PSPACE, NPSPACE, Savitch's Theorem

True Quantified Boolean Formulas (TQBF)

YWaAXVyIzWVXVay)A(RWV X)A(XVYVZ)AZ

* Instance: Given a quantified Boolean formula (QBF) ¢
 Problem: Is ¢ true?

True Quantified Boolean Formulas (TQBF)

YWaAXVyIzWVXVay)A(RWV X)A(XVYVZ)AZ

* Instance: Given a quantified Boolean formula (QBF) ¢
 Problem: Is ¢ true?

* Find a simple algorithm for TQBF.
* What is its time complexity?

True Quantified Boolean Formulas (TQBF)

YWaAXVyIzWVXVay)A(RWV X)A(XVYVZ)AZ

* Instance: Given a quantified Boolean formula (QBF) ¢
 Problem: Is ¢ true?

Might TQBF be complete for EXP?

e Compare with Generalized Checkers (GC)
— Both problems are game-like
— Both can be modeled by a graph with exponentially many nodes
— But (unlike GC), the TQBF graph is a tree of polynomial depth

TQBF has an algorithm that uses polynomial space

Space Bounded Complexity Classes

Space Bounded Complexity Classes

* Distinguish between a read-only input tape and
work tapes of a Turing Machine (TM).

* SPACE(s(n)) is the set of languages accepted by
deterministic TMs that always halt and use O(s(n))
work tape cells on inputs of length n.

 NSPACE(s(n)): replace “deterministic” by
“nondeterministic”. (Assume that regardless of
nondeterministic choices made, the TM halts.)

* s(n) > log nis space-constructible if there isa DTM
that on input 1" computes 15" in O(s(n)) space.

Space Bounded Complexity Classes

e PSPACE = Uc>0 SPACE(n¢)
e NPSPACE = Uc>0 NSPACE(n¢)

Space Bounded Complexity Classes

e PSPACE = Uc>0 SPACE(n¢)
e NPSPACE = Uc>0 NSPACE(n¢)

* Explain why PSPACE C EXP

Space Bounded Complexity Classes

e PSPACE = Uc>0 SPACE(n¢)
e NPSPACE = Uc>0 NSPACE(n¢)

* Explain why PSPACE C EXP

— A TM using O(n<) space has 2°") configurations on an
input of length n.

— |If the TM halts, none can be visited more than once on
any computation. So the TM uses time 20("°)

Space Bounded Complexity Classes

e PSPACE = Uc>0 SPACE(n¢)
e NPSPACE = Uc>0 NSPACE(n¢)

* Explain why PSPACE C EXP

Space Bounded Complexity Classes

e PSPACE = Uc>0 SPACE(n¢)
e NPSPACE = Uc>0 NSPACE(n¢)

 Explain why PSPACE < EXP
 Explain why NP € PSPACE

Space Bounded Complexity Classes

e PSPACE = Uc>0 SPACE(n¢)
e NPSPACE = Uc>0 NSPACE(n¢)

 Explain why PSPACE € EXP
 Explain why NP € PSPACE
e What about co-NP?

Space Bounded Complexity Classes

e PSPACE = Uc>0 SPACE(n¢)
e NPSPACE = Uc>0 NSPACE(n¢)

e What about NPSPACE?

Configuration Graph of NTM M on input w

head position

state

worktape contents

acc: unique
accepting

init: initial

configuration —>

configuration
Nodes represent configurations (state, head
position, work tape contents) of M on w
Edges represent transitions
Since M always halts, the graph is acyclic
If M is s(n)-space bounded, can you bound the
number of nodes of the graph as a function of |w|?

NPSPACE € EXP

* Let M be a NTM using O(n®) space..
e Exp-time algorithm for L(M): On input w:

— Write down the configuration graph of M on w;
size of the graph is 20(%I%)

— Check if the accepting configuration can be
reached from the initial configuration (use
depth first search or breadth first search)

NPSPACE € EXP

* Let M be a NTM using O(n®) space..
e Exp-time algorithm for L(M): On input w:
— Write down the configuration graph of M on w;
size of the graph is 20(/wI)

— Check if the accepting configuration can be
reached from the initial configuration (use
depth first search or breadth first search)

 More generally, if s(n) is space-constructible then
NSPACE(s(n)) € DTIME(20(()

Savitch’s Theorem: NSPACE(s(n)) S DSPACE(s(n)?)

Savitch’s Theorem: NSPACE(s(n)) S DSPACE(s(n)?)

* Proofidea: Let L be accepted by NTM M within c.s(n))
space and 255" time. We'll describe a deterministic

algorithm that accepts L in O(s(n)?) space.
* Fixinput w, let G be the configuration graph of M on w.

Savitch’s Theorem: NSPACE(s(n)) S DSPACE(s(n)?)

* Proofidea: Let L be accepted by NTM M within c.s(n))
space and 255" time. We'll describe a deterministic

algorithm that accepts L in O(s(n)?) space.
* Fixinput w, let G be the configuration graph of M on w.

* Let Reach(x,y,i) be true if there is a path of length < 2/
from node x to node y in G, and false otherwise.

* Oninput w, compute
Reach(init,acc,c.s(|w]))
and accept if and only if the function returns true

Savitch’s Theorem: NSPACE(s(n)) S DSPACE(s(n)?)

