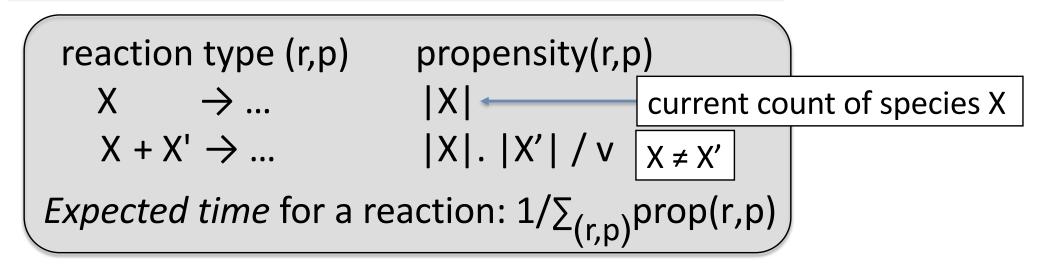
Molecular Programming Models

Expected time to stably compute predicates CRNs with probability of error

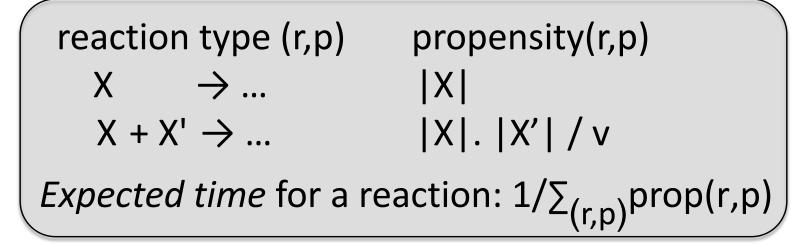
Based on notes by Dave Doty

Assumptions for stable computation

- Total number of inputs is $n = n_1 + n_2 + ... + n_k$
- The volume is (proportional to) n
- For now: throughout a computation, the total number of species is O(n)

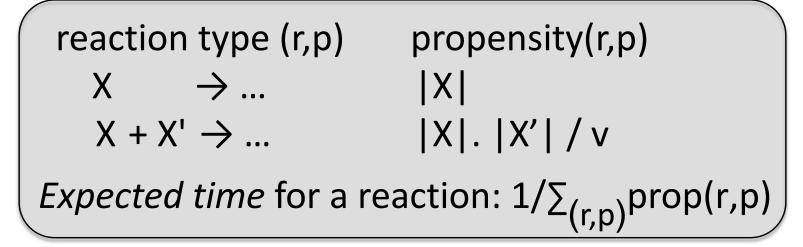


reaction type (r,p) propensity(r,p) X → ... |X|X + X' → ... |X|. |X'| / v*Expected time* for a reaction: $1/\sum_{(r,p)} prop(r,p)$



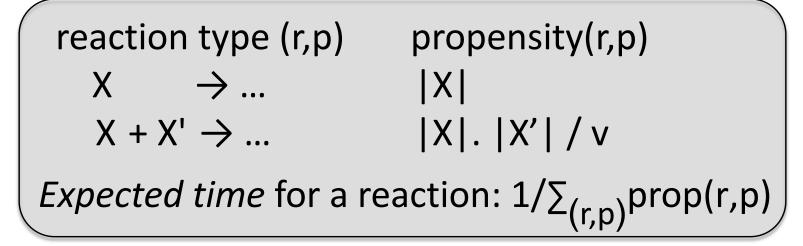
"No communication" example: multiply by 2: X --> 2Y:

• Let Ti be the expected time for a reaction, when |X| = i



"No communication" example: multiply by 2: X --> 2Y:

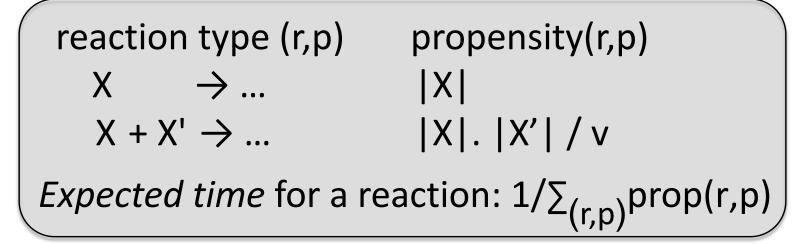
- Let Ti be the expected time for a reaction, when |X| = i
- Then Ti = 1/i



