Three results about BPP

BPP is in P/poly (Adleman)

BPP is in the polynomial time hierarchy (Sipser-Gacs-Lautemann) If NP is in BPP then the polynomial time hierarchy collapses (Karp-Lipton)

Sharpening our bounds for BPP

- Some conjecture that BPP = P
- Adleman showed a weaker result:

 $\mathsf{BPP} \subseteq \mathsf{P/poly}$

 P/poly is the class of languages that are accepted by TM's with advice, or equivalently, polynomialsized circuit families

P/poly and TMs with advice

- A TM with advice is a deterministic TM that, in addition to its input, also gets an "advice" string A(n) which depends on the input length n but not otherwise on the input
- The TM gets the *same* advice for all inputs of length n
- L is in P/poly iff there is a poly time bounded TM M with advice, and a sequence of polynomial-length advice strings {A(n) | n in N } such that for all inputs w, w is in L iff M accepts on (w, A(|w|)

Example: TM with advice

- Let M_n be the TM encoded by the binary representation of the number n
- Let Unary-Halt be the undecidable language
 {1ⁿ : M_n outputs 1 on input 1ⁿ}

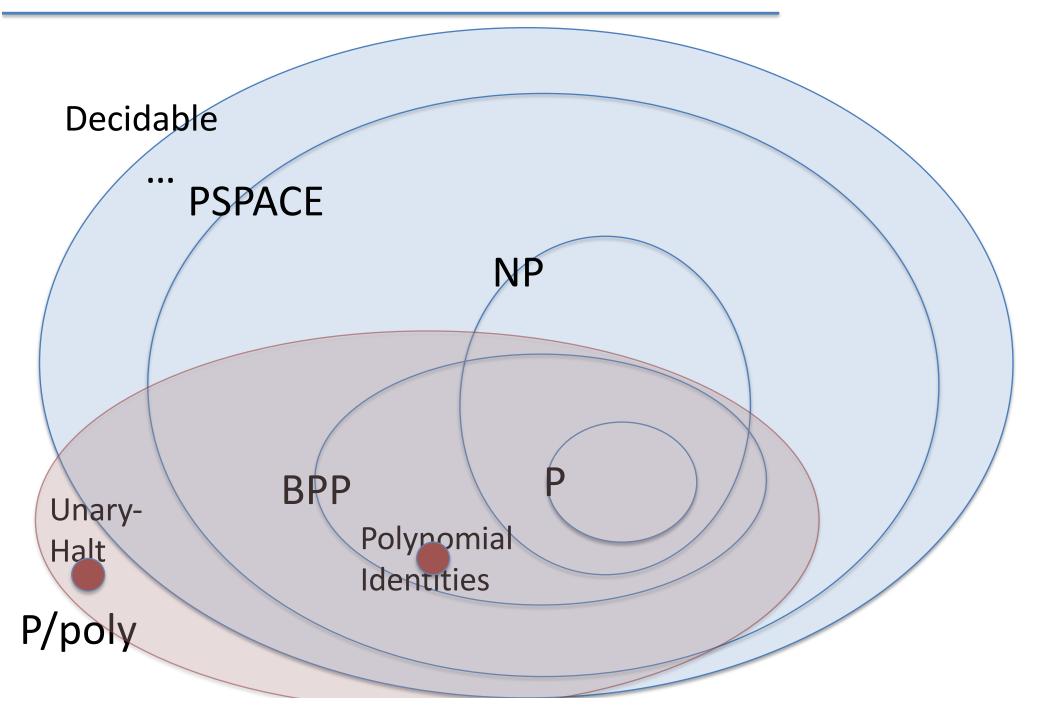
Example: TM with advice

- Let M_n be the TM encoded by the binary representation of the number n
- Let Unary-Halt be the undecidable language
 {1ⁿ : M_n outputs 1 on input 1ⁿ}
- There is a halting TM with advice that accepts Unary-Halt: simply let A(n) be 1 if M_n outputs 1 on input 1ⁿand 0 otherwise!

