
Parallel Implementation of Borůvka’s Minimum Spanning Tree Algorithm
�

Sun Chung Anne Condon

Computer Sciences Department
University of Wisconsin
1210 West Dayton Street
Madison, WI 53706 USA

Abstract

We study parallel algorithms for the minimum span-
ning tree problem, based on the sequential algorithm of
Borůvka. The target architectures for our algorithm are
asynchronous, distributed-memory machines.

Analysis of our parallel algorithm, on a simple model
that is reminiscent of the LogP model, shows that in prin-
ciple a speedup proportional to the number of processors
can be achieved, but that communication costs can be sig-
nificant. To reduce these costs, we develop a new random-
ized linear work pointer jumping scheme that performs bet-
ter than previous linear work algorithms. We also consider
empirically the effects of data imbalance on the running
time. For the graphs used in our experiments, load balanc-
ing schemes result in little improvement in running times.

Our implementations on sparse graphs with 64,000 ver-
tices on Thinking Machine’s CM-5 achieve a speedup factor
of about 4 on 16 processors. On this environment, packag-
ing of messages turns out to be the most effective way to re-
duce communication costs.

1. Introduction

A dominant emerging parallel architecture consists of a
collection of fast processors, connected by a robust com-
munication network [7, 9, 12, 13, 14]. Properties of this
type of architecture include a distributed memory, parti-
tioned among processors whose interprocessor communica-
tion cost is rather high compared with the computation cost.

For this architecture, we describe our experience with de-
sign and implementation of parallel algorithms for the min-
imum spanning tree (MST) problem: Given a connected,

�
Supported in part by NSF grant number CCR-9257241 and by match-

ing awards from Thinking Machines Corporation and Digital Systems
Corporation. E-mail addresses of the authors are: sunc@cs.wisc.edu,
condon@cs.wisc.edu.

undirected graph
�

with � vertices and � weighted edges,
find a spanning tree of minimum weight. We are interested
in the case that the number of processors � is much less than
the size of the graph, and the graph is distributed among the
processors. Our algorithms are based on the classical se-
quential algorithm of Borůvka [4]. Using a simple perfor-
mance model, together with measurements of implementa-
tions on Thinking Machine’s CM-5, we analyze and com-
pare alternative implementations.

Briefly, our conclusions are as follows. In principle, a
speedup proportional to � can be achieved, but a simple anal-
ysis points to two primary sources of slowdown, in addition
to the penalty for communication (Section 2). One arises in
the use of pointer jumping, which is less efficient than the
sequential technique of depth first search, and is very com-
munication intensive. The other is due to imbalance in the
distribution of data (and hence work) among processors. To
address the first problem, we develop a new randomized lin-
ear work pointer jumping scheme that performs better than
previous linear work algorithms on lists (Section 3). Our al-
gorithm is similar to the list ranking algorithms of Vishkin
[15] and Cole and Vishkin [6], and shows how an idea de-
veloped for the PRAM model can be adapted to work effec-
tively in practice. To address the second problem, since a
precise analysis of the degree of imbalance of work seems
difficult, we consider empirically the effects of data imbal-
ance (Section 4). For the graphs used in our experiments,
load balancing schemes result in little improvement in run-
ning times.

First, we describe Borůvka’s algorithm and our parallel
model.

Boruvka’s algorithm: This algorithm, also known as
Sollin’s algorithm, constructs a spanning tree in iterations
composed of the following steps (organized here to corre-
spond to the phases of our parallel implementation).

Step 1 (choose lightest) : Each vertex selects the edge with the
lightest weight incident on it. Each of the connected components



thus created has one cycle of size two between two vertices that
each selects the same edge. Of this pair, the one with the smaller
number is designated as the root of the component and the cycle is
removed. The component is then a tree.

Step 2 (find root) : Each vertex identifies the root of the tree to
which it belongs.

Step 3 (rename vertices) : In the edge lists, each vertex is re-
named with the name of the root of the component to which it be-
longs.

Step 4 (merge edge lists) : Edge lists which belong to the same
componentare merged into the edge list of the root. In other words,
each connected component shrinks into a single vertex.

