
Molecular Programming Models

Expected time to stably compute predicates
CRNs with probability of error

Based on notes by Dave Doty

Assumptions for stable computation

• Total number of inputs is n = n1 + n2 + … + nk
• The volume is (proportional to) n
• For now: throughout a computation, the total

number of species is O(n)

CRNs: Expected runtime analysis

CRNs: Expected runtime analysis
reaction type (r,p) propensity(r,p)

X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

current count of species X
X ≠ X’

CRNs: Expected runtime analysis
reaction type (r,p) propensity(r,p)

X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

“No communication” example: multiply by 2: X --> 2Y:
• Let Ti be the expected time for a reaction, when |X| = i
• Then Ti = 1/i
• Expected time for all X’s to react is

∑i Ti = ∑i 1/i = ϴ(log n)

CRNs: Expected runtime analysis
reaction type (r,p) propensity(r,p)

X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

“No communication” example: multiply by 2: X --> 2Y:
• Let Ti be the expected time for a reaction, when |X| = i
• Then Ti = 1/i
• Expected time for all X’s to react is

∑i Ti = ∑i 1/i = ϴ(log n)

CRNs: Expected runtime analysis
reaction type (r,p) propensity(r,p)

X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

“No communication” example: multiply by 2: X --> 2Y:
• Let Ti be the expected time for a reaction, when |X| = i
• Then Ti = 1/i
• Expected time for all X’s to react is

∑i Ti = ∑i 1/i = ϴ(log n)

CRNs: Expected runtime analysis
reaction type (r,p) propensity(r,p)

X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

“Pairing off” example: Min(n1,n2): X1 + X2 --> Y:
• Suppose that n1 ≥ n2
• Let Ti be exp. time for a reaction when |X1| = i

• Then Ti = n/(i(n1-n2+i) ≤ n/i2

• Expected time for all X’s to react is
∑i Ti = n∑i 1/i2 = O(n)

CRNs: Expected runtime analysis

reaction type (r,p) propensity(r,p)
X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

“Pairing off” example: Min(n1,n2): X1 + X2 --> Y:
• Suppose that n1 ≥ n2
• Let Ti be exp. time for a reaction when |X2| = i

• Then Ti = n/(i(n1-n2+i) ≤ n/i2

• Expected time for all X’s to react is
∑i Ti = n∑i 1/i2 = O(n)

CRNs: Expected runtime analysis

reaction type (r,p) propensity(r,p)
X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

“Pairing off” example: Min(n1,n2): X1 + X2 --> Y:
• Suppose that n1 ≥ n2
• Let Ti be exp. time for a reaction when |X2| = i

• Then Ti = n/(i|X1|) ≤ n/i2

• Expected time for all X’s to react is
∑i Ti = n∑i 1/i2 = O(n)

CRNs: Expected runtime analysis

reaction type (r,p) propensity(r,p)
X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

“Pairing off” example: Min(n1,n2): X1 + X2 --> Y:

• Suppose that n1 ≥ n2

• Let Ti be exp. time for a reaction when |X2| = i

• Then Ti = n/(i|X1|) ≤ n/i2

• Expected time for all reactions is

∑i Ti = n∑i 1/i2 = O(n)

CRNs: Expected runtime analysis

reaction type (r,p) propensity(r,p)
X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

• n1 – n2 (assume that n1 ≥ n2): X1 à Y
X2 + Y à ∅

CRNs: Expected runtime analysis

• n1 – n2 (assume that n1 ≥ n2): X1 à Y
X2 + Y à ∅

• To get an upper bound on the expected time, assume
that the second reaction doesn’t start until the first
completes

• Then sum the expected time for the first to complete
(“no communication”) plus the expected time for the
second to complete given that the first has
completed (“pairing off”): O(log n) + O(n) = O(n)

CRNs: Expected runtime analysis

• n1 – n2 (assume that n1 ≥ n2): X1 à Y
X2 + Y à ∅

• To get an upper bound on the expected time, assume
that the second reaction doesn’t start until the first
completes

• Then sum the expected time for the first to complete
(“no communication”) plus the expected time for the
second to complete given that the first has
completed (“pairing off”): O(log n) + O(n) = O(n)

CRNs: Expected runtime analysis

Exercise:
• max(n1,n2): X1 à Y + Z1

X2 à Y + Z2
Z1 + Z2 à K
K + Y à ∅

CRNs: Expected runtime analysis

• Assume that the first two reactions complete
before the third starts, and that the third
completes before the fourth starts

• Then we have “no communication” followed by
“pairing off”, and another “pairing off”.

• Total expected time is O(n)

Exercise:
• max(n1,n2): X1 à Y + Z1

X2 à Y + Z2
Z1 + Z2 à K
K + Y à ∅

CRNs: Expected runtime analysis

• Assume that the first two reactions complete
before the third starts, and that the third
completes before the fourth starts

• Then we have “no communication” followed by
“pairing off”, and another “pairing off”.

