
Time Bounded Complexity Classes,
Time Hierarchy Theorem

• Instance: Positive integers N, M (in binary)

• Problem: Does N have a prime factor in the range
[1..M]?

Show that Factoring is in NP. Useful facts:

• Any integer > 1 has a unique factorization as the
product of primes.

• Primality testing is in P [Agrawal-Kayal-Saxena 2004].

Factoring

• Instance: Positive integers N, M (in binary)
• Problem: Does N have a prime factor in the range

[1..M]?

Similar reasoning shows that Factoring is in co-NP!

Factoring

• A SSG is a directed graph with a start node, two sink
nodes, and a partition of V into three sets: Min, Max,
and Average.

• The game starts with a token at s.
• When the token is at node v, it is moved to a

successor u of v chosen as follows:
– If v ∈ Max then player Pmax chooses u.
– If v ∈ Min, then player Pmin chooses u.
– If v ∈ Average then u is chosen randomly.

• Pmax wins if the token reaches sink node s1 and Player
2 wins if token reaches sink node s2.

Simple Stochastic Games (SSGs)
start

• A SSG is a directed graph with a start node, two sink

nodes, and a partition of V into three sets: Min, Max,

and Average.

• The game starts with a token at the start node.

• From a node v, the token moves to a successor u of v

chosen as follows:

– If v ∈ Max then player 1 chooses u.

– If v ∈ Min, then player 0 chooses u.

– If v ∈ Average then u is chosen randomly.

• Player 0 (1) wins if the token reaches the 0-sink (1-

sink)

Simple Stochastic Games (SSGs)

• Instance: A Simple Stochastic Game
• Problem: Does player 1 win with probability > 1/2?

Simple Stochastic Games (SSGs)

Let’s label each node with the probability that player 1
wins if the game starts at that node.

Simple Stochastic Games (SSGs)

Let’s label each node with the probability that player 1
wins if the game starts at that node.

Simple Stochastic Games (SSGs)

Let’s label each node with the probability that player 1
wins if the game starts at that node.

Simple Stochastic Games (SSGs)

Let’s label each node with the probability that player 1
wins if the game starts at that node.

Simple Stochastic Games (SSGs)

• A certificate assigns node labels (prob of winning):
– label of 1-sink is 1 and value of 0-sink is 0
– label of a max/min/average node is the

max/min/average of its children’s labels
• SSG’s that halt with probability 1 (regardless of

players’ strategies) have unique certificates
• By guessing a certificate, it is possible to verify in

polynomial time whether or not player 1 wins, so
SSG is in NP ∩ co-NP.

Simple Stochastic Games (SSGs)

Decidable

Summary: New Problems and Complexity Classes

NP

P

NPCEXP

NEXP-complete

NEXP
…

Generalized
Checkers

EXP-complete

Succinct SAT

co-NPC

co-NP
Tautology

SAT

Factoring
Simple Stochastic
Games

Undecidable
Halting
Wang Tiling

Theorem (rough version): If f(n) “<<“ g(n) then
DTIME(f(n)) ⊈ DTIME(g(n))

Proof ideas:
• Diagonalization: construct Mg that runs in time O(g(n)),

so that for every TM Mx that runs in O(f(n)) time, Mg
does the opposite of Mx on some input.

• Challenges:
– Making sure that Mg halts within O(g(n)) time

... while still having enough time to fully simulate Mx on
some large enough input w

A Time Hierarchy Theorem

Theorem (rough version): If f(n) “<<“ g(n) then

DTIME(f(n)) ⊈ DTIME(g(n))

• Is Succinct SAT or Generalized Checkers in P?

• No, since these problems are hard for EXP. If they were
in P then we would have EXP = P, contradicting the
Time Hierarchy theorem

A Time Hierarchy Theorem

Theorem (rough version): If f(n) “<<“ g(n) then
DTIME(f(n)) ⊈ DTIME(g(n))

Proof ideas:
• Diagonalization: construct Mg that runs in time O(g(n)),

so that for every TM Mx that runs in O(f(n)) time, Mg
does the opposite of Mx on some input.

• Challenges:
– Making sure that Mg halts within O(g(n)) time

... while still having enough time to fully simulate Mx on
some large enough input w

A Time Hierarchy Theorem

Theorem (rough version): If f(n) “<<“ g(n) then
DTIME(f(n)) ⊈ DTIME(g(n))

Proof ideas:
• Diagonalization: construct Mg that runs in time O(g(n)),

so that for every TM Mx that runs in O(f(n)) time, Mg
does the opposite of Mx on some input w.

• Challenges:
– Making sure that Mg halts within O(g(n)) time

... while still having enough time to fully simulate Mx on
some large enough input w

• See handout for details (covered in class)

A Time Hierarchy Theorem

Theorem (rough version): If f(n) “<<“ g(n) then
DTIME(f(n)) ⊈ DTIME(g(n))

Proof ideas:
• Diagonalization: construct Mg that runs in time O(g(n)),

so that for every TM Mx that runs in O(f(n)) time, Mg
does the opposite of Mx on some input w.

• Challenges: Making sure that
– Mg halts within O(g(n)) time …
– while still having enough time to fully simulate Mx …
– on some large enough input w

• See handout for details (covered in class)

A Time Hierarchy Theorem

Theorem (rough version): If f(n) “<<“ g(n) then
DTIME(f(n)) ⊈ DTIME(g(n))

Proof ideas:
• Diagonalization: construct Mg that runs in time O(g(n)),

so that for every TM Mx that runs in O(f(n)) time, Mg
does the opposite of Mx on some input w.

• Challenges: Making sure that
– Mg halts within O(g(n)) time …
– while still having enough time to fully simulate Mx …
– on some large enough input w

• See handout for details (covered in class)

A Time Hierarchy Theorem

• Space bounded complexity classes
• See Chapter 4.1, 4.2 of Arora-Barak

Next Class