Step 5 (clean up) : Now the edge lists may have self loops and
multiple edges. All self loops are removed. Multiple edges are re-
moved such that only the lightest edge remains between a pair of
vertices.

The graph remaining after the � th iteration is the input
to the � � � � � st iteration, unless it has just one vertex, in
which case the algorithm halts. The output spanning tree is
the union of the set of edges selected in step 1, taken over
all iterations. Using standard techniques (see [8]) the algo-
rithm can be implemented so that an iteration in which the
graph has � vertices and � edges takes � � � � � � sequen-
tial time. Furthermore, the number of vertices of the graph
at the � � � � � st iteration is at most half of the number of ver-
tices at the � th iteration. Hence, the number of iterations is
at most � � � 	 � , yielding a total running time of � � � � � � � � .

Parallel model: We assume a distributed memory
model, in which processors communicate using messages.
However, our model could easily be adapted to other dis-
tributed memory machines such as the Cray T3D and to
shared memory abstractions that are built on top of dis-
tributed memory machines, such as the Split-C language,
where the distinction between local versus non-local data is
retained. The machine parameters that we will use are: � ,
the number of processors, 
 � , the time for initiatingtransmis-
sion of a message, and 
 � , the transmission time per word.
Typically, we can expect that 
 � can be much greater than 
 � ;
on the CM-5 message passing system using CMMD opera-
tions, 
 � 
 � � � � � � � � , and 
 � 
 � � � � � . There is synchro-
nization cost involved in each synchronized step of a parallel
algorithm, but we will ignore it in our model because in our
experiments, the cost is minimal in the algorithms that we
study.

Background and related work: For a historical survey
of the classical MST algorithms and their variants, see [8]
and [11]. Knuth [10] and Moret and Shapiro [11] present
empirical assessments of sequential MST algorithms. The
work of Barr et al. [3] is the only empirical study of paral-
lel implementation of MST algorithms which we found in
the literature that is related to ours. For further discussion
of related work on parallel models and graph algorithms, the

reader is referred to the full version of this paper [5].

2. A parallel Borůvka’s algorithm

We now describe a parallel version of each step of
Borůvka’s algorithm.

Step 1 (choose lightest): The edge list of each vertex is searched
to find the minimum weight edge from that vertex.

Step 2 (find root): Each vertex finds the root of the tree to which
it belongs using the well known pointer jumping algorithm. The
input � to the algorithm is the set of root vertices, and the input �
is the set of non-root vertices.

Simple-Pointer-Jumping-Algorithm(� ,� )
repeat until every vertex in � points to a vertex in �

for each vertex � that does not point to
a vertex in � do

perform a pointer jump on �

Step 3 (rename vertices): Each processor finds the new name
of all vertices listed in its edge lists.

Step 4 (merge): The edges of all vertices in a component are
sent to the processor that has the edge list of the root. The edge
lists are then merged by that processor.

Step 5 (clean up): Each processor executes the sequential algo-
rithm on its own edge lists.

In our implementation of the pointer jumping algorithm
of step 2, processors synchronize at each iteration of the re-
peat loop.

2.1. Running time

Consider the parallel running time of the first iteration,
in which there are � vertices and � edges. Note that there
is no communication needed in steps 1 and 5. The amount
of work done by a processor in steps 1 and 3 is linear in the
number of edges at that processor at the start of the iteration.
Similarly, the amount of work done by a processor in steps 4
and 5 is linear in the number of edges at that processor, after
the edge lists are moved in step 3.

