
Three results about BPP

BPP is in P/poly (Adleman)
BPP is in the polynomial time hierarchy (Sipser-Gacs-Lautemann)
If NP is in BPP then the polynomial time hierarchy collapses (Karp-Lipton)



• ∑  : set of languages L for which there is a 
polynomial-time DTM M such that

w is in L iff ∃Z1 ∀Z2 M(w,Z1,Z2) accepts
where |Z1| = |Z2|is polynomial in |w|

• ∏  : similar to ∑  , but starts with a ∀ quantifier
w is in L iff ∀Z1 ∃Z2 M(w,Z1,Z2) accepts

• ∏  and ∑  : generalizations for k > 2
• Polynomial time hierarchy (PH) is  ∪k>0 (∏   ∪ ∑  )

The Polynomial Time Hierarchy
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A Hierarchy of Quantified SAT Problems

• ∑k SAT: set of true quantified formulas of the form
∃X1 ∀X2 ... QkXk φ(X1,X2, ..., Xk)

where for some n ≥ 0
– φ is a Boolean formula over kn variables
– Xi = xi1, …, xin for all i is a truth assignment to 

variables of φ
• ∑k SAT is complete for ∑

• ∏k SAT: similar, but starts with a ∀ quantifier
• ∏k SAT is complete for ∏
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Claim: If ∏  ⊆ ∑   then in fact ∏  = ∑   .

Proof: Let S be any set of languages, and let
co-S = { L | L is in S }.

Suppose that co-S ⊆ S; we’ll show that S ⊆ co-S, 
and so S = co-S.

Let L be in S. Since co-S ⊆ S, L must also be in S. And 
then, since L is in S, L must be in co-S. So S ⊆ co-S.

The Polynomial Time Hierarchy
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BPP is Contained in ∑ ∩∏

• Illustration of sets Sw of coin flip sequences r such that 
M accepts w on r. Picture on the left is when w is in L, 
and picture on the right is when w is not in L.

From Arora-Barak textbook
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If NP is in BPP then PH Collapses



If NP is in BPP then PH Collapses

• “Collapses” means that PH is contained in ∑

• The proof in two parts:
a) If NP is contained in P/poly then ∏  ⊆ ∑
b) If ∏  ⊆ ∑ then every language in PH is in ∑
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If NP is in BPP then PH Collapses

• Suppose that NP is contained in P/poly 

• There is a DTM, say M", and a poly-length advice 
sequence {A(n)} such that, given an instance w of SAT,

w is in SAT iff M'' accepts on input w, advice A(|w})

• There is a DTM, say M', and a poly-length advice 
sequence {A'(n)} such that, given an instance w of SAT, 
w is in SAT   iff M' outputs a satisfying truth 

assignment for w
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Summary

• BPP is “low” in the polynomial time hierarchy, deep 
within PSPACE

• Also, BPP is unlikely to contain NP: if NP is in BPP then 
the PH collapses
– “if pigs could whistle then horses could fly” type of 

result
– to prove this, an unusual complexity class came in 

handy: P/poly



Space Bounded Randomized 
Complexity Classes

one-sided error, log space bounded classes
handy techniques for probabilistic reasoning



RL

• A language L is in RL if there is an O(log n)-space 
PTM M such that 
– if x ∈ L then Pr[M accepts x] ≥ 2/3 and 
– if x ∉ L then Pr[M accepts x] = 0



NL = RL

• How to design a randomized, log-space algorithm 
for PATH = { (G,s,t) | node t can be reached from 
node s in directed graph G}?

• Throughout, let G = (V,E) where V = {1,2, …, n} and 
let e = |E|



NL = RL

• How to design a randomized, log-space algorithm 
for PATH = { (G,s,t) | node t can be reached from 
node s in directed graph G}?

• Idea: Repeatedly follow a random path from s, and 
accept iff one of the paths reaches t

• Random path from s: visit s initially and when 
node i is visited, choose an adjacent  node j 
uniformly at random to visit next



A Randomized, Log-Space Algorithm for PATH 

Without loss of generality, suppose that each node 
of G has at most two children

Repeat
• Follow a random path from s until either
– t is reached: halt and accept
– a dead end is reached, or n-1 steps have been 

taken
• Flip n+2 random coins, halt and reject if all are 

heads



RLP

• PATH is in RL because a log space probabilistic TM 
can run for exponential expected time, using 
“probabilistic counting”

• A language L is in RLP if there is an log-space and 
poly-time PTM M such that 
– if x ∈ L then Pr[M accepts x] ≥ 2/3 and 
– if x ∉ L then Pr[M accepts x] = 0



UPATH is in RLP

• UPATH = { (G,s,t) | node t can be reached from node 
s in an undirected graph G}



UPATH is in RLP

UPATH Algorithm: 
• On input (G,s,t), follow a random path from s

– If t is reached at some step, halt and accept
– If t is not reached within 6e(n-1) steps, halt and reject

• The algorithm is correct if t is not reachable from 
s, since it must reject

• What if t is reachable from s? (To be continued 
next time)