• Total expected time is O(n)

Exercise:
• max(n1,n2): X1 à Y + Z1

X2 à Y + Z2
Z1 + Z2 à K
K + Y à ∅

CRNs: Expected runtime analysis

• Assume that the first two reactions complete
before the third starts, and that the third
completes before the fourth starts

• Then we have “no communication” followed by
“pairing off”, and another “pairing off”.

• Total expected time is O(n)

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for first, when i copies of X2 left, is n/i
• Expected time for second, when i copies of X1 left, is n/i
• Total expected time is 2n ∑i 1/i = O(n log n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for first, when i copies of X2 left, is …?
• Expected time for second, when i copies of X1 left, is n/i
• Total expected time is 2n ∑i 1/i = O(n log n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN

reaction type (r,p) propensity(r,p)
X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for first, when i copies of X2 left, is n/i
• Expected time for second, when i copies of X1 left, is n/i
• Total expected time is 2n ∑i 1/i = O(n log n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN

reaction type (r,p) propensity(r,p)
X → … |X|
X + X' → … |X|. |X’| / v

Expected time for a reaction: 1/∑(r,p)prop(r,p)

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for first, when i copies of X2 left, is n/i
• Expected time for second, when i copies of X1 left, is n/i
• Total expected time is 2n ∑i 1/i = O(n log n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for first, when i copies of X2 left, is n/i
• Expected time for second, when i copies of X1 left, is …
• Total expected time is 2n ∑i 1/i = O(n log n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for first, when i copies of X2 left, is n/i
• Expected time for second, when i copies of X1 left, is n/i
• Total expected time is 2n ∑i 1/i = O(n log n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for first, when i copies of X2 left, is n/i
• Expected time for second, when i copies of X1 left, is n/i
• Total expected time is 2n ∑i 1/i = O(n log n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for first, when i copies of X2 left, is n/i
• Expected time for second, when i copies of X1 left, is …
• Total expected time is 2n ∑i 1/i = O(n log n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for first, when i copies of X2 left, is n/i
• Expected time for second, when i copies of X1 left, is …
• Total expected time is 2n ∑i 1/i = O(n log n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN
X1 + X2 à ∅

CRNs: Expected runtime analysis

• Assume that the last reaction finishes before the first
two start

• The last completes in O(n) expected time ("pairing off)
• Then, once one of the remaining two happens, a stable

configuration is reached
• So total expected time is O(n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN
X1 + X2 à ∅

CRNs: Expected runtime analysis

• Assume that the last reaction finishes before the first
two start

• The last completes in O(n) expected time ("pairing off)
• Then, once one of the remaining two happens, a stable

configuration is reached
• So total expected time is O(n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN
X1 + X2 à ∅

CRNs: Expected runtime analysis

• Assume that the last reaction finishes before the first
two start

• The last completes in O(n) expected time ("pairing off”)
• Then, once one of the remaining two happens, a stable

configuration is reached
• So total expected time is O(n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN
X1 + X2 à ∅

CRNs: Expected runtime analysis

• Assume that the last reaction finishes before the first
two start

• The last completes in O(n) expected time ("pairing off”)
• Then, once one of the remaining two happens, a stable

configuration is reached
• So total expected time is O(n)

Exercise:
• n1 < n2 ? Initial context LN

LN + X2 à LY

LY + X1 à LN
X1 + X2 à ∅

CRNs: Expected runtime analysis

• Assume that the last reaction finishes before the first
two start

• The last completes in O(n) expected time ("pairing off”)
• Then, once one of the remaining two happens, a stable

configuration is reached
• So total expected time is O(n)

Threshold set X: for some constants b, a1, a2,…, ak ∈ ℤ,
X = { n ∈ ℕk | a1.n1 + a2.n2 + … + ak .nk < b }

CRNs: Expected runtime analysis

• More generally, there is a CRN to stably compute
Threshold in O(n) expected time

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for either, when i copies of X1 left, is n/i
• Total expected time is 2n ∑i 1/i = O(n log n)
• Is there a faster CRN?

Exercise: Is n1 odd ? Initial context L0
L0 + X1 à L1
L1 + X1 à L0 L

CRNs: Expected runtime analysis

• The reactions must alternate
• Expected time for either, when i copies of X1 left, is n/i
• Total expected time is 2n ∑i 1/i = O(n log n)
• Is there a faster CRN?

Exercise: Is n1 odd ? Initial context L0
L0 + X1 à L1
L1 + X1 à L0 L

CRNs: Expected runtime analysis

Exercise: Is n1 odd ? Initial context L0

L0 + X1 à L1
L1 + X1 à L0 L

X1 + X1 à ∅

• Assume that the last reaction finishes before the first
two start

• The last completes in O(n) expected time ("pairing off)

• Then, in at most one more reaction (which takes O(n)
expected time), a stable configuration is reached

• So total expected time is O(n)

CRNs: Expected runtime analysis

Exercise: Is n1 odd ? Initial context L0

L0 + X1 à L1
L1 + X1 à L0 L

X1 + X1 à ∅

• Assume that the last reaction finishes before the first
two start

• The last completes in O(n) expected time ("pairing off)