If we make some simple assumptions about the graph and
its initial distribution, we can show that the expected parallel
time needed to complete steps 1,3,4 and 5 of the first itera-
tion is � � � 
 � � 
 � � � � � � . Suppose also that any vertex (and
its edge list) is initially equally likely to be at any processor.
Then, we can expect that the maximum number of vertices
at a processor is within a constant factor of � � � . This fol-
lows from a “balls and bins” analysis, where the processors
are the bins and the vertices are the balls. It is well known
that if � balls are thrown randomly into � bins, then the ex-
pected maximum number of balls per bin is close to the av-
erage if � � � � � � � � � � . If, furthermore, the degrees of the
vertices are small (say, a constant independent of � ), and



roughlyequal, then the edges are split evenly among the pro-
cessors. Also, we can expect that the communication costs
are split fairly evenly among the processors in steps 3 and
4. In step 3, for example, each processor sends one message
to query the new name of each vertex occurring in its edge
lists. Since the degree of the vertices is constant, the number
of distinct vertices arising in the edge lists of a processor is
linear in the number of edges. Therefore, � � � � � � queries
are needed per processor.

Using a similar argument, we can expect that the commu-
nication workload in step 2 is fairly evenly distributed and
the expected time for step 2 is � � � 
 � � 
 � � � � � � � � � � � � (for
details, see [5]).

Extendingeven this heuristic analysis to further iterations
is difficult, however. Only if the iterations for which the
data is badly distributed contribute very little to the running
time can we hope to prove that the parallel running time is
� � � 
 � � 
 � � � � � � � � � � � � , that is, that a speedup factor of
� � � � is obtained. One thing we can say is that we can ex-
pect the distribution of vertices to remain fairly evenly bal-
anced in later iterations, as long as the number of vertices
is still large. This is because the location of vertices at the
� th iteration is the same as their location in the initial itera-
tion. However, the edge lists are typically growing in length
as the iterations progress, and there is more variance in the
distributionof the lengths of the edge lists. We did some em-
pirical measurements of the edge distributionover time, and
present these in Section 4.3.

3. Parallel algorithms for step 2

The parallel running time of step 2 that uses pointer jump-
ing (� � � 
 � � 
 � � � � � � � � � � � � ) is significantly slower than
that of the sequential algorithm which uses linear time depth
first search. We now consider two new algorithms for step 2,
which aim at reducing the slowdown due to the 
 � and � � � �
factors respectively.

3.1. The packaging algorithm

In this algorithm, at each synchronized substep of step
2, all messages which are transmitted from a processor to
another processor are sent in a single package. Thus, each
processor sends at most � � � packages in a synchronized
substep, regardless of how many individual pointer updates
are performed. Therefore, the cost 
 � is charged at most
� times per synchronized substep, whereas in the simple
pointer jumping algorithm it is charged � � � � � � times (as-
suming balanced communication). Therefore, if � � � � � � ,
we expect that the packaging scheme will be faster than the
simple pointer jumping scheme. For larger � , however, the
advantage of packaging may be lost.

3.2. A new pointer jumping algorithm

Both deterministic and randomized list ranking algo-
rithms that require only linear work are well known [2, 6,
15]. However, they are not well suited to our application be-
cause they have large hidden constants and require that the
input data, which are rooted trees, be “linearized.”

We developed a new pointer jumping scheme, which we
call the supervertex algorithm. This randomized scheme
can be applied to trees as well as lists and requires only ex-
pected linear work.

Roughly, in our algorithm, each component is processed
as follows. A randomly chosen subset, � � , of the vertices
called supervertices are selected. Each vertex in � � SV per-
forms the simple pointer jumping algorithm until it points
to a supervertex. At this point, all vertices but the super-
vertices drop out and the supervertices repeat the same algo-
rithm recursively (with each vertex again randomly deciding
whether to be a supervertex in the next iteration). Once all
supervertices are pointing to the root, the remaining vertices
update their pointers in one step so that they too point to the
root. Figure 1 illustrates the execution of this algorithm on
a list.

Level Linked Structure

1

2

3

3

2

1

Figure 1. Execution of the supervertex algo-
rithm on a list. The first three rows show the
linked structure at the start of the three re-
cursive calls. Vertices in squares are cho-
sen to be supervertices at each of these iter-
ations. The last three rows show the vertices
that point to the root at the end of each recur-
sive call, starting from the last (third) level of
recursion back to the first.

The input to the following algorithm is a set � of vertices,
each with an associated pointer, forming a rooted tree. As-
sume that the root of the tree is already identified and points
to itself.



