
The Immerman-Szelepcesnyi Theorem

Relating NL and co-NL



NL and co-NL

Quick review: See if you can remember
• Definition of co-NP
• A complete problem for co-NP
• A problem in NP ⋂ co-NP



NL and co-NL

Quick review: See if you can remember
• Definition of co-NP
• A complete problem for co-NP
• A problem in NP ⋂ co-NP

Can you suggest the following?
• Definition of co-NL
• A complete problem for co-NL
• A problem in NL ⋂ co-NL



NL and co-NL

• It’s widely conjectured that NP ≠ co-NP 
• In contrast, NL = co-NL ! 

(Proved independently by Immerman and 
Szelepcesnyi in 1987) 



Immerman-Szelepcesnyi Theorem

• Recall that PATH is complete for NL:
PATH = { (G,x,y) | y is reachable from x in G }

• Let  NoPATH = 
{ (G,x,y) | y is not reachable from x in G }

• NoPATH is complete for co-NL

• Immerman-Szelepcesnyi: NoPATH is in NL
• Corollary: NL = co-NL



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

Notation: for an instance (G,x,y) of NoPATH

• Let the nodes of G be 1, 2, …n

• Let Ci denote the set of nodes of G that are 
reachable from x via a path of length at most i

• y is reachable from x if and only if y is in Cn-1



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

We’ll build up to the proof by developing 
nondeterministic algorithms for several handy checks
• Check0(v,j): is v in Cj?

• Nondeterministic algorithm correctness: Some 
algorithm execution returns true if the answer is 
yes, and there is no such execution if the answer is 
no



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

Check0(v,j): is v in Cj? (v is a node of G, 1 ⩽ j ⩽ n-1)

If v = x Return true

Else
p = x
For k = 1 to j 

Nondeterministically choose a node p'
If ( (p,p') is not in G) Return false
If (p' = v) Return true
p = p’ 

Return false



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

We’ll build up to the proof by developing 
nondeterministic algorithms for several handy checks
• Check0(v, j): is v in Cj?
• Check1(v, j, cj): is v is not in Cj, given that cj = |Cj|?



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

Check1(v, j, cj): is v is not in Cj, given that cj = |Cj|?
Idea: find cj nodes that are in Cj, and make sure none is v



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

Check1(v, j, cj): is v is not in Cj, given that cj = |Cj|?
Idea: find cj nodes that are in Cj, and make sure none is v

count  = 0 //the number of nodes found in Cj so far
For k = 1 to n

If (k ≠ v) 
If Check0(k,j)  // k is in Cj

count  = count + 1
If (count  = cj) Return true
Return false



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

Check1(v, j, cj): is v is not in Cj, given that cj = |Cj|?

Correctness:

• If v is not in Cj, there is an accepting execution, 
where on each iteration of the For loop when k is 
in Cj, Check0(k,j) returns true. In this case, count 
is incremented exactly cj times.

• If v is in Cj then there is no accepting execution: 
count can be incremented at most cj-1 times and 
so the algorithm returns false.



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

We’ll build up to the proof by developing 

nondeterministic algorithms for several handy checks

• Check0(v, j): is v in Cj?

• Check1(v, j, cj): is v is not in Cj given cj = |Cj|?

• Check2(v, j, cj-1): is v is not in Cj given cj-1 = |Cj-1|?

– Try modifying Check1



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

Check2(v, j, cj-1): is v is not in Cj given cj-1 = |Cj-1|?

Idea: find cj-1 nodes in Cj-1, and make sure there is no edge 

to v from any of these

count  = 0 //the number of nodes found in Cj-1 so far

For k = 1 to n

If (k ≠ v) 

If Check0(k,j-1)  // k is in Cj-1

count  = count + 1

If (k,v) is in G, Return false

If (count  = cj-1) Return true

Return false



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

Check2(v, j, cj-1): is v is not in Cj given cj-1 = |Cj-1|?

Idea: find cj-1 nodes in Cj-1, and make sure there is no edge 

to v from any of these

count  = 0 //the number of nodes found in Cj-1 so far

For k = 1 to n

If (k ≠ v) 

If Check0(k,j-1)  // k is in Cj-1

count  = count + 1

If (k,v) is in G, Return false

If (count  = cj-1) Return true

Return false



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

We’ll build up to the proof by developing 

nondeterministic algorithms for several handy checks

• Check0(v, j): is v in Cj?

• Check1(v, j, cj): is v is not in Cj given cj = |Cj|?

• Check2(v, j, cj-1): is v is not in Cj given cj-1 = |Cj-1|?

• Check3(j, cj, cj-1): is cj = |Cj| given cj-1 = |Cj-1|?



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

Check3(j, cj, cj-1): is cj = |Cj| given cj-1 = |Cj-1|?

count  = 0 //the number of nodes found in Cj so far
For k = 1 to n

If Check0(k,j)   
count  = count + 1

Else If not Check2(k, j, cj-1)  
Return false

If (count  = cj) Return true
Return false



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

Check3(j, cj, cj-1): is cj = |Cj| given cj-1 = |Cj-1|?

Correctness:

• If cj = |Cj| there is an accepting execution, when 
exactly cj of the Check0(v,j) tests return true and the 
remaining tests to Check2(v, j, cj-1) also return true. On 
this execution, the for loop terminates and count = cj

• If cj ≠ |Cj|either one of the Check2 tests returns false 

or at the end, count ≠ cj



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

We’ll build up to the proof by developing 

nondeterministic algorithms for several handy checks

• Check0(v, j): is v in Cj?

• Check1(v, j, cj): is v is not in Cj given cj = |Cj|?

• Check2(v, j, cj-1): is v is not in Cj given cj-1 = |Cj-1|?

• Check3(j, cj, cj-1): is cj = |Cj| given cj-1 = |Cj-1|?

Let’s use these checks to build an algorithm for NoPATH.



NoPATH = {(G,x,y) | x ↛ y in G} is in NL

NoPATH(G,x,y)

c[0] = 1 //only one node is reachable in 0 steps from x

For i = 1 to n-1 // calculate ci

ci = 1

While (not Check3(i, ci, ci-1)) and (ci < n)

ci = ci + 1

If Check1(y,n-1,cn-1) Return true

Return false



Decidable

P

NP
…

L

NL=
co-NL

PATH
NoPATH

NL-
complete

co-NP



• Introduction to Randomized Complexity Classes
• Reading: Arora-Barak 7.1-7.3

Next Class


