The Immerman-Szelepcesnyi Theorem

Relating NL and co-NL



NL and co-NL

Quick review: See if you can remember
e Definition of co-NP

A complete problem for co-NP

e A problemin NP ] co-NP



NL and co-NL

Quick review: See if you can remember
* Definition of co-NP

A complete problem for co-NP
e A problemin NP ] co-NP

Can you suggest the following?
* Definition of co-NL

A complete problem for co-NL
e A problemin NL N co-NL



NL and co-NL

e |t's widely conjectured that NP # co-NP
* |n contrast, NL = co-NL |

(Proved independently by Immerman and
Szelepcesnyi in 1987)



Immerman-Szelepcesnyi Theorem

* Recall that PATH is complete for NL:
PATH = { (G,x,y) | vy is reachable from x in G }
Let NOPATH =
{(G,x,y) | yis not reachable from x in G }

NoPATH is complete for co-NL

* Immerman-Szelepcesnyi: NOPATH is in NL
e Corollary: NL = co-NL



NoPATH = {(G,x,y) | x =y in G}isin NL

Notation: for an instance (G,x,y) of NoPATH
e LetthenodesofGbel, 2, ..n

* Let Cidenote the set of nodes of G that are
reachable from x via a path of length at most i

* yisreachable from xif and only ifyisin C,1



NoPATH = {(G,x,y) | x = y in G}isin NL

We'll build up to the proof by developing
nondeterministic algorithms for several handy checks

* CheckO(v,j):isvin Gj?

* Nondeterministic algorithm correctness: Some
algorithm execution returns true if the answer is
yes, and there is no such execution if the answer is

nNo



NoPATH = {(G,x,y) | x = y in G}isin NL

CheckO(v,j): is vin Cj? (visanode of G, 1 < j < n-1)

If v=x Return true
Else
P =X
Fork=1toj
Nondeterministically choose a node p'
If ( (p,p') is not in G) Return false
If (p' = v) Return true
p=p
Return false



NoPATH = {(G,x,y) | x = y in G}isin NL

We’'ll build up to the proof by developing
nondeterministic algorithms for several handy checks

* CheckO(v, j):isvin G?

* Checkl(v, j, ¢;):isvis notin Cj, given that ¢; = |G| ?



NoPATH = {(G,x,y) | x = y in G}isin NL

Checkl1(v, j, ¢j): is vis not in C;, given that ¢;= |G| ?
Idea: find ¢; nodes that are in Cj, and make sure none is v



NoPATH = {(G,x,y) | x = y in G}isin NL

Checkl1(v, j, ¢j): is vis not in C;, given that ¢;= |G| ?
Idea: find ¢; nodes that are in Cj, and make sure none is v

count =0 //the number of nodes found in C; so far
Fork=1ton
If (k # v)
If CheckO(k,j) // kisin C
count =count+1
If (count = c;) Return true

Return false



NoPATH = {(G,x,y) | x = y in G}isin NL

Checkl1(v, j, ¢j): is vis not in C;, given that ¢;= |G| ?

Correctness:

* IfvisnotinC thereis an accepting execution,
where on each iteration of the For loop when k is
in C;, CheckO(k,j) returns true. In this case, count
is incremented exactly c; times.

* Ifvisin Cjthen there is no accepting execution:
count can be incremented at most ¢;-1 times and
so the algorithm returns false.



NoPATH = {(G,x,y) | x = y in G}isin NL

We’'ll build up to the proof by developing
nondeterministic algorithms for several handy checks

* CheckO(v, j):isvin G?

* Checkl(y, ], ¢;):isvisnotinC;givencj= |G]|?

* Check2(v, j, ¢j-1):isvis notin Cjgiven ¢j.1 = |Cj-1]?
— Try modifying Check1



NoPATH = {(G,x,y) | x = y in G}isin NL

Check2(v, j, ¢j1): is vis not in C; given ¢j.1 = |Cj1| ?
Idea: find ¢j.1 nodes in Cj.1, and make sure there is no edge
to v from any of these



NoPATH = {(G,x,y) | x = y in G}isin NL

Check2(v, j, ¢j1): is vis not in C; given ¢j.1 = |Cj1| ?
Idea: find ¢j.1 nodes in Cj.1, and make sure there is no edge
to v from any of these

count =0 //the number of nodes found in Cj1 so far
Fork=1ton
If (k # v)
If CheckO(k,j-1) // kisin Cj4
count =count+1
If (k,v) is in G, Return false
If (count = cj.1) Return true
Return false



NoPATH = {(G,x,y) | x = y in G}isin NL

We’'ll build up to the proof by developing
nondeterministic algorithms for several handy checks

nec
nec

nec

nec

KO(v, j):isvin Cj?

k1(v, j, ¢):isvis notin Cjgivencj= |G| ?

k2(V, j, Gj-1): is vis notin C; given ¢j.1 = |Cj-1]?

<3(j, ¢j cj-1): is ¢j = | G| given ¢j.1 = | Cja]?



NoPATH = {(G,x,y) | x = y in G}isin NL

Check3(j, ¢j, ¢j-1): is ¢j = | Gj| given ¢j.1 = |Cj-1]?

count =0 //the number of nodes found in C; so far
Fork=1ton
If CheckO(k,j)
count =count+1
Else If not Check2(k, j, ¢j-1)
Return false
If (count = c;) Return true
Return false



NoPATH = {(G,x,y) | x = y in G}isin NL

Check3(j, ¢j, ¢j-1): is ¢j = | Gj| given ¢j.q = |Cj-1]?

Correctness:

* If ¢j = [Cj| there is an accepting execution, when
exactly cj of the CheckO(v,j) tests return true and the
remaining tests to Check2(v, j, cj-1) also return true. On
this execution, the for loop terminates and count = ¢;

* If ¢j # |Cj|either one of the Check2 tests returns false

or at the end, count # c;



NoPATH = {(G,x,y) | x = y in G}isin NL

We’'ll build up to the proof by developing
nondeterministic algorithms for several handy checks

* CheckO(v, j):isvin G?
* Checkl(y, ], ¢;):isvisnotinC;givencj= |G]|?

* Check2(v, j, ¢j-1):isvis notin Cjgiven ¢j.1 = |Cj-1]?

* Check3(j, ¢j ¢j-1): is ¢j= | G| given ¢j.1 = | Cj1]?

Let’s use these checks to build an algorithm for NoPATH.



NoPATH = {(G,x,y) | x = y in G}isin NL

NoPATH(G,x,y)
c[0] =1 //only one node is reachable in O steps from x

Fori=1ton-1// calculate c;
ci=1
While (not Check3(i, ¢;, ¢;_1)) and (c¢; < n)
Ci=¢c+1
If Check1(y,n-1,c,,_1) Return true
Return false






Next Class

* |ntroduction to Randomized Complexity Classes
* Reading: Arora-Barak 7.1-7.3