"No communication" example: multiply by 2: X --> 2Y:

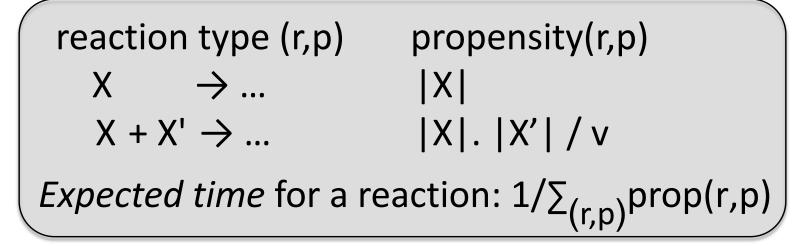
- Let Ti be the expected time for a reaction, when |X| = i
- Then Ti = 1/i
- Expected time for all X's to react is

 $\sum_{i} Ti = \sum_{i} 1/i = \Theta(\log n)$



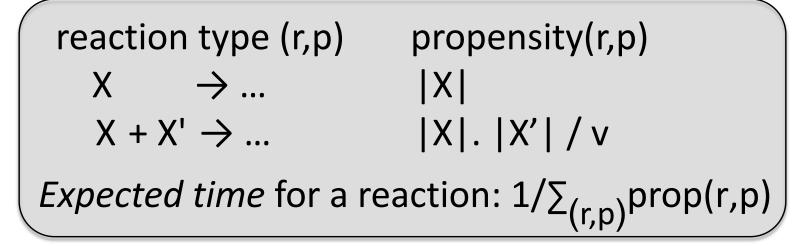
"Pairing off" example: Min(n1,n2): X1 + X2 --> Y:

• Suppose that $n1 \ge n2$



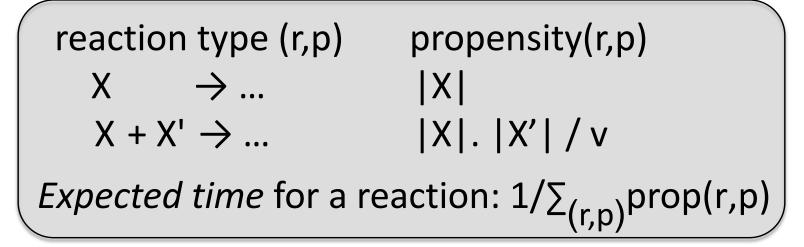
"Pairing off" example: Min(n1,n2): X1 + X2 --> Y:

- Suppose that $n1 \ge n2$
- Let Ti be exp. time for a reaction when |X2| = i



"Pairing off" example: Min(n1,n2): X1 + X2 --> Y:

- Suppose that $n1 \ge n2$
- Let Ti be exp. time for a reaction when |X2| = i
- Then Ti = $n/(i|X1|) \le n/i^2$



"Pairing off" example: Min(n1,n2): X1 + X2 --> Y:

- Suppose that $n1 \ge n2$
- Let Ti be exp. time for a reaction when |X2| = i
- Then Ti = $n/(i|X1|) \le n/i^2$
- Expected time for all reactions is

$$\sum_{i} Ti = n \sum_{i} 1/i^2 = O(n)$$

• $n_1 - n_2$ (assume that $n_1 \ge n_2$): X1 \rightarrow Y X2 + Y \rightarrow Ø

•
$$n_1 - n_2$$
 (assume that $n_1 \ge n_2$): X1 \rightarrow Y
X2 + Y \rightarrow Ø

 To get an upper bound on the expected time, assume that the second reaction doesn't start until the first completes

•
$$n_1 - n_2$$
 (assume that $n_1 \ge n_2$): X1 \rightarrow Y
X2 + Y \rightarrow Ø

