a), 3.2 (b), 6.4
(c), and 12.8 (d); and n = 64,000, d = 3.2 (e)
and 6.4 (f). “seq K” is the running time of
Kruskal's sequential MST algorithm.

5. Conclusions

Our heuristicanaysisof therunning timewas very useful
in predicting the advantages of packaging, the high commu-
nication cost of the simple pointer jJumping agorithm, and
the low imbalance in the distribution of vertices until itera-
tionswherethegraphissmall. Our empirical measurements
showed that the imbalance of edges is also low in random
and geometric graphs. The performance model proved to
also be useful as a basis for designing a practical pointer
jumping agorithm.

The speedups obtained by our implementation are far
from optimal but we believe that, given the high communi-
cation cogts, it is difficult to improve the implementation of
the standard Borlivka's algorithm for sparse graphs. How-
ever, the speedup factor improves for denser graphs. For
random graphs, it is certainly possible that refinements of
Borlivka's algorithm that exploit the fact that heavy edges
areunlikelytobeintheMST couldlead toimproved results.
OntheCM-5, improvementscan bemadeusing ActiveMes-
sages, though we chose CMMD message passing routines
because we were interested in a machine model with high
communication costs.

Acknowledgements

Wethank Eric Bach and theanonymousrefereesfor their
valuable comments and suggestions.

References

[1] A. Alexandrov, M. F. lonescu, K. E. Schauser, and C.
Scheiman. LogGP: Incorporating long messages into the
LogP model. Proc. 7th Annual ACM Symposiumon Parallel
Algorithms and Architectures, 1995.

[2] R.J. Anderson and G. L. Miller. Deterministic parallel list
ranking. Algorithmica, 6:859-868, 1991.

[3] R. S Bar, R. V. Helgaon and J. L. Kennington. Minimal
spanning trees: An empirical investigation of parallel algo-
rithms. Parallel Computing, 12(1):45-52, October 1989.

[4] O. Borlivka. O jistem problému minimalnim. Prace Mor.
Prirodoved. Spol. v Brné (Acta Societ. Scient. Natur. Morav-
icae), 3:37-58, 1926.

[5] S© Chung and A. Condon. Parallel implementa
tion of Borlivka' s minimum spanning tree algorithm. Techni-
cal Report 1297, Computer Sciences Department, University
of Wisconsin, Madison, 1996.

[6] R. Cole and U. Vishkin. Approximate parallel scheduling,
Part |: The basic technique with applicationsto optimal par-
allel list ranking in logarithmic time. SAM J. Computing,
17(1):128-142, 1988.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, T. von Eicken. LogP: Towards a
realistic model of parallel computation. 4th ACM SIGPLAN
Symposiumon Principlesand Practicesof Parallel Program-
ming, 1993.

[8] R. L. Graham and P. Hell. On the history of the minimum
spanning tree problem. Annals of the History of Computing,
7(1):43-57, 1985.

[9] S. L. Johnsson. The Connection Machine systems CM-5.
Proc. 5th Annual ACM Symposium on Parallel Algorithms
and Architectures, 365-366, June 1993.

[10] D. E. Knuth. The Sanford GraphBase: A Platform for Com-
binatorical Computing, ACM Press, New York, NY, 1993.

[11] B. M. E. Moret and H. D. Shapiro. An empirical assessment
of algorithmsfor constructing a minimum spanning tree. DI-
MACS Seriesin Discrete Mathematics and Theoretical Com-
puter Science, 15:99-117, American Mathematical Society,
Providence, RI, 1994.

[12] D. Roweth. The Meiko CS-2 system architecture. Proc. 5th
Annual ACM Symposiumon Parallel Algorithmsand Archi-
tectures, p. 213, June 1993.

[13] W. Oed and M. Walker. An overview of Cray research com-
puters. Proc. 5th Annual ACM Symposiumon Parallel Algo-
rithms and Architectures, 271-272, June 1993.

[14] M. Snir. Issuesand directionsin scalable parallel computing.
Research Report Number RC 18940 (82749), IBM Research
Division, T.J. Watson Research Center, Yorktown Heights,
NY 10598, 1993.

[15] U. Vishkin. Randomized speed-upsin parallel computation.
Proc. 16th Annual ACM Symposium on Theory of Comput-
ing. 230-239, 1984.

