
Randomized Complexity Classes

• How random bits, or coin flips, 
are useful in computation

• Randomized complexity classes: 
BPP, RP, co-RP



Polynomial Identity Testing

Given two multivariate polynomials P and Q, does P = Q?
Equivalently, is the polynomial  P - Q  identically 0?

We’ll assume that our polynomials are over the integers, 
but the algorithm we develop can be adapted to work also 
for polynomials over any field

To formulate this problem precisely, let’s consider how 
multivariate polynomials can be represented

Taken from Hastad’s notes



Polynomial Identity Testing

Given two multivariate polynomials P and Q, does P = Q?
Equivalently, is the polynomial  P - Q  identically 0?

We’ll assume that our polynomials are over the integers, 
but the algorithm we develop can be adapted to work also 
for polynomials over any field

To formulate this problem precisely, let’s consider how 
multivariate polynomials can be represented



Polynomial Identity Testing

Polynomials may be represented implicitly, e.g. using 
arithmetic expressions or as “black boxes”

Example: 
p(x1, x2, x3) 
= (x2 – x1) (x3 – x1) (x3 – x2)

= x2x3
2 - x2

2x3 - x1x2x3 +  x1x2
2 – x1x3

2 + x1x2x3 + x1
2x3 - x1

2x2

Representing multivariate polynomials



Polynomial Identity Testing

Polynomials may be represented implicitly, e.g. using 
arithmetic expressions or as “black boxes”

Example: 
p(x1, x2, x3) 
= (x2 – x1) (x3 – x1) (x3 – x2)

= x2x3
2 - x2

2x3 - x1x2x3 +  x1x2
2 – x1x3

2 + x1x2x3 + x1
2x3 - x1

2x2

Representing multivariate polynomials



Polynomial Identity Testing

Polynomials may be represented implicitly, e.g. using 
arithmetic expressions or as “black boxes”

Example: 

p(x1, x2, x3) 

= (x2 – x1) (x3 – x1) (x3 – x2)

= x2x3
2 - x2

2x3 - x1x2x3 +  x1x2
2 – x1x3

2 + x1x2x3 + x1
2x3 - x1

2x2

The second line represents p implicitly, while the third 
represents p explicitly as a sum of distinct monomials

Representing multivariate polynomials



Polynomial Identity Testing

Polynomials may be represented implicitly, e.g. using 
arithmetic expressions or as “black boxes”

Example: 

p(x1, x2, x3) 

= (x2 – x1) (x3 – x1) (x3 – x2)

= x2x3
2 - x2

2x3 - x1x2x3 +  x1x2
2 – x1x3

2 + x1x2x3 + x1
2x3 - x1

2x2

The second line represents p implicitly, while the third 
represents p explicitly as a sum of distinct monomials

Representing multivariate polynomials



Polynomial Identity Testing

Polynomials may be represented implicitly, e.g. using 
arithmetic expressions or as “black boxes”

Example: 
p(x1, x2, x3) 
= (x2 – x1) (x3 – x1) (x3 – x2)

= x2x3
2 - x2

2x3 - x1x2x3 +  x1x2
2 – x1x3

2 + x1x2x3 + x1
2x3 - x1

2x2

Each monomial has a coefficient and a degree

Representing multivariate polynomials



Polynomial Identity Testing

Polynomials may be represented implicitly, e.g. using 
arithmetic expressions or as “black boxes”

Example: 
p(x1, x2, x3) 
= (x2 – x1) (x3 – x1) (x3 – x2)

= x2x3
2 - x2

2x3 - x1x2x3 +  x1x2
2 – x1x3

2 + x1x2x3 + x1
2x3 - x1

2x2

Each monomial has a coefficient and a degree

Coefficient: -1
Degree 3

Representing multivariate polynomials



Polynomial Identity Testing

Polynomials may be represented implicitly, e.g. using 
arithmetic expressions or as “black boxes”

Example: 
p(x1, x2, x3) 
= (x2 – x1) (x3 – x1) (x3 – x2)

