Time Bounded Complexity Classes, Time Hierarchy Theorem

Factoring

- **Instance**: Positive integers *N*, *M* (in binary)
- **Problem**: Does *N* have a prime factor in the range [1..*M*]?

Show that Factoring is in NP. Useful facts:

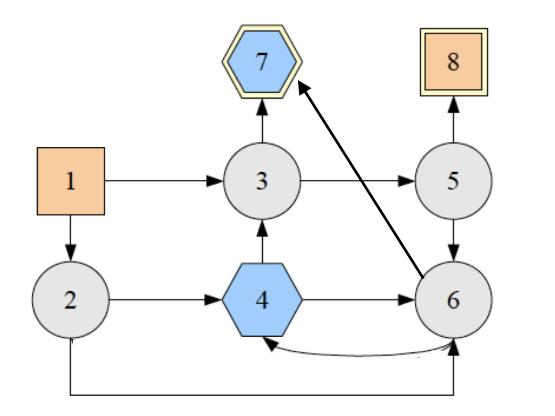
- Any integer > 1 has a unique factorization as the product of primes.
- Primality testing is in P [Agrawal-Kayal-Saxena 2004].

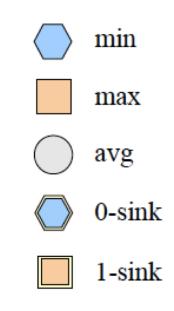
Factoring

- **Instance**: Positive integers *N*, *M* (in binary)
- **Problem**: Does *N* have a prime factor in the range [1..*M*]?

Similar reasoning shows that Factoring is in co-NP!

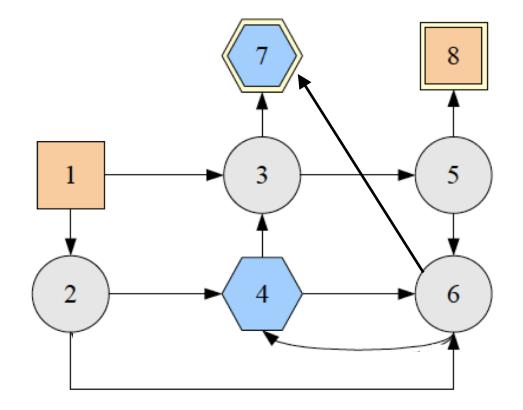
• A SSG is a directed graph with a start node, two sink nodes, and a partition of V into three sets: Min, Max, and Average.

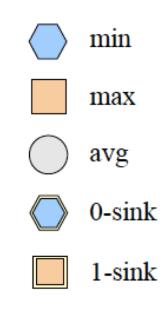


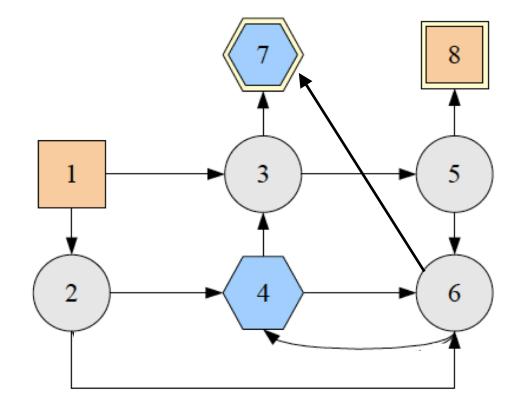


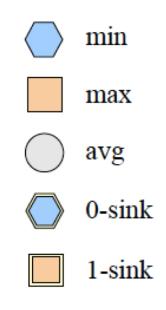
- A SSG is a directed graph with a start node, two sink nodes, and a partition of V into three sets: Min, Max, and Average.
- The game starts with a token at the start node.
- From a node v, the token moves to a successor u of v chosen as follows:
 - If $v \in Max$ then player 1 chooses u.
 - If $v \in Min$, then player 0 chooses u.
 - If $v \in$ Average then u is chosen randomly.
- Player 0 (1) wins if the token reaches the 0-sink (1-sink)