- To get an upper bound on the expected time, assume that the second reaction doesn't start until the first completes
- Then sum the expected time for the first to complete ("no communication") plus the expected time for the second to complete given that the first has completed ("pairing off"): O(log n) + O(n) = O(n)

Exercise:

- max(n₁,n₂): X1 \rightarrow Y + Z1 X2 \rightarrow Y + Z2 Z1 + Z2 \rightarrow K
 - $K + Y \rightarrow \emptyset$

Exercise:

- max(n₁,n₂): X1 \rightarrow Y + Z1 X2 \rightarrow Y + Z2 Z1 + Z2 \rightarrow K K + Y \rightarrow Ø
 - Assume that the first two reactions complete before the third starts, and that the third completes before the fourth starts

Exercise:

- max(n₁,n₂): X1 \rightarrow Y + Z1 X2 \rightarrow Y + Z2 Z1 + Z2 \rightarrow K K + Y \rightarrow Ø
 - Assume that the first two reactions complete before the third starts, and that the third completes before the fourth starts
 - Then we have "no communication" followed by "pairing off", and another "pairing off".
 - Total expected time is O(n)

Exercise:

• $n_1 < n_2$? Initial context L_N $L_N + X2 \rightarrow L_Y$ $L_Y + X1 \rightarrow L_N$

Exercise:

• $n_1 < n_2$? Initial context L_N

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$

- The reactions must alternate
- Expected time for first, when i copies of X2 left, is ...?

reaction type (r,p) propensity(r,p) X → ... |X|X + X' → ... |X|. |X'| / v*Expected time* for a reaction: $1/\sum_{(r,p)} prop(r,p)$

Exercise:

• $n_1 < n_2$? Initial context L_N

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$

- The reactions must alternate
- Expected time for first, when i copies of X2 left, is n/i

reaction type (r,p)propensity(r,p)X→ ...|X|X + X' → ...|X|. |X'| / vExpected time for a reaction: $1/\Sigma_{(r,p)}$ prop(r,p)

Exercise:

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$

- The reactions must alternate
- Expected time for first, when i copies of X2 left, is n/i

Exercise:

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$

- The reactions must alternate
- Expected time for first, when i copies of X2 left, is n/i
- Expected time for second, when i copies of X1 left, is ...

Exercise:

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$

- The reactions must alternate
- Expected time for first, when i copies of X2 left, is n/i
- Expected time for second, when i copies of X1 left, is n/i

Exercise:

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$

- The reactions must alternate
- Expected time for first, when i copies of X2 left, is n/i
- Expected time for second, when i copies of X1 left, is n/i
- Total expected time is

Exercise:

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$

- The reactions must alternate
- Expected time for first, when i copies of X2 left, is n/i
- Expected time for second, when i copies of X1 left, is ...
- Total expected time is $2n \sum_{i} 1/i = O(n \log n)$

Exercise:

• $n_1 < n_2$? Initial context L_N $L_N + X2 \rightarrow L_Y$ $L_Y + X1 \rightarrow L_N$

Exercise:

• $n_1 < n_2$? Initial context L_N $L_N + X2 \rightarrow L_Y$ $L_Y + X1 \rightarrow L_N$ $X1 + X2 \rightarrow \emptyset$

Exercise:

• $n_1 < n_2$? Initial context L_N

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$
$$X1 + X2 \rightarrow \emptyset$$

 Assume that the last reaction finishes before the first two start

Exercise:

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$
$$X1 + X2 \rightarrow \emptyset$$

- Assume that the last reaction finishes before the first two start
- The last completes in O(n) expected time ("pairing off")

Exercise:

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$
$$X1 + X2 \rightarrow \emptyset$$

- Assume that the last reaction finishes before the first two start
- The last completes in O(n) expected time ("pairing off")
- Then, once one of the remaining two happens, a stable configuration is reached

Exercise:

$$L_{N} + X2 \rightarrow L_{Y}$$
$$L_{Y} + X1 \rightarrow L_{N}$$
$$X1 + X2 \rightarrow \emptyset$$