= x2x3
2 - x2

2x3 - x1x2x3 +  x1x2
2 – x1x3

2 + x1x2x3 + x1
2x3 - x1

2x2

A polynomial is identically 0 if all monomials have 
coefficient equal to 0

Representing multivariate polynomials



Polynomial Identity Testing

Polynomials may be represented implicitly, e.g. using 
arithmetic expressions or as “black boxes”

Example: 
p(x1, x2, x3) 
= (x2 – x1) (x3 – x1) (x3 – x2)

= x2x3
2 - x2

2x3 - x1x2x3 +  x1x2
2 – x1x3

2 + x1x2x3 + x1
2x3 - x1

2x2

How many monomials can there be in a polynomial with 
n variables and degree at most d? (Rough guess?)

Representing multivariate polynomials



Polynomial Identity Testing
Representing multivariate polynomials

A “black box” example

Taken from Hastad’s notes



Polynomial Identity Testing

This determinant is a multivariate polynomial over n 
variables, with degree O(n2), since

Representing multivariate polynomials

(Leibniz formula)

A “black box” example

1≤u≤npermutations ! of 1..n



Polynomial Identity Testing

There are efficient algorithms (“black boxes”) to compute 
the determinant for fixed values of the variables

Representing multivariate polynomials

A “black box” example



Polynomial Identity Testing (PIT)
Is a multivariate polynomial p identically 0?

?



• p may be represented implicitly, e.g. using 
arithmetic expressions or as “black boxes”

• p has n variables and degree d 
• p can be evaluated in time polynomial in n and d 

for any fixed values of the variables
• An explicit representation pf p may have size 

exponential in n, since it may have              
monomials 

Polynomial Identity Testing (PIT)
Is a multivariate polynomial p identically 0?



PIT is an interesting problem for several reasons:
• Algorithms for PIT can be applied to solve other 

problems, such as determining whether a bipartite 
graph has a perfect matching

• PIT has an efficient (i.e., poly-time) randomized 
algorithm but no known efficient deterministic 
algorithm

• If an efficient deterministic algorithm is found for 
PIT, there are other very interesting consequences 
in complexity theory (circuit lower bounds)

Polynomial Identity Testing (PIT)
Is a multivariate polynomial p identically 0?



Polynomial Identity Testing (PIT)
Is a multivariate polynomial p identically 0?



Polynomial Identity Testing (PIT)
Is a multivariate polynomial p identically 0?

Univariate case: A univariate polynomial of degree d 
that is not identically 0 has at most d zero's

From Moore



Polynomial Identity Testing (PIT)

PIT-Alg(p) // p has n variables and degree ≤ d
Let R = 2nd // larger R reduces the error

Choose z = (z1, z2 ,..., zn) randomly and uniformly in 
the range [1, R]n // each zi is a positive integer
If p(z) ≠ 0 Return false
Else Return true

Is a multivariate polynomial p identically 0?



Polynomial Identity Testing (PIT)

Claim: Let p be an input to PIT-Alg
a) If p is identically 0 then Pr[PIT-Alg(p) is true] = 1
b) If p is not identically 0 then

Pr[PIT-Alg(p) is true] ≤ dn/R ≤ ½

The proof uses the following claim: 

Claim (Schwartz-Zippel): Let p be a polynomial that is not 
identically 0, with n variables and degree ≤ d. The set

Z = { (z | 1 ≤ zi ≤ R, 1 ≤ i ≤ n) ∧ (p(z) = 0)}

has size at most dnRn−1.