Supervertex-Pointer-Jumping-Algorithm(� )
if � � � � 2 then

for each vertex � � � do
with probability � � � , make � a supervertex

let SV be the set of supervertices, plus the root
execute Simple-Pointer-Jumping-Algorithm(� � SV,SV)

for each vertex � in SV do
perform one pointer jump on �

comment: at this point the supervertices form
a rooted tree

recursively apply the algorithm to SV
comment: at this point, all vertices in SV point
to the root

for each vertex � in � � SV do
perform a pointer jump on �

comment: at this point, all vertices point
to the root

It is straightforward to show that the expected work per-
formed by this algorithm is linear in the number of vertices,
regardless of the tree structure of the vertices (for proof, see
the full paper [5]). The expected number of levels of re-
cursion is � � � � � � � . Also, the expected number of synchro-
nized substeps at each recursive level may be � � � � � � � � � � .
This is because in a list of size � � � � , the expected maximum
distance between two supervertices is � � � � � � � . Hence the
total expected number of synchronized substeps in the worst
case (that is, a list) is � � � � � � � � � � � � � � .

Our supervertex algorithm is similar to some of the list-
ranking algorithms of Vishkin [15] and Cole and Vishkin
[6]. Their algorithms (defined for lists only) can also be
thought of as selecting supervertices that proceed to another
iteration of pointer jumping while the remaining vertices
drop out. Their method is designed to ensure that the work
per vertex at each recursive step is constant and the total
number of synchronized steps is � � � � � � � as opposed to the
� � � � � � � � � � � � � � steps of our algorithm. However, their
method of choosing supervertices is more complicated, re-
quiring communication between each vertex and its parent.

The differences between them nicely illustrate how the
choice of parallel model influences parallel algorithm de-
sign. It also shows that although PRAM algorithms may not
be tailored for more practical environments, they do con-
tain valuable ideas that can be adapted to real machines. In
this case, the valuable idea is that of using randomization to
eliminate vertices from the pointer jumping process.

4. Experimental results

In this section we present the implementation results on
the CM-5. The program was written in the C language.

For interprocessor communication, message passing rou-
tines provided by CM-5’s CMMD library were used.

In Section 4.2, we give running times for step 2, imple-
mented using the simple pointer jumping algorithm, the su-
pervertex algorithm, and the packaging algorithm. Since the
packaging algorithm is the clear winner, we adopt packag-
ing of data at every phase of our algorithm. In Section 4.3
and 4.4, we examine the increase in imbalance of the data
and in the communication needed in the pointer jumping al-
gorithms, as the algorithm proceeds. Finally, in Section 4.5
we present our results on the total running time of our algo-
rithm on up to 64 processors (for detailed results including
figures not shown here, see [5]).

name description
str 0 At each iteration with � vertices, two vertices form

a pair (� � � components).
str 1 At each iteration with � vertices, 	 � vertices form

a linear chain (approx. 	 � components).
str 2 At each iteration with � vertices, � � � vertices form

a linear chain and the other � � � vertices form pairs
(approx. � � 
 components).

str 3 At each iteration with � vertices, 	 � vertices form
a complete binary tree (approx. 	 � components).

Table 1. Structured graphs

4.1. Graph types

We ran our algorithm on four kinds of graphs: random
graphs (

� � �

), random geometric graphs (� � � �

), structured
graphs and TSP graphs. The TSP graphs arise in an appli-
cation of the traveling salesman problem.

A random
� � �


graph has � vertices with each pair con-
nected independently with probability � . A geometric graph� � � �

has � vertices, each with outdegree � . The connec-
tions are determined as follows: � points corresponding to
the vertices are chosen randomly and uniformly on the unit
square in the Cartesian plane. Each vertex is then connected
to its � nearest neighbors. These graphs were used by Moret
and Shapiro [11] in their empirical study of sequential MST
algorithms. We tested our algorithm on graphs with 32,000
and 64,000 vertices, with average degree ranging from 1.6
to 12.8.

