Logarithmically Bounded Space

More new problems that are
representative of space bounded
complexity classes

Recall Space Bounded Complexity Classes

e ATM has aread-only input tape and work tapes.

 SPACE(s(n)) languages accepted by deterministic
halting TMs that use O(s(n)) work tape cells on
inputs of length n.

 NSPACE(s(n)): replace “deterministic” by
“nondeterministic”.

Addition

* Instance: Binary numbers x, y and z
* Problem:Isx+y=2?

 Additionisin L (log space) ... why?

Addition

* Instance: Binary numbers x, y and z
* Problem:Isx+y=2?

 Additionisin L (log space) ... why?

 Given x andy, can we compute the sum x+y in log
space?

* Let’s be clear about accounting for space in log
space function computation

Space bounded function computation

e ATM has
— a read-only input tape,

— a write-only output tape: output bits are written from
left to right,

— work tapes.
 We charge for

— space used by the work tapes: #cells that the tape head
has visited

— space to store the index of input and output tape heads

e A function is log-space computable if some
(deterministic) TM that computes the function
uses log n space on inputs of length n.

Addition

* Instance: Binary numbers x, y and z
* Problem:Isx+y=2?

 Given x andy, can we compute the sum x+y in log
space?

Addition

* Instance: Binary numbers x, y and z
* Problem:Isx+y=2?

 Given x andy, can we compute the sum x+y in log
space?
— A log-space TM, M, can compute reverse(x+y), i.e., the
bits of the sum in reverse order

— A log-space TM, M’, can output the reverse of its input

— We can compose M and M’ to compute x +y

How to compose log-space TMs?

* Oninputw, we want to run TM M and then run
TM M’ on the output produced by M

* We can‘t store the output produced by M

How to compose log-space TMs?

* Oninputw, we want to run TM M and then run
TM M’ on the output produced by M

* We can‘t store the output produced by M

* |Instead, whenever M" needs to read the ith
output bit of M, it re-runs M up until it produces
the needed bit, discarding output bits produced
prior to bit i

Path

e Instance: A directed graph G = (V,E) and two
nodes s and f

* Problem: Is there a path in G from s to f?

Path

e Instance: A directed graph G = (V,E) and two
nodes s and f

* Problem: Is there a path in G from s to f?

e PATH is in P — use breadth-first or depth-first
search — but these algorithms use polynomial
space too.

* |s there a more space-efficient solution? What if
you can use nondeterminism?

Path

e Instance: A directed graph G = (V,E) and two
nodes s and f

* Problem: Is there a path in G from s to f?

 PATH is in NL (nondeterministic log space): simply
guess a path from s to f and verify that each edge
of the guessed path is in the graph

* To save space, store only the current node along
the path

Space Bounded Complexity Classes

L =SPACE(log n)
* NL = NSPACE(log n)

 Explain why the class Lis in the class P

Space Bounded Complexity Classes

L =SPACE(log n)
* NL = NSPACE(log n)

 Explain why the class Lis in the class P
* What about NL?

Path is NL-Complete

* We need a new notion of reduction L <y, L’

* Functionf:L - L'is a log-space, many-one reduction
if
— fis log-space computable and
—x isin L iff f(x)isin L'

 We already saw that Path is in NL

 We’ll show a log-space reduction from any language
in NL to Path

Path is NL-Complete

 LetL bein NL, accepted by NTM M that has a unique
accepting configuration acc(w) on input w

* We need a log-space reduction from L to Path

Path is NL-Complete

 LetL bein NL, accepted by NTM M that has a unique
accepting configuration acc(w) on input w
* We need a log-space reduction from L to Path

* The reduction simply computes the configuration
graph G of M on w and outputs (G, init(w), acc(w))

Complexity Classes

DSPACE-
complete

r_nplete

P vs NL: Insight on Parallel Algorithms

* Problems in NL have “fast” parallel algorithms:
bounded fan-in circuits with

— depth (parallel time) polylog(n)
— size (# parallel processors) poly(n)

A Fast Parallel Algorithm for Path

Reach(x,y,i) // does G have a path of length < 2/ from x to y?
If i =0 then
If (x=y) or ((x,y) is an edge of G) Return True
Else Return False
Else
For each node z of G
If (Reach (x, z, i-1) and Reach(z, y, i-1))
Return True
Return False

e Parallelize the Reach algorithm
— Do the tests for all nodes z in parallel
— Do the two Reach computations in parallel

A Fast Parallel Algorithm for Path

Reach(x,y,i) // does G have a path of
length < 2/ from x to y?

ﬁ

Depth O(log n), where
n is the number of

nodes of G

tree of \/'s

v

/ AN
/@\ /@\

Reach(x,z;,i-1) ~ Reach(z,,y,i-1) Reach(x,z,,i-1) Reach(z,,y,i-1)

T

Base case Base case

A Fast Parallel Algorithm for Path

* Circuit depth at each recursion level: O(log n)
e Circuit depth for base case: O(log n)
* O(log n) levels of recursion

e Total circuit depth for DGR: O(log? n)
 Total number of gates (processors): poly(n)

P vs NL: Insight on Parallel Algorithms

* Problems in NL have “fast” parallel
algorithms: bounded fan-in circuits with
— depth (parallel time) polylog(n)
— size (# parallel processors) poly(n)

* Not all problems in P have fast parallel
algorithms

* Problems that are <, ,-complete for P are

the “hardest” problems, with respect to
their space and parallel time requirements

Nick’s Class

 NC(d(n),p(n)) is the class of languages that have
bounded fan-in circuits of depth O(d(n)) and with
O(p(n)) gates.

* NC=U.q NC(logen, nd)

e Pathisin NC(log? n, poly(n))
 (See Arora-Barak Chapter 6.5)

Summary

* Log space bounded complexity classes

* A new complexity class of problems with “fast” parallel
algorithms: NC

* Log-space reductions (<o) help identify which
problems in P have fast parallel algorithms and which
don’t

Next Class

* The Immerman-Szelepcsényi theorem: NL = co-NL
 Reading: Arora-Barak 4.3, 4.4