- Assume that the last reaction finishes before the first two start
- The last completes in O(n) expected time ("pairing off")
- Then, once one of the remaining two happens, a stable configuration is reached
- So total expected time is O(n)

Threshold set X: for some constants b, a_1 , a_2 ,..., $a_k \in \mathbb{Z}$, X = { $n \in \mathbb{N}^k$ | $a_1 \cdot n_1 + a_2 \cdot n_2 + ... + a_k \cdot n_k < b$ }

 More generally, there is a CRN to stably compute Threshold in O(n) expected time

$$L_0 + X1 \rightarrow L_1$$
$$L_1 + X1 \rightarrow L_0 L$$

$$L_0 + X1 \rightarrow L_1$$
$$L_1 + X1 \rightarrow L_0 L$$

- The reactions must alternate
- Expected time for either, when i copies of X1 left, is n/i
- Total expected time is $2n \sum_{i} 1/i = O(n \log n)$
- Is there a faster CRN?

$$L_0 + X1 \rightarrow L_1$$

$$L_1 + X1 \rightarrow L_0 L$$

$$X1 + X1 \rightarrow \emptyset$$

- Assume that the last reaction finishes before the first two start
- The last completes in O(n) expected time ("pairing off)
- Then, in at most one more reaction (which takes O(n) expected time), a stable configuration is reached
- So total expected time is O(n)

$$L_0 + X1 \rightarrow L_1$$

$$L_1 + X1 \rightarrow L_0 L$$

$$X1 + X1 \rightarrow \emptyset$$

Exercise: Is n₁ odd ? Leaderless

- $L_0 + X_1 \rightarrow L_1$ // even so far, then X_1 found, switch to odd
- $L_1 + X_1 \rightarrow L_0$ // odd so far, then X_1 found, switch to even
- $X_1 \rightarrow L_1$ // one X_1 found, so odd
- $L_0 + L_1 \rightarrow L_1$ // even plus odd is odd
- $L_1 + L_1 \rightarrow L_0$ // odd plus odd is even

Exercise: Is n₁ odd ? Leaderless

- $L_0 + X_1 \rightarrow L_1$ // even so far, then X₁ found, switch to odd
- $L_1 + X_1 \rightarrow L_0$ // odd so far, then X_1 found, switch to even
- $X_1 \rightarrow L_1$ // one X_1 found, so odd
- $L_0 + L_1 \rightarrow L_1$ // even plus odd is odd
- $L_1 + L_1 \rightarrow L_0$ // odd plus odd is even
- Unimolecular reaction completes in O(log n) exp. time
- The last two complete in O(n) exp. time ("pairing off)

Exercise: Is n₁ odd ? Leaderless

- $L_0 + X_1 \rightarrow L_1$ // even so far, then X₁ found, switch to odd
- $L_1 + X_1 \rightarrow L_0$ // odd so far, then X_1 found, switch to even
- $X_1 \rightarrow L_1$ // one X_1 found, so odd
- $L_0 + L_1 \rightarrow L_1$ // even plus odd is odd
- $L_1 + L_1 \rightarrow L_0$ // odd plus odd is even
- Unimolecular reaction completes in O(log n) exp. time
- The last two complete in O(n) exp. time ("pairing off)
- Then no more X1's and just one L (either L₀ or L₁), so no more reactions
- Total expected time is O(n)

Mod set X: for some constants $a_1, a_2, ..., a_k \in \mathbb{Z}$, b, $c \in \mathbb{N}$ X = { $n \in \mathbb{N}^k | a_1.n_1 + a_2.n_2 + ... + a_k.n_k = b \mod c$ }

 More generally, there is a CRN to stably compute Mod in O(n) expected time Claim: All semilinear predicates can be stably decided in O(n) expected time

Proof: Follows by analyzing CRNs for finite union, intersection, and complement, as well as threshold and mod sets. Claim: All semilinear predicates can be stably decided in O(n) expected time

Proof: Follows by analyzing CRNs for finite union, intersection, and complement, as well as threshold and mod sets.