The TSP graphs used in the experiments, usa13509.tsp
and fnl4461.tsp, are from the Electronic Library (eLib)
for Mathematical Software of Konrad-Zuse-Zentrum Berlin
(http://elib.zib-berlin.de/). The data does not show con-
nections between cities, but indicates “Euclidean 2D.” We
chose the edges randomly, for a range of probabilities.

The structured graphs described in Table 1 are designed
to test extreme cases of the algorithm in different ways. Note



0

10

20

30

40

50

60

sequential 1 2 4 8 16 32 64

"simple"
"super"

"packaging"

Figure 2. Running time of step 2 for str 1
graph, n = 64,000. The x-axis is the number
of processors; the y-axis is the running time
of step 2 in seconds.

that the shape of the components affects the running time
of the pointer jumping algorithm in step 2. Also, the num-
ber of components formed at an iteration, which becomes
the number of vertices at the next iteration, affects the total
number of iterations of the algorithm. To vary the density of
the structured graphs, we also added edges of high weight
such that they do not affect the structure of the components
formed during the algorithm.

4.2. Alternative implementations of step 2

We implemented the following algorithms for step 2:
the simple pointer jumping algorithm, the supervertex algo-
rithm, and the packaging algorithm.

On all graph types and sizes we used, we observe that,
for all algorithms except the packaging algorithm, there is
a huge increase in the running time on 2 processors, as op-
posed to 1 processor. Figure 2, which shows the running
time of step 2 for str 1 graph, is very typical of all cases in
this regard.

As expected, the supervertex algorithm showed the most
improvement over the simple pointer jumping scheme on
structured graphs in which components contain long paths,
such as the str 1 and str 2 graphs. However, it performed
slightly worse on the structured graph str 0, the TSP graphs
and the random graphs. The reason for the relatively good
performance of the simple pointer jumping algorithm on the
latter graphs is because the components formed at each iter-
ation of the algorithm are very shallow, and thus the algo-
rithm performs only � � � � work. For example, in the str 0
graphs, every vertex does just at most one jump in order to
find the root of its component.

On all graph types and sizes we used, the packaging

1.0

2.0

4.0

8.0

0 20 40 60 80 100

TSP

str 1

Figure 3. Imbalance in the distribution of
edges among 64 processors (y-axis, in log
scale) as a function of the percentage of total
running time (x-axis) for random (n = 64,000,
d = 3.2), geometric (n = 64,000, d = 4.9), TSP
(n = 13509, d = 13.5), str 0 and str 1 (n= 64,000,
d = 4.0) graphs. The steps correspond to the
moments when imbalance changes, as a re-
sult of moving from one iteration to the next
in the algorithm.

scheme has by far the best performance. As � increases,
however, the running time remains fairly constant, though
the message lengths are decreased. This is because the in-
creased number of messages, which is proportional to � ,
cancels out the speedup effect of the decreased message
lengths.

4.3. Imbalance in graph distribution

We computed at each iteration the ratio of the maximum
number of vertices and edges at a processor, over the aver-
age number of vertices and edges at a processor.

We use this ratio as our measure of imbalance of the data
at an iteration. Consideration of the balls and bins anal-
ogy where the vertices are balls and the processors are bins
leads us to expect that the imbalance would increase as �
increases. This is because, as the number of bins increases
from a constant up to the number � of balls, the ratio of the
expected maximum number of balls per bin over the aver-
age goes from a constant to � � � � � � � � � � � � � � � � Our mea-
surements show that the imbalance does indeed increase as
the number of processors increases. However, even with 64
processors, the rate of increase of imbalance is moderate un-
til the last few iterations, when it increases rapidly.

In Figure 3, we plotted the imbalance in the number of
edges among 64 processors. Since several graphs are su-
perimposed in the figure, it is not possible to identify which



graph is which, but the general trends are portrayed. On all
of the random graphs, even when � � � �

, the imbalance is
less than � � � for 75% of the running time. The TSP and str
1 graphs are worse, but in general we see that the imbalance
is less than 2 after 90% of the running time. The relatively
poor imbalance in the str 1 graphs after the first iteration is
because the size of the graphs decreases by a factor of � � ,
and the small size of the graph by the second iteration leads
to poor imbalance.

