
Logarithmically Bounded Space

More new problems that are
representative of space bounded

complexity classes

• A TM has a read-only input tape and work tapes.
• SPACE(s(n)) languages accepted by deterministic

halting TMs that use O(s(n)) work tape cells on
inputs of length n.

• NSPACE(s(n)): replace “deterministic” by
“nondeterministic”.

• If the TM computes a function, rather than
accepting/rejecting, the TM has a write-only output
tape

Recall Space Bounded Complexity Classes

• Instance: Binary numbers x, y and z
• Problem: Is x + y = z?

• Addition is in L (log space) … why?

Addition

• Instance: Binary numbers x, y and z
• Problem: Is x + y = z?

• Addition is in L (log space) … why?
• Given x and y, can we compute the sum x+y in log

space?
• Let‘s be clear about accounting for space in log

space function computation

Addition

• A TM has
– a read-only input tape,
– a write-only output tape: output bits are written from

left to right,
– work tapes.

• We charge for
– space used by the work tapes: #cells that the tape head

has visited
– space to store the index of input and output tape heads

• A function is log-space computable if some
(deterministic) TM that computes the function
uses log n space on inputs of length n.

Space bounded function computation

• Instance: Binary numbers x, y and z
• Problem: Is x + y = z?

• Given x and y, can we compute the sum x+y in log
space?

Addition

• Instance: Binary numbers x, y and z
• Problem: Is x + y = z?

• Given x and y, can we compute the sum x+y in log
space?
– A log-space TM, M, can compute reverse(x+y), i.e., the

bits of the sum in reverse order
– A log-space TM, M´, can output the reverse of its input
– We can compose M and M´ to compute x + y

Addition

• On input w, we want to run TM M and then run
TM M´ on the output produced by M

• We can‘t store the output produced by M

How to compose log-space TMs?

• On input w, we want to run TM M and then run
TM M´ on the output produced by M

• We can‘t store the output produced by M
• Instead, whenever M´ needs to read the ith

output bit of M, it re-runs M up until it produces
the needed bit, discarding output bits produced
prior to bit i

How to compose log-space TMs?

• Instance: A directed graph G = (V,E) and two
nodes s and f

• Problem: Is there a path in G from s to f?

• PATH is in P – use breadth-first or depth-first
search – but these algorithms use polynomial
space too.

• Is there a more space-efficient solution? What if
you can use nondeterminism?

Path

• Instance: A directed graph G = (V,E) and two
nodes s and f

• Problem: Is there a path in G from s to f?

• PATH is in P – use breadth-first or depth-first
search – but these algorithms use polynomial
space too.

• Is there a more space-efficient solution? What if
you can use nondeterminism?

Path

• Instance: A directed graph G = (V,E) and two
nodes s and f

• Problem: Is there a path in G from s to f?

• PATH is in NL (nondeterministic log space): simply
guess a path from s to f and verify that each edge
of the guessed path is in the graph

• To save space, store only the current node along
the path

Path

Space Bounded Complexity Classes

• L = SPACE(log n)
• NL = NSPACE(log n)

• Explain why the class L is in the class P

Space Bounded Complexity Classes

• L = SPACE(log n)
• NL = NSPACE(log n)

• Explain why the class L is in the class P
• What about NL?

• We need a new notion of reduction L ≤log L'
• Function f: L → L' is a log-space, many-one reduction

if
– f is log-space computable and
– x is in L iff f(x) is in L'

• We already saw that Path is in NL
• We’ll show a log-space reduction from any language

in NL to Path

Path is NL-Complete

• Let L be in NL, accepted by NTM M that has a unique
accepting configuration acc(w) on input w

• We need a log-space reduction from L to Path

Path is NL-Complete

• Let L be in NL, accepted by NTM M that has a unique
accepting configuration acc(w) on input w

• We need a log-space reduction from L to Path
• The reduction simply computes the configuration

graph G of M on w and outputs (G, init(w), acc(w))

Path is NL-Complete

Decidable

NP P

PSPACE =
NPSPACE

EXP
…

L

Complexity Classes

TQBF

Addition
NL

Path

PSPACE-
complete

NL-
complete

• Problems in NL have “fast” parallel algorithms:
bounded fan-in circuits with
– depth (parallel time) polylog(n)
– size (# parallel processors) poly(n)

P vs NL: Insight on Parallel Algorithms

A Fast Parallel Algorithm for Path

• Parallelize the Reach algorithm
– Do the tests for all nodes z in parallel
– Do the two Reach computations in parallel

Reach(x,y,i) // does G have a path of length ≤ 2i from x to y?
If i = 0 then

If (x = y) or ((x,y) is an edge of G) Return True
Else Return False

Else
For each node z of G

If (Reach (x, z, i-1) and Reach(z, y, i-1))
Return True

Return False

A Fast Parallel Algorithm for Path

Reach(x,y,i) // does G have a path of
length ≤ 2i from x to y?

Reach(x,z1,i-1) Reach(z1,y,i-1)

⋀

tree of ⋁ ’s
Depth O(log n), where
n is the number of
nodes of G

Reach(x,zn,i-1) Reach(zn,y,i-1)

⋀…

Base case Base case
…

A Fast Parallel Algorithm for Path

• Circuit depth at each recursion level: O(log n)
• Circuit depth for base case: O(log n)
• O(log n) levels of recursion

• Total circuit depth for DGR: O(log2 n)
• Total number of gates (processors): poly(n)

• Problems in NL have “fast” parallel
algorithms: bounded fan-in circuits with
– depth (parallel time) polylog(n)
– size (# parallel processors) poly(n)

• Not all problems in P have fast parallel
algorithms

• Problems that are ≤log-complete for P are
the “hardest” problems, with respect to
their space and parallel time requirements

P vs NL: Insight on Parallel Algorithms

Nick’s Class

• NC(d(n),p(n)) is the class of languages that have
bounded fan-in circuits of depth O(d(n)) and with
O(p(n)) gates.

• NC = ∪c,d NC(logc n, nd)

• Path is in NC(log2 n, poly(n))
• (See Arora-Barak Chapter 6.5)

Decidable

P

PSPACE =
NPSPACE

…

LNL

Path

PSPACE-
complete

NL-
completeNC

TQBF,GGeog

• Log space bounded complexity classes
• A new complexity class of problems with “fast” parallel

algorithms: NC
• Log-space reductions (≤log) help identify which

problems in P have fast parallel algorithms and which
don’t

Summary

• The Immerman-Szelepcsényi theorem: NL = co-NL
• Reading: Arora-Barak 4.3, 4.4

Next Class

