Three results about BPP

BPP is in P/poly (Adleman)
BPP is in the polynomial time hierarchy (Sipser-Gacs-Lautemann)
If NP is in BPP then the polynomial time hierarchy collapses (Karp-Lipton)



The Polynomial Time Hierarchy

. 255 set of languages L for which there is a
polynomial-time DTM M such that

wisin Liff 32, VZ, M(w,Z,Z,) accepts
where |Z,| = |Z,|is polynomial in |w|

. ]'[5’: similar to 5P, but starts with a V quantifier
wisin Liff VZ; 37, M(w,Z,Z,) accepts

. ]'[Eand ZE: generalizations for k > 2

* Polynomial time hierarchy (PH) is U, (HE U ZE)



A Hierarchy of Quantified SAT Problems

* > SAT: set of true quantified formulas of the form
X1 VX5 .. QX ©(Xq, Xy, Xe)
where for somen >0
— ¢ is a Boolean formula over kn variables

— X = Xiq, ..., Xin for all i is a truth assignment to
variables of ¢

* > SAT is complete for ZE

* TTy SAT: similar, but starts with a V quantifier

* TT« SAT is complete for ]'[E



The Polynomial Time Hierarchy

Claim: If EE ZE then in fact TP = Zp :

Proof: Let S be any set of languages, and let
co-S={L|LisinS}.

Suppose that co-S € S; we'll show that S € co-S§,
and so S = co-S.

Let L be in S. Since co-S © S,_L must also be in S. And
then, since Lisin S, L must be in co-S. So S € co-S.



BPP and the Polynomial Time Hierarchy




BPP is Contained in 35 N T,

74
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* |llustration of sets Sy, of coin flip sequences r such that
M accepts w on r. Picture on the left is when wisin L,
and picture on the right is when wis not in L.

From Arora-Barak textbook



If NP is in BPP then PH Collapses




If NP is in BPP then PH Collapses

 “Collapses” means that PH is contained in 25’

 The proof in two parts:
a) If NP is contained in P/poly then HSQ ZE
b) If HEE ZE then every language in PH is in Zg



If NP is in BPP then PH Collapses

e Suppose that NP is contained in P/poly

* Thereisa DTM, say M", and a poly-length advice
sequence {A(n)} such that, given an instance w of SAT,

w is in SAT iff M" accepts on input w, advice A(|w})



If NP is in BPP then PH Collapses

e Suppose that NP is contained in P/poly

* Thereisa DTM, say M", and a poly-length advice
sequence {A(n)} such that, given an instance w of SAT,

w is in SAT iff M" accepts on input w, advice A(|w})

* Thereisa DTM, say M', and a poly-length advice
sequence {A'(n)} such that, given an instance w of SAT,
w is in SAT iff M' outputs a satisfying truth

assignment for w



If NP is in BPP then PH Collapses

 “Collapses” means that PH is contained in 25’

 The proof in two parts:
a) If NP is contained in P/poly then HSQ ZE
b) If HEE ZE then every language in PH is in Zg



Summary

e BPPis “low” in the polynomial time hierarchy, deep
within PSPACE
* Also, BPP is unlikely to contain NP: if NP is in BPP then
the PH collapses
— “if pigs could whistle then horses could fly” type of
result
— to prove this, an unusual complexity class came in
handy: P/poly



Space Bounded Randomized
Complexity Classes

one-sided error, log space bounded classes
handy techniques for probabilistic reasoning



RL

* Alanguage Lisin RLif there is an O(log n)-space
PTM M such that
— if x € L then Pr[M accepts x] = 2/3 and
— if x € Lthen Pr[M accepts x] =0



NL = RL

 How to design a randomized, log-space algorithm
for PATH = { (G,s,t) | node t can be reached from

node s in directed graph G}?

 Throughout, let G = (V,E) whereV ={1,2, ..., n} and
lete = |E]|



NL = RL

* How to design a randomized, log-space algorithm
for PATH = { (G,s,t) | node t can be reached from
node s in directed graph G}?

* |dea: Repeatedly follow a random path from s, and
accept iff one of the paths reaches t

 Random path from s: visit s initially and when
node i is visited, choose an adjacent node |
uniformly at random to visit next



A Randomized, Log-Space Algorithm for PATH

Without loss of generality, suppose that each node
of G has at most two children

Repeat
* Follow a random path from s until either
— t is reached: halt and accept

— a dead end is reached, or n-1 steps have been
taken

* Flip n+2 random coins, halt and reject if all are
heads



RLP

e PATH is in RL because a log space probabilistic TM
can run for exponential expected time, using

“probabilistic counting”

 Alanguage Lisin RLP if there is an log-space and
poly-time PTM M such that

— if x € Lthen Pr[M accepts x] = 2/3 and
— if x € Lthen Pr[M accepts x] =0



UPATH is in RLP

« UPATH ={(G,s,t) | node t can be reached from node
s in an undirected graph G}



UPATH is in RLP

UPATH Algorithm:

 Oninput (G,s,t), follow a random path from s
— If tis reached at some step, halt and accept

— If t is not reached within 6e(n-1) steps, halt and reject

 The algorithm is correct if t is not reachable from
S, since it must reject

 What if tis reachable from s? (To be continued
next time)