Correctness analysis of PIT-Alg



Polynomial Identity Testing (PIT)

Claim: Let p be an input to PIT-Alg
a) If p is identically 0 then Pr[PIT-Alg(p) is true] = 1
b) If p is not identically 0 then

Pr[PIT-Alg(p) is true] ≤ dn/R ≤ ½

The proof uses the following claim: 

Claim (Schwartz-Zippel): Let p be a nonzero polynomial with 
n variables and degree ≤ d. The set

Z = { (z | 1 ≤ zi ≤ R, 1 ≤ i ≤ n) ∧ (p(z) = 0)}
has size at most dnRn−1

Correctness analysis of PIT-Alg



Polynomial Identity Testing (PIT)

Claim: Let p be an input to PIT-Alg
a) If p is identically 0 then Pr[PIT-Alg(p) is true] = 1
b) If p is not identically 0 then

Pr[PIT-Alg(p) is true] ≤ dn/R ≤ ½

The proof uses the following claim: 

Claim (Schwartz-Zippel): Let p be a nonzero polynomial with 
n variables and degree ≤ d. The set

Z = { (z | 1 ≤ zi ≤ R, 1 ≤ i ≤ n) ∧ (p(z) = 0)}
has size at most dnRn−1

Correctness analysis of PIT-Alg

We can reduce the error by increasing R, or by 
repeating the algorithm.

For example, choose R = dnc+1 to get error 1/nc



Summary

• Finding a deterministic polynomial-time algorithm for 

PIT would be a major advance (but not easy since it 

would also answer hard questions about circuit lower 

bounds)

• One approach: Derandomize PIT-Alg by efficiently 

constructing a set of points {z(1),...,z(k)} such that for 

all degree-d polynomials p in n variables that are not 

identically 0, there exists an i ∈ [1..k] with p(z(i)) ≠ 0

• The method of conditional expectations shows that 

such sets exist that are of size k = k(n,d) = poly(n,d)



Probabilistic Turing Machines

• A Probabilistic TM (PTM) has both deterministic 
and coin-flipping states. In such states there are 
transitions to two new states that encode two 
outcomes of a coin flip: either 0 (heads) or 1 
(tails). Each state is reached with probability 1/2.

• The possible executions of a PTM on an input can 
be represented as a tree of configurations. The 
probability of reaching a leaf of the tree is 1/2k, 
where k is the number of coin flipping states on 
the path from the root to the leaf



BPP: Bounded Error Poly Time

• PTM M decides L in time t(n) if on all inputs x, M 
halts in t(|x|) steps regardless of its random 
choices, and 
– x is in L      ⇒ Pr[M accepts x] ≥ 2/3
– x is not in L⇒ Pr[M accepts x] ≤ 1/3

• We say that L is in BPTIME(t(n))

• BPP = ∪c BPTIME(nc).



RP, co-RP: One-sided Error Poly Time

• PTM M decides L in time t(n) if on all inputs x, M 
halts in t(|x|) steps regardless of its random 
choices, and 

x is in L       ⇒ Pr[M accepts x] ≥ 2/3
x is not in L ⇒ Pr[M accepts x] = 0

• We say that L is in RTIME(t(n))

• RP = ∪c RTIME(nc)
• co-RP is the set of languages whose 

complement is in RP



Reducing Error

• Error of 1/3 in the definitions isn’t great. Can we 
reduce the error? How?



Reducing Error

• Error of 1/3 in the definitions isn’t great. Can we 
reduce the error? How?

• Let L be in BPP. There is a polynomial-time PTM 
M′ such that for every input x,

x is in L       ⇒ Pr[M accepts x] ≥ 1 − 2-|x|-2

x is not in L ⇒ Pr[M accepts x] ≤ 2-|x|-2

• The error can be further reduced if desired



Reducing Error to 2-|x|-2

• Idea: Let M be a TM with error 1/3. Run M ϴ(n) 
times, and take the majority outcome

• Analysis: apply a simple variant of Chernoff’s
Bound:  Let 0 < p < 1/2, q=1-p and let k be an 
even integer. Then



Decidable

NP

P

PSPACE
EXP

…

Add BPP, RP, co-RP to the picture…



Decidable

NP

P

PSPACE
EXP

…

Add BPP, RP, co-RP to the picture…

BPP
RP

co-RP
co-NP



• BPP is in P/poly
• BPP and the polynomial time hierarchy

• Reading for next class: Arora-Barak 5.1, 6.2

Next Class


