
Three results about BPP

BPP is in P/poly (Adleman)
BPP is in the polynomial time hierarchy (Sipser-Gacs-Lautemann)
If NP is in BPP then the polynomial time hierarchy collapses (Karp-Lipton)

• ∑ : set of languages L for which there is a
polynomial-time DTM M such that

w is in L iff ∃Z1 ∀Z2 M(w,Z1,Z2) accepts
where |Z1| = |Z2|is polynomial in |w|

• ∏ : similar to ∑ , but starts with a ∀ quantifier
w is in L iff ∀Z1 ∃Z2 M(w,Z1,Z2) accepts

• ∏ and ∑ : generalizations for k > 2
• Polynomial time hierarchy (PH) is ∪k>0 (∏ ∪ ∑)

The Polynomial Time Hierarchy

p
2

p
2

p
2

p
k

p
k p

k
p
k

A Hierarchy of Quantified SAT Problems

• ∑k SAT: set of true quantified formulas of the form
∃X1 ∀X2 ... QkXk φ(X1,X2, ..., Xk)

where for some n ≥ 0
– φ is a Boolean formula over kn variables
– Xi = xi1, …, xin for all i is a truth assignment to

variables of φ
• ∑k SAT is complete for ∑

• ∏k SAT: similar, but starts with a ∀ quantifier
• ∏k SAT is complete for ∏

p
k

p
k

Claim: If ∏ ⊆ ∑ then in fact ∏ = ∑ .

Proof: Let S be any set of languages, and let
co-S = { L | L is in S }.

Suppose that co-S ⊆ S; we’ll show that S ⊆ co-S,
and so S = co-S.

Let L be in S. Since co-S ⊆ S, L must also be in S. And
then, since L is in S, L must be in co-S. So S ⊆ co-S.

The Polynomial Time Hierarchy

p
k

p
k

p
k

p
k

P

PSPACE

PH

NP

co-NP

TQBF

∑

∏

…

…

BPP

BPP and the Polynomial Time Hierarchy

∑

∏

p
k

p
k

p
2

p
2

BPP is Contained in ∑ ∩∏

• Illustration of sets Sw of coin flip sequences r such that
M accepts w on r. Picture on the left is when w is in L,
and picture on the right is when w is not in L.

From Arora-Barak textbook

p
2

p
2

If NP is in BPP then PH Collapses

If NP is in BPP then PH Collapses

• “Collapses” means that PH is contained in ∑

• The proof in two parts:
a) If NP is contained in P/poly then ∏ ⊆ ∑
b) If ∏ ⊆ ∑ then every language in PH is in ∑

p
2

p
2

p
2

p
2

p
2 p

2

If NP is in BPP then PH Collapses

• Suppose that NP is contained in P/poly

• There is a DTM, say M", and a poly-length advice
sequence {A(n)} such that, given an instance w of SAT,

w is in SAT iff M'' accepts on input w, advice A(|w})

• There is a DTM, say M', and a poly-length advice
sequence {A'(n)} such that, given an instance w of SAT,
w is in SAT iff M' outputs a satisfying truth

assignment for w

If NP is in BPP then PH Collapses

• Suppose that NP is contained in P/poly

• There is a DTM, say M", and a poly-length advice
sequence {A(n)} such that, given an instance w of SAT,

w is in SAT iff M'' accepts on input w, advice A(|w})

• There is a DTM, say M', and a poly-length advice
sequence {A'(n)} such that, given an instance w of SAT,
w is in SAT iff M' outputs a satisfying truth

assignment for w

If NP is in BPP then PH Collapses

• “Collapses” means that PH is contained in ∑

• The proof in two parts:
a) If NP is contained in P/poly then ∏ ⊆ ∑
b) If ∏ ⊆ ∑ then every language in PH is in ∑

p
2

p
2

p
2

p
2

p
2 p

2

Summary

• BPP is “low” in the polynomial time hierarchy, deep
within PSPACE

• Also, BPP is unlikely to contain NP: if NP is in BPP then
the PH collapses
– “if pigs could whistle then horses could fly” type of

result
– to prove this, an unusual complexity class came in

handy: P/poly

Space Bounded Randomized
Complexity Classes

one-sided error, log space bounded classes
handy techniques for probabilistic reasoning

RL

• A language L is in RL if there is an O(log n)-space
PTM M such that
– if x ∈ L then Pr[M accepts x] ≥ 2/3 and
– if x ∉ L then Pr[M accepts x] = 0

NL = RL

• How to design a randomized, log-space algorithm
for PATH = { (G,s,t) | node t can be reached from
node s in directed graph G}?

• Throughout, let G = (V,E) where V = {1,2, …, n} and
let e = |E|

NL = RL

• How to design a randomized, log-space algorithm
for PATH = { (G,s,t) | node t can be reached from
node s in directed graph G}?

• Idea: Repeatedly follow a random path from s, and
accept iff one of the paths reaches t

• Random path from s: visit s initially and when
node i is visited, choose an adjacent node j
uniformly at random to visit next

A Randomized, Log-Space Algorithm for PATH

Without loss of generality, suppose that each node
of G has at most two children

Repeat
• Follow a random path from s until either
– t is reached: halt and accept
– a dead end is reached, or n-1 steps have been

taken
• Flip n+2 random coins, halt and reject if all are

heads

RLP

• PATH is in RL because a log space probabilistic TM
can run for exponential expected time, using
“probabilistic counting”

• A language L is in RLP if there is an log-space and
poly-time PTM M such that
– if x ∈ L then Pr[M accepts x] ≥ 2/3 and
– if x ∉ L then Pr[M accepts x] = 0

UPATH is in RLP

• UPATH = { (G,s,t) | node t can be reached from node
s in an undirected graph G}

UPATH is in RLP

UPATH Algorithm:
• On input (G,s,t), follow a random path from s

– If t is reached at some step, halt and accept
– If t is not reached within 6e(n-1) steps, halt and reject

• The algorithm is correct if t is not reachable from
s, since it must reject

• What if t is reachable from s? (To be continued
next time)