Note that some semilinear predicates, e.g., "Multiply by 2", can be stably decided in O(log n) expected time.

Other notions of CRN predicate computation

Committing CRNs

- A CRN that stably decides A is a *committing* CRN if, for any initial configuration, it is possible either to reach a "yes" configuration or a "no" configuration, but not both
- Intuitively, a committing CRN "knows" when it is done

Committing CRNs

- A CRN that stably decides A is a *committing* CRN if, for any initial configuration, it is possible either to reach a "yes" configuration or a "no" configuration, but not both
- Intuitively, a committing CRN "knows" when it is done
- Unfortunately, committing protocols can only decide the sets A = N^k and A = Ø (the "constant" predicates)

CRNs with bounded error

- Let C be a CRN and x an input to C.
- Let Prob[C accepts x] be the probability that C reaches a "yes"-stable configuration on input x
- A CRN C stably decides a predicate A with error probability ε if
 - for all x in A, Prob[C accepts x] $\ge 1 \varepsilon$
 - for all x not in A, Prob[C accepts x] $\leq \epsilon$

	committing	stable
Prob correct = 1	constant	semilinear
Bounded error	computable	

	committing	stable
Prob correct = 1	constant	semilinear
Bounded error	computable	

To show how CRNs can decide any computable predicate (by a Turing machine), we'll introduce register (counter) machines A *register machine* is a finite sequence of instructions from the following set:

- accept
- reject
- goto j // go to the jth instruction
- inc r_i // add one to counter Rj
- dec r_i, j // if r_i > 0, subtract one from r_i, otherwise
 // go to the jth instruction

The input $n_1, ..., n_k$ is the initial value of the first k counters.

Predicate: Is n₁ odd?

- 1. dec n₁, 4
- 2. dec n₁, 5
- 3. goto 1
- 4.
- 5.

Predicate: Is n₁ odd?

- 1. dec n₁, 4
- 2. dec n₁, 5
- 3. goto 1
- 4. reject
- 5. accept

Predicate: Is $n_1 < n_2$?

- 1. dec n₂, 6
- 2. dec n₁, 4
- 3. goto 1
- 4.
- 5.
- 6.

Predicate: Is $n_1 < n_2$?

- 1. dec n₂, 6
- 2. dec n₁, 4
- 3. goto 1
- 4.
- 5.
- 6. reject

Predicate: Is $n_1 < n_2$?

- 1. dec n₂, 5
- 2. dec n₁, 4
- 3. goto 1
- 4. accept
- 5. reject

Predicate: Is $n_1 < n_2$? Predicate: Is $n_1 = n_2$?

Register machine:

- 1. dec n₂, 5
- 2. dec n₁, 4
- 3. goto 1
- 4. accept
- 5. reject

Predicate: $ls n_1 < n_2$?

Register machine:

- 1. dec n₂, 6
- 2. dec n₁, 4
- 3. goto 1
- 4. dec n₂, 6
- 5. accept
- 6. reject

Predicate: Is
$$n_1 = n_2$$
?

- 1. dec n₂, 4
- 2. dec n₁,
- 3. goto 1

Predicate: Is $n_1 < n_2$?

Register machine:

- 1. dec n₂, 6
- 2. dec n₁, 4
- 3. goto 1
- 4. dec n₂, 6
- 5. accept
- 6. reject

Predicate: Is $n_1 = n_2$?

- 1. dec n₂, 4
- 2. dec n₁,
- 3. goto 1
- 4. dec n₁, 6

Predicate: Is $n_1 < n_2$?

Register machine:

- 1. dec n₂, 6
- 2. dec n₁, 4
- 3. goto 1
- 4. dec n₂, 6
- 5. accept
- 6. reject

Predicate: Is $n_1 = n_2$?

- 1. dec n₂, 4
- 2. dec n₁,
- 3. goto 1
- 4. dec n₁, 6
- 5. reject
- 6. accept

Predicate: Is $n_1 < n_2$?