We also found that the edge imbalance is worse than the
vertex imbalance. This appears to be because the length of
the edge lists varies more over time.

We implemented several simple schemes that rebalance
data at the end of each iteration of the algorithm. One
scheme, which we call the � -balancing scheme, redis-
tributes edge lists such that, for 90% of the graphs used, the
edge imbalance for � � � � is less than 1.1 for 90% of the
running time. For � � � �

, the imbalance is less than 1.2 for
80% of the running time for all but the TSP graphs. Without
the time for rebalancing taken into account, the average im-
provement, taken over all runs in which improvement was
made, was less than 2%. In less than 5% of the runs we
made, mostly on TSP graphs with � � � �

, more than 5%
improvement was observed, with a maximum of 8.2% (5.8%
with rebalancing time counted) and an average of less than
4%. The TSP graphs we used (� � � � � � � , � � � � � � ) have
the property that the number of edges does not decrease in
the second and third iterations as fast as the other graphs do,
and consequently the running times for the two iterations are
not much smaller than the first iteration. Moreover, their
relatively greater density results in greater variation in the
lengths of edge lists and greater imbalance of edge list dis-
tribution among processors. We conclude that an edge bal-
ancing scheme is worthwhile only on graphs with properties
such as those just listed for the TSP graphs.

4.4. Imbalance in pointer jumps

For the same graphs of Section 4.3, we measured the dis-
tributionof pointer jumps in the simple pointer jumping and
supervertex algorithms. In this case, we counted the number
of queries and responses each processor makes, and defined
the imbalance to be the ratio of the maximum, taken over all
the processors, divided by the average. As with the imbal-
ance of edge distribution, the imbalance becomes worse as �
increases, but even for � � � �

, shown in Figure 4, there is al-
most no imbalance in any of our graphs until almost 80% of
the running time of step 2 is completed. This is because the
time taken by step 2 in the first iteration of the algorithm is
large compared with further iterations, and initially vertices
are very evenly distributed. For 95% of the running time,
the imbalance is typically much less than 2.

1.0

2.0

4.0

8.0

0 20 40 60 80 100

TSP_simple

TSP_super

Figure 4. Imbalance in the distribution of
pointer jumps among 64 processors.

4.5. Total running time

We measured the total running time of our parallel algo-
rithm, using packaging of messages at every step of the al-
gorithm. For all graph types, we observe the following: The
1-processor parallel algorithm is somewhat slower than the
sequential algorithm (run on one CM-5 processor), and the
running time on 2 processors is not much better than on 1
processor. This is because the communication costs are al-
ready high even with 2 processors. However, on 4 proces-
sors the parallel algorithm is always better than the sequen-
tial Borůvka’s algorithm and good speedup continues up to
32 processors. The results for 64 processors are not much
better than for 32 processors. This is in part because of our
use of the packaging scheme, in which the number of mes-
sages per processor stays constant for all � , and the fact that
the number of messages, rather than their size, affects the
running time. (For denser graphs, we would expect good
speedup for 64 processors and more.) All this is illustrated
in figure 5 which shows for random graphs the running time
of the sequential versions of Kruskal’s and Borůvka’s algo-
rithm, as well as the running time of the parallel Borůvka’s
algorithm on 1 to 64 processors. (Due to insufficient mem-
ory on the machine and/or contention during communica-
tion, results were not obtainable for (d) and (f) on 2 proces-
sors.)

On geometric graphs with average degree 9 and 32,000
vertices, for all the TSP graphs, and for other graphs with
fewer vertices but higher average degree, we observed a
speedup factor of about 4, on 16 processors, over the sequen-
tial Borůvka’s algorithm. In general, Kruskal’s sequential
algorithm ran � 	 � times faster than Boruvka’s sequential
algorithm. For most of our sparse graphs, Boruvka’s algo-
rithm starts to beat Kruskal’s sequential algorithm at 8 pro-
cessors.



