
Logarithmically Bounded Space

More new problems that are 
representative of space bounded 

complexity classes



• A TM has a read-only input tape and work tapes.
• SPACE(s(n)) languages accepted by deterministic 

halting TMs that use O(s(n)) work tape cells on 
inputs of length n.

• NSPACE(s(n)): replace “deterministic” by 
“nondeterministic”.

• If the TM computes a function, rather than 
accepting/rejecting, the TM has a write-only output 
tape 

Recall Space Bounded Complexity Classes



• Instance: Binary numbers x, y and z
• Problem: Is x + y = z?

• Addition is in L (log space) … why?

Addition



• Instance: Binary numbers x, y and z
• Problem: Is x + y = z?

• Addition is in L (log space) … why?
• Given x and y, can we compute the sum x+y in log 

space?
• Let‘s be clear about accounting for space in log 

space function computation 

Addition



• A TM has 
– a read-only input tape,
– a write-only output tape: output bits are written from 

left to right,
– work tapes.

• We charge for 
– space used by the work tapes: #cells that the tape head 

has visited
– space to store the index of input and output tape heads

• A function is log-space computable if  some 
(deterministic) TM that computes the function 
uses log n space on inputs of length n.

Space bounded function computation



• Instance: Binary numbers x, y and z
• Problem: Is x + y = z?

• Given x and y, can we compute the sum x+y in log 
space?
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• Instance: Binary numbers x, y and z
• Problem: Is x + y = z?

• Given x and y, can we compute the sum x+y in log 
space?
– A log-space TM, M, can compute reverse(x+y), i.e., the 

bits of the sum in reverse order
– A log-space TM, M´, can output the reverse of its input
– We can compose M and M´ to compute x + y

Addition



• On input w, we want to run TM M and then run 
TM M´ on the output produced by M

• We can‘t store the output produced by M

How to compose log-space TMs?



• On input w, we want to run TM M and then run 
TM M´ on the output produced by M

• We can‘t store the output produced by M
• Instead, whenever M´ needs to read the ith 

output bit of M, it re-runs M up until it produces 
the needed bit, discarding output bits produced 
prior to bit i

How to compose log-space TMs?



• Instance: A directed graph G = (V,E) and two 
nodes s and f

• Problem: Is there a path in G from s to f?

• PATH is in P – use breadth-first or depth-first 
search  – but these algorithms use polynomial 
space too. 

• Is there a more space-efficient solution? What if 
you can use nondeterminism?

Path
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search  – but these algorithms use polynomial 
space too. 

• Is there a more space-efficient solution? What if 
you can use nondeterminism?

Path



• Instance: A directed graph G = (V,E) and two 
nodes s and f

• Problem: Is there a path in G from s to f?

• PATH is in NL (nondeterministic log space): simply 
guess a path from s to f and verify that each edge 
of the guessed path is in the graph 

• To save space, store only the current node along 
the path

Path



Space Bounded Complexity Classes

• L = SPACE(log n) 
• NL = NSPACE(log n) 

• Explain why the class L is in the class P



Space Bounded Complexity Classes

• L = SPACE(log n) 
• NL = NSPACE(log n) 

• Explain why the class L is in the class P
• What about NL?



• We need a new notion of reduction L ≤log L' 
• Function f: L → L' is a log-space, many-one reduction

if 
– f is log-space computable and 
– x is in L iff f(x) is in L'

• We already saw that Path is in NL 
• We’ll show a log-space reduction from any language 

in NL to Path

Path is NL-Complete



• Let L be in NL, accepted by NTM M that has a unique 
accepting configuration acc(w) on input w

• We need a log-space reduction from L to Path

Path is NL-Complete



• Let L be in NL, accepted by NTM M that has a unique 
accepting configuration acc(w) on input w

• We need a log-space reduction from L to Path
• The reduction simply computes the configuration 

graph G of M on w and outputs (G, init(w), acc(w) )

Path is NL-Complete
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• Problems in NL have “fast” parallel algorithms: 
bounded fan-in circuits with
– depth (parallel time) polylog(n)
– size (# parallel processors) poly(n)

P vs NL: Insight on Parallel Algorithms



A Fast Parallel Algorithm for Path

• Parallelize the Reach algorithm
– Do the tests for all nodes z in parallel
– Do the two Reach computations in parallel

Reach(x,y,i)  // does G have a path of length ≤ 2i from x to y?
If i = 0 then 

If (x = y) or ( (x,y) is an edge of G) Return True 
Else Return False

Else
For each node z of G

If (Reach (x, z, i-1) and Reach(z, y, i-1) ) 
Return True

Return False



A Fast Parallel Algorithm for Path

Reach(x,y,i) // does G have a path of 
length ≤ 2i from x to y?

Reach(x,z1,i-1) Reach(z1,y,i-1)

⋀

tree of ⋁ ’s
Depth O(log n), where 
n is the number of 
nodes of G

Reach(x,zn,i-1) Reach(zn,y,i-1)

⋀…

Base case Base case
…



A Fast Parallel Algorithm for Path

• Circuit depth at each recursion level: O(log n)
• Circuit depth for base case: O(log n)
• O(log n) levels of recursion

• Total circuit depth for DGR: O(log2 n)
• Total number of gates (processors): poly(n)



• Problems in NL have “fast” parallel 
algorithms: bounded fan-in circuits with
– depth (parallel time) polylog(n)
– size (# parallel processors) poly(n)

• Not all problems in P have fast parallel 
algorithms

• Problems that are ≤log-complete for P are 
the “hardest” problems, with respect to 
their space and parallel time requirements

P vs NL: Insight on Parallel Algorithms



Nick’s Class

• NC(d(n),p(n)) is the class of languages that have 
bounded fan-in circuits of depth O(d(n)) and with 
O(p(n)) gates.

• NC = ∪c,d NC(logc n, nd)

• Path is in NC(log2 n, poly(n))
• (See Arora-Barak Chapter 6.5)
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• Log space bounded complexity classes
• A new complexity class of problems with “fast” parallel 

algorithms: NC
• Log-space reductions (≤log) help identify which 

problems in P have fast parallel algorithms and which 
don’t

Summary



• The Immerman-Szelepcsényi theorem: NL = co-NL
• Reading: Arora-Barak 4.3, 4.4

Next Class