Register machine:

- 1. dec n₂, 6
- 2. dec n₁, 4
- 3. goto 1
- 4. dec n₂, 6
- 5. accept
- 6. reject

Predicate: Is $n_1 = n_2$?

- 1. dec n₂, 4
- 2. dec n₁, 5
- 3. goto 1
- 4. dec n₁, 6
- 5. reject
- 6. accept

Predicate:
$$ls n_1^2 = n_2$$
?

Register machine:

copy $r_1 \rightarrow r_3$ $r_4 \leftarrow r_1 \times r_3$ $r_2 = r_4$?

Handy subroutines

flush
$$r_1 \rightarrow r_2$$
, r_3 :
// set r_2 , r_3 to the initial value
// of r_1 and set r_1 to 0

- 1. dec r₁, 5
- 2. inc r₂
- 3. inc r₃
- 4. goto 1
- 5. ...

Handy subroutines

- 2. inc r₂
- 3. inc r₃
- 4. goto 1
- 5. ...

flush $r_1 \rightarrow r_2$: similar, but no r_3

Handy subroutines

flush
$$r_1 \rightarrow r_2, r_3$$
:
// set r_2, r_3 to the initial value
// of r_1 and set r_1 to 0
1. dec $r_1, 5$
2. inc r_2
3. inc r_3
4. goto 1
5. ...
 $copy r_1 \rightarrow r_2$:
// copy r_1 to r_2
flush $r_1 \rightarrow r_2, r_3$
flush $r_3 \rightarrow r_1$

flush $r_1 \rightarrow r_2$: similar, but no r_3

Handy subroutines

 $r_1 \leftarrow r_2 x r_3$: // add r_2 times r_3 to r_1

Handy subroutines

$$r_1 \leftarrow r_2 x r_3$$
: // add r_2 times r_3 to r_1

1. dec r₂, 7

- 2. copy $r_3 \rightarrow r_4$
- 3. dec r₄, 6
- 4. inc r₁
- 5. goto 3
- 6. goto 1

7. ...

While $r_2 > 0$ dec r_2 While $r_3 > 0$ dec r_3 inc r_1

Register machines can simulate Turing machines

• A stack machine can simulate a Turing machine

• A register machine can simulate a stack machine

Register machines can simulate Turing machines

- A stack machine can simulate a Turing machine
 - Store left part of TM tape, including tape head, on one stack
 - Store rest of TM tape on another stack
 - Simulate a TM transition via pops and pushes
- A register machine can simulate a stack machine

Register machines can simulate Turing machines

- A stack machine can simulate a Turing machine
 - Store left part of TM tape, including tape head, on one stack
 - Store rest of TM tape on another stack
 - Simulate a TM transition via pops and pushes
- A register machine can simulate a stack machine
 - Represent binary stack using a unary counter
 - Push "0" : double the counter
 - Push"1" : double plus increment
 - Pop: divide counter by 2; test whether even or odd to determine value at top of stack

CRNs can simulate register machines

- One species R_i per register
- Initial count of R_i is n_i if R_i is an input register, and is 0 otherwise
- One species L_i for each instruction number i
- Initial context is L₁
- Instructions:

accept	$L_i \to Y$
reject	$L_i \to N$
goto k	$L_i \to L_k$
finc r_j	$L_i \to L_{i+1} + R_j$
dec r_j, k	$L_i + R_j \to L_{i+1}$
	???

CRNs can simulate register machines

- One species R_i per register
- Initial count of R_i is n_i if R_i is an input register, and is 0 otherwise
- One species L_i for each instruction number i
- Initial context is L₁
- Instructions:

accept	$L_i \to Y$
reject	$L_i \to N$
goto k	$L_i \to L_k$
finc r_j	$L_i \to L_{i+1} + R_j$
dec r_j,k	$L_i + R_j \to L_{i+1}$
	$L_i \to L_k$

CRNs can simulate register machines

Probability of error at *each* decrement is

$$1/(1 + r_{j}/v) = v/(v + r_{j})$$

We need to reduce the error!