0

5

10

15

20

25

30

35

40

45

seq K seq B 1 2 4 8 16 32 64

a

b

c

d

e

f

Figure 5. Total running time of packaged
Borůvka’s algorithm for random graphs: n =
32,000, average degree d = 1.6 (a), 3.2 (b), 6.4
(c), and 12.8 (d); and n = 64,000, d = 3.2 (e)
and 6.4 (f). “seq K” is the running time of
Kruskal’s sequential MST algorithm.

5. Conclusions

Our heuristic analysis of the running time was very useful
in predicting the advantages of packaging, the high commu-
nication cost of the simple pointer jumping algorithm, and
the low imbalance in the distribution of vertices until itera-
tions where the graph is small. Our empirical measurements
showed that the imbalance of edges is also low in random
and geometric graphs. The performance model proved to
also be useful as a basis for designing a practical pointer
jumping algorithm.

The speedups obtained by our implementation are far
from optimal but we believe that, given the high communi-
cation costs, it is difficult to improve the implementation of
the standard Borůvka’s algorithm for sparse graphs. How-
ever, the speedup factor improves for denser graphs. For
random graphs, it is certainly possible that refinements of
Borůvka’s algorithm that exploit the fact that heavy edges
are unlikely to be in the MST could lead to improved results.
On the CM-5, improvements can be made using Active Mes-
sages, though we chose CMMD message passing routines
because we were interested in a machine model with high
communication costs.

Acknowledgements

We thank Eric Bach and the anonymous referees for their
valuable comments and suggestions.

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C.
Scheiman. LogGP: Incorporating long messages into the
LogP model. Proc. 7th Annual ACM Symposium on Parallel
Algorithms and Architectures, 1995.

[2] R. J. Anderson and G. L. Miller. Deterministic parallel list
ranking. Algorithmica, 6:859-868, 1991.

[3] R. S. Barr, R. V. Helgaon and J. L. Kennington. Minimal
spanning trees: An empirical investigation of parallel algo-
rithms. Parallel Computing, 12(1):45-52, October 1989.

[4] O. Borůvka. O jistém problému minimálnı́m. Práce Mor.
Přı́rodověd. Spol. v Brně (Acta Societ. Scient. Natur. Morav-
icae), 3:37-58, 1926.

[5] S. Chung and A. Condon. Parallel implementa-
tion of Borůvka’s minimum spanning tree algorithm. Techni-
cal Report 1297, Computer Sciences Department, University
of Wisconsin, Madison, 1996.

[6] R. Cole and U. Vishkin. Approximate parallel scheduling,
Part I: The basic technique with applications to optimal par-
allel list ranking in logarithmic time. SIAM J. Computing,
17(1):128-142, 1988.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, T. von Eicken. LogP: Towards a
realistic model of parallel computation. 4th ACM SIGPLAN
Symposium on Principles and Practices of Parallel Program-
ming, 1993.

[8] R. L. Graham and P. Hell. On the history of the minimum
spanning tree problem. Annals of the History of Computing,
7(1):43-57, 1985.

[9] S. L. Johnsson. The Connection Machine systems CM-5.
Proc. 5th Annual ACM Symposium on Parallel Algorithms
and Architectures, 365-366, June 1993.

[10] D. E. Knuth. The Stanford GraphBase: A Platform for Com-
binatorical Computing, ACM Press, New York, NY, 1993.

[11] B. M. E. Moret and H. D. Shapiro. An empirical assessment
of algorithms for constructing a minimum spanning tree. DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science, 15:99-117, American Mathematical Society,
Providence, RI, 1994.

[12] D. Roweth. The Meiko CS-2 system architecture. Proc. 5th
Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, p. 213, June 1993.

[13] W. Oed and M. Walker. An overview of Cray research com-
puters. Proc. 5th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, 271-272, June 1993.

[14] M. Snir. Issues and directions in scalable parallel computing.
Research Report Number RC 18940 (82749), IBM Research
Division, T.J. Watson Research Center, Yorktown Heights,
NY 10598, 1993.

[15] U. Vishkin. Randomized speed-ups in parallel computation.
Proc. 16th Annual ACM Symposium on Theory of Comput-
ing. 230-239, 1984.