Reach(x,y,i) // does G have a path of length <2/ from x to y?

Savitch’s Theorem: NSPACE(s(n)) S DSPACE(s(n)?)

Reach(x,y,i) // does G have a path of length <2/ from x to y?

If i =0 then

If (x=y) or ((x,y) is an edge of G) Return True

Else Return False
Else

For each node z of G

If (Reach (x, z, i-1) and Reach(z, y, i-1))
Return True
Return False

Savitch’s Theorem: NSPACE(s(n)) S DSPACE(s(n)?)

 The space per recursion level is proportional to the
space, s(|w|), used by M on w.
* The recursion depthis i
* So, the recursion depthis c.s(|w]) on call
Reach(init, acc, c.s(|w])),
and the total space used is O(s(|w]|)2.

Savitch’s Theorem: NSPACE(s(n)) S DSPACE(s(n)?)

 The space per recursion level is proportional to the
space, s(|w|), used by M on w.
* The recursion depthis i
* So, the recursion depthis c.s(|w]) on call
Reach(init, acc, c.s(|w])),
and the total space used is O(s(|w]|)2.

* Note: Space constructability is useful for the proof, to
write down the bound c.s(|w]). However, the
algorithm could be re-run with successively larger
bounds until a sufficiently large one is found.

TQBF is PSPACE-complete

TQBF is PSPACE-complete

 Let L be a PSPACE language, accepted by TM M
within space c.s(n) and time 2¢:s(n)

e Goal: Poly-time reduction w = QBF(w) such that
w is in L iff QBF(w) is true.
e Equivalently, if Reach(x,y,i) is as before, then

Reach(init,acc,c.s(|w])) iff QBF(w) is true.

TQBF is PSPACE-complete

Reach(x,y,i) // does G have a path of length < 2/ from x to y?
1fi=0
Else
For each node z of G
If (Reach(x, z, i-1) and Reach(z, y, i-1))
Return True
Return False

First try at expressing this using logic:
3 config z: Reach(x,z,i-1) A\ Reach(z,y,i-1))

TQBF is PSPACE-complete

Reach(x,y,i) // does G have a path of length < 2/ from x to y?
1fi=0
Else
For each node z of G
If (Reach(x, z, i-1) and Reach(z, y, i-1))
Return True
Return False

First try at expressing this using logic:
3 config z: Reach(x,z,i-1) A\ Reach(z,y,i-1))

Problem: formula size will blow up when expanding the
Reach expressions, because of doubling

TQBF is PSPACE-complete

Reach(x,y,i) // does G have a path of length < 2/ from x to y?
1fi=0
Else
For each node z of G
If (Reach(x, z, i-1) and Reach(z, y, i-1))
Return True
Return False

Better way of expressing this using logic:
3 config z V v€{True, False} 3 configs z',z"
(v=2',2"=x,z2) \ (-v=>2',z"=z,y) \ Reach(z',z",i-1)

TQBF is PSPACE-complete

Overall QBF:
1z,Vv,32z,,z,/ 32,Vv,...32, 2"
(2,2, 2,V4, 24527") eeey 200 Vi, 2,0 20"

where m = c.s(n) and ¢ encodes that

* 7, and z,"' are the initial and accepting configs of M on w
« foreach i, ifv;=true then z/, z;"= 7, ', z,

* foreachj, if v; = false then z/, z;"= 7, z; ;"

* all of the z;, z;' and z;" encode valid configurations

e z,'=2,"0r(z,,2z,")is an edge of G (base case)

Periodic Graph Colouring

* Motivation: schedule jobs at the same time
period each day; want to minimize processors

* Example:
A Ao

A
* Succinct representation: / \
B Ic

Periodic Graph Colouring

A

/N

B Ic

e Succinct graph is 3-colourable, suggesting that
we need 3 processors (since two jobs in

overlapping time intervals cannot be
scheduled on the same processor)

D

* But the infinite graph is actually 2-colourable,
and so we can use just 2 processors!

B ——C—D -t C y9—¢D B)—Cy—=D

Periodic Graph Colouring

* A periodic graph G is an infinite undirected
graph, specified by a triple (V,E,E')

e G's nodes:

—U V, whereV; ={v; | vin V}, foralliin Z
* G'sedges: (UE;)U (UE;)

— where E; = {{u; vi} | {u,v}in E}

—and E;' = {{u; v;;1}] (u,v) in E'}

Periodic Graph Colouring

* Instance: A periodic graph G = (V,E,E') and a positive
number k
* Problem: Is G k-colourable?

A
/ \
B Ic
* Can you suggest a nondeterministic algorithm for

Periodic Graph Colouring that runs in polynomial
space?

D

Summary

 PSPACE refines the categorization of problems within
EXP: those that can be solved with only polynomial
space vs those that seem to need both exponential
time and space

 NPSPACE = PSPACE! (Savitch’s Theorem)

 We can leverage Savitch’s Theorem to simplify proofs
that some problems are in PSPACE (e.g., Periodic
Graph Colouring, which also happens to be PSPACE-

complete.

Summary

Decidable

Periodic Graph
(=NPSPACE) Colouring

Next Class

* Space bounded classes within P
 Arora-Barak, 4.1-4.3; 6.5