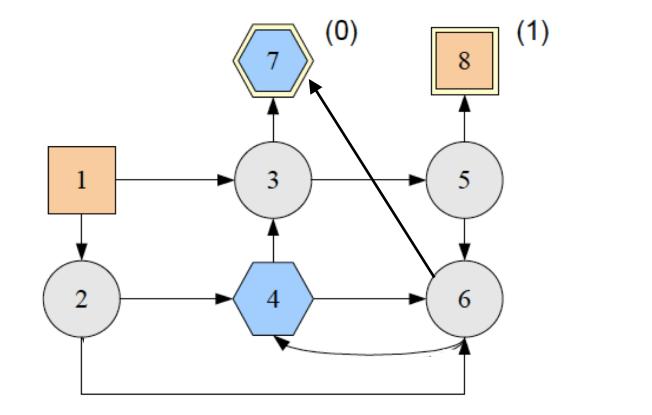
- Instance: A Simple Stochastic Game
- **Problem:** Does player 1 win with probability > 1/2?

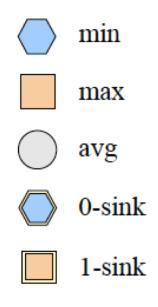


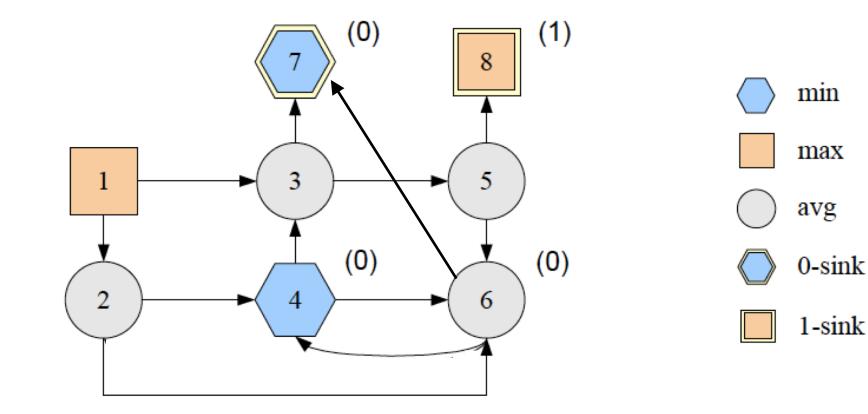


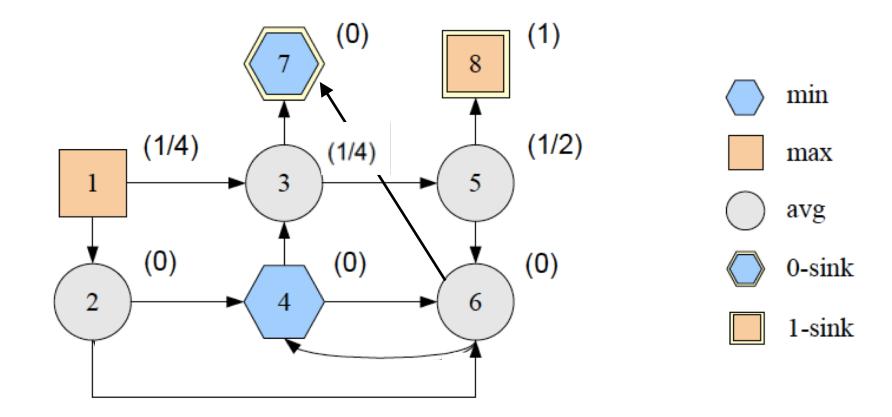






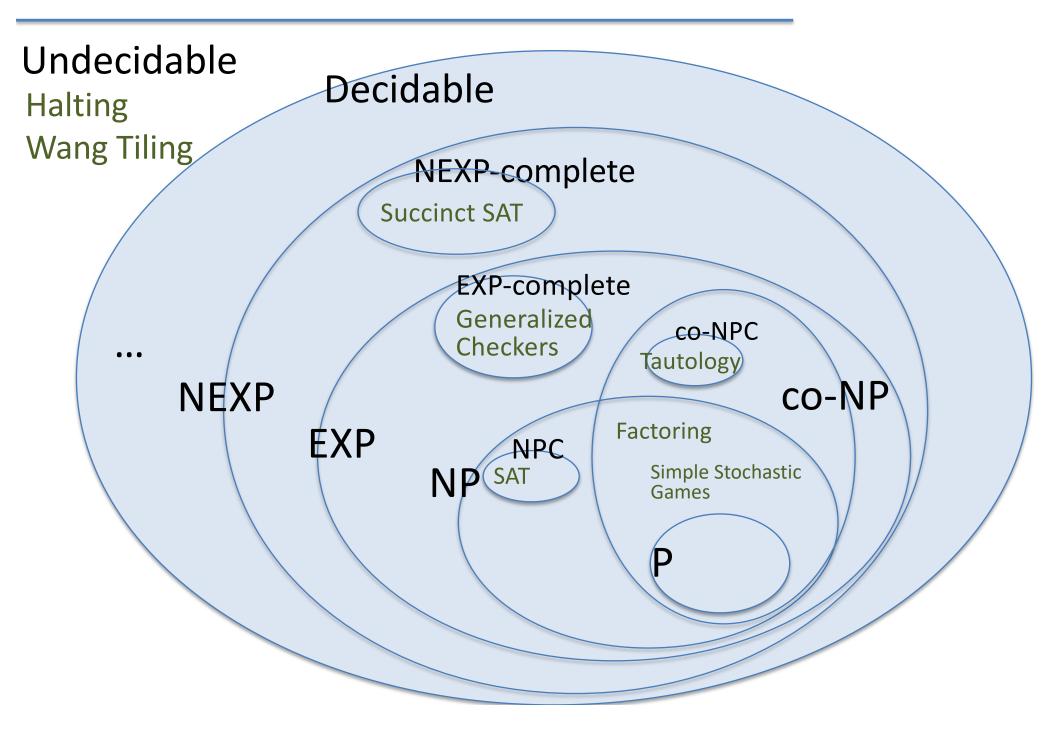






- A certificate assigns node labels (prob of winning):
 - label of 1-sink is 1 and value of 0-sink is 0
 - label of a max/min/average node is the max/min/average of its children's labels
- SSG's that halt with probability 1 (regardless of players' strategies) have *unique certificates*
- By guessing a certificate, it is possible to verify in polynomial time whether or not player 1 wins, so SSG is in NP ∩ co-NP.

Summary: New Problems and Complexity Classes



A Time Hierarchy Theorem

Theorem (rough version): If f(n) "<<" g(n) then DTIME(f(n)) \nsubseteq DTIME(g(n))

- Is Succinct SAT or Generalized Checkers in P?
- No, since these problems are hard for EXP. If they were in P then we would have EXP = P, contradicting the Time Hierarchy theorem

A Time Hierarchy Theorem

Theorem (rough version): If f(n) "<<" g(n) then DTIME(f(n)) \nsubseteq DTIME(g(n))

Proof ideas:

Diagonalization: construct M_g that runs in time O(g(n)), so that for every TM M_x that runs in O(f(n)) time, M_g does the opposite of M_x on some input w.

Proof ideas:

- Diagonalization: construct M_g that runs in time O(g(n)), so that for every TM M_x that runs in O(f(n)) time, M_g does the opposite of M_x on some input w.
- Challenges: Making sure that
 - M_g halts within O(g(n)) time ...
 - while still having enough time to fully simulate M_x ...
 - on some large enough input w

Proof ideas:

- Diagonalization: construct M_g that runs in time O(g(n)), so that for every TM M_x that runs in O(f(n)) time, M_g does the opposite of M_x on some input w.
- *Challenges:* Making sure that
 - M_g halts within O(g(n)) time ...
 - while still having enough time to fully simulate M_x ...
 - on some large enough input w
- See handout for details (covered in class)

- Space bounded complexity classes
- See Chapter 4.1, 4.2 of Arora-Barak