Example: TM with advice

- Let M_n be the TM encoded by the binary representation of the number n
- Let Unary-Halt be the undecidable language {1ⁿ : M_n outputs 1 on input 1ⁿ}
- There is a halting TM with advice that accepts Unary-Halt: simply let A(n) be 1 if M_n outputs 1 on input 1ⁿand 0 otherwise!
- There is also a family of *nonuniform* circuits that accepts Unary-Halt

Where BPP lies in our complexity classes



BPP is in P/poly

BPP is in the Polynomial Time Hierarchy (PH)

• Before defining PH, we'll first introduce new variants of SAT

A Hierarchy of Quantified SAT Problems

- \sum_{k} SAT: set of true quantified formulas of the form $\exists X_1 \forall X_2 \dots Q_k X_k \varphi(X_1, X_{2, \dots, N_k})$ where for some $n \ge 0$
 - $-\phi$ is a Boolean formula over *kn* variables
 - $X_i = x_{i1}, ..., x_{in}$ for all i is a truth assignment to variables of ϕ

A Hierarchy of Quantified SAT Problems

- \sum_{k} SAT: set of true quantified formulas of the form $\exists X_1 \forall X_2 \dots Q_k X_k \varphi(X_1, X_{2, \dots, N_k})$ where for some $n \ge 0$
 - $-\phi$ is a Boolean formula over *kn* variables
 - $X_i = x_{i1}, ..., x_{in}$ for all i is a truth assignment to variables of φ
- \prod_k SAT: similar, but starts with a \forall quantifier
- In contrast, TQBF has no fixed limit k on the number quantifier alternations

- Σ₁^p: set of languages L for which there is a polynomial-time DTM^{*}M such that
 w is in L iff ∃Z₁ M(w,Z₁) accepts
 where |Z₁| is polynomial in |w|
- \sum_{1}^{p} is a fancy name for NP

- Σ₁^p: set of languages L for which there is a polynomial-time DTM M such that
 w is in L iff ∃Z₁ M(w,Z₁) accepts
 where |Z₁| is polynomial in |w|
- \sum_{1}^{p} is a fancy name for NP
- Π_1^p : like $\Sigma_{1'}^p$ but with a \forall quantifier, so Π_1^p = co-NP
- Note that if $\prod_{1}^{p} \subseteq \sum_{1}^{p}$ then in fact $\prod_{1}^{p} = \sum_{1}^{p}$

Claim: If $\prod_1^p \subseteq \sum_1^p$ then in fact $\prod_1^p = \sum_1^p$.

Proof: Let S be any set of languages, and let $co-S = \{\overline{L} \mid L \text{ is in S }\}.$ Suppose that $co-S \subseteq S$; we'll show that $S \subseteq co-S$, and so S = co-S.

Let L be in S. Since $co-S \subseteq S$, \overline{L} must also be in S. And then, since \overline{L} is in S, L must be in co-S. So $S \subseteq co-S$.

∑₂^p: set of languages L for which there is a polynomial-time DTM M such that
 w is in L iff ∃Z₁ ∀Z₂ M(w,Z₁,Z₂) accepts
 where |Z₁| = |Z₂|is polynomial in |w|

- ∑₂^p: set of languages L for which there is a polynomial-time DTM M such that
 w is in L iff ∃Z₁ ∀Z₂ M(w,Z₁,Z₂) accepts
 where |Z₁| = |Z₂|is polynomial in |w|
- Example: MIN-EQ-DNF =
 { (φ, k) : there is a DNF φ' of size ≤ k that is
 equivalent to DNF φ}.
- MIN-EQ-DNF is in Σ_2^p and is not known to be in NP

- ∑₂^p: set of languages L for which there is a polynomial-time DTM M such that
 w is in L iff ∃Z₁ ∀Z₂ M(w,Z₁,Z₂) accepts
 where |Z₁| = |Z₂|is polynomial in |w|
- ∏₂^p: similar to ∑₂^p, but starts with a ∀ quantifier
 w is in L iff ∀Z₁ ∃Z₂ M(w,Z₁,Z₂) accepts
- $\prod_{k=1}^{p} \text{and } \sum_{k=1}^{p} \text{: generalizations for } k > 2$
- Polynomial time hierarchy (PH) is $U_{k>0} (\prod_{k=0}^{p} \bigcup_{k=0}^{p})$

- \sum_{k} SAT is complete for \sum_{k}^{p}
- $\prod_k SAT$ is complete for \prod_k^p
- Note that if $\prod_{k}^{p} \subseteq \sum_{k}^{p}$ then in fact $\prod_{k}^{p} = \sum_{k}^{p}$