• Then, in at most one more reaction (which takes O(n)
expected time), a stable configuration is reached

• So total expected time is O(n)

CRNs: Expected runtime analysis

Exercise: Is n1 odd ? Leaderless
L0 + X1 à L1 // even so far, then X1 found, switch to odd

L1 + X1 → L0 // odd so far, then X1 found, switch to even

X1 à L1 // one X1 found, so odd

L0 + L1 à L1 // even plus odd is odd

L1 + L1 à L0 // odd plus odd is even

• Unimolecular reaction completes in O(log n) exp. time

• The last two complete in O(n) exp. time ("pairing off)

• Then no more X1’s and just one L (either L0 or L1), so no
more reactions

• Total expected time is O(n)

CRNs: Expected runtime analysis

Exercise: Is n1 odd ? Leaderless
L0 + X1 à L1 // even so far, then X1 found, switch to odd

L1 + X1 → L0 // odd so far, then X1 found, switch to even

X1 à L1 // one X1 found, so odd

L0 + L1 à L1 // even plus odd is odd

L1 + L1 à L0 // odd plus odd is even

• Unimolecular reaction completes in O(log n) exp. time

• The last two complete in O(n) exp. time ("pairing off)

• Then no more X1’s and just one L (either L0 or L1), so no
more reactions

• Total expected time is O(n)

CRNs: Expected runtime analysis

Exercise: Is n1 odd ? Leaderless
L0 + X1 à L1 // even so far, then X1 found, switch to odd

L1 + X1 → L0 // odd so far, then X1 found, switch to even

X1 à L1 // one X1 found, so odd

L0 + L1 à L1 // even plus odd is odd

L1 + L1 à L0 // odd plus odd is even

• Unimolecular reaction completes in O(log n) exp. time

• The last two complete in O(n) exp. time ("pairing off)

• Then no more X1’s and just one L (either L0 or L1), so no
more reactions

• Total expected time is O(n)

Mod set X: for some constants a1, a2,…, ak ∈ ℤ, b, c ∈ ℕ
X = { n ∈ ℕk | a1.n1 + a2.n2 + … + ak .nk = b mod c}

CRNs: Expected runtime analysis

• More generally, there is a CRN to stably compute Mod
in O(n) expected time

Claim: All semilinear predicates can be stably decided in
O(n) expected time

Proof: Follows by analyzing CRNs for finite union,
intersection, and complement, as well as threshold and
mod sets.

Note that some semilinear predicates, e.g., “Multiply by
2”, can be stably decided in O(log n) expected time.

CRNs: Expected runtime analysis

Claim: All semilinear predicates can be stably decided in
O(n) expected time

Proof: Follows by analyzing CRNs for finite union,
intersection, and complement, as well as threshold and
mod sets.

Note that some semilinear predicates, e.g., “Multiply by
2”, can be stably decided in O(log n) expected time.

CRNs: Expected runtime analysis

Other notions of CRN predicate computation

• A CRN that stably decides A is a committing CRN if, for
any initial configuration, it is possible either to reach a
“yes” configuration or a “no” configuration, but not
both

• Intuitively, a committing CRN "knows" when it is done

Committing CRNs

• A CRN that stably decides A is a committing CRN if, for
any initial configuration, it is possible either to reach a
“yes” configuration or a “no” configuration, but not
both

• Intuitively, a committing CRN "knows" when it is done

• Unfortunately, committing protocols can only decide
the sets A = ℕk and A = ∅ (the “constant” predicates)

Committing CRNs

• Let C be a CRN and x an input to C.
• Let Prob[C accepts x] be the probability that C

reaches a “yes”-stable configuration on input x

• A CRN C stably decides a predicate A with error
probability ε if
– for all x in A, Prob[C accepts x] ≥ 1 – ε
– for all x not in A, Prob[C accepts x] ≤ ε

CRNs with bounded error

Summary: CRN computational power

committing stable
Prob correct = 1 constant semilinear
Bounded error computable

Summary: CRN computational power

committing stable
Prob correct = 1 constant semilinear
Bounded error computable

To show how CRNs can decide any computable
predicate (by a Turing machine), we’ll
introduce register (counter) machines

A register machine is a finite sequence of instructions from
the following set:
• accept
• reject
• goto j // go to the jth instruction
• inc ri // add one to counter Rj
• dec ri , j // if ri > 0, subtract one from ri, otherwise

// go to the jth instruction

The input n1, …, nk is the initial value of the first k counters.

Register machines

Predicate: Is n1 odd?

Register machine:
1. dec n1, 4
2. dec n1, 5
3. goto 1
4. accept
5. reject

Register machine examples

Predicate: Is n1 odd?

Register machine:
1. dec n1, 4
2. dec n1, 5
3. goto 1
4. reject
5. accept

Register machine examples

Predicate: Is n1 < n2?

Register machine:
1. dec n2, 6
2. dec n1, 4
3. goto 1
4. dec n2, 6
5. accept
6. reject

Register machine examples

Predicate: Is n1 < n2?

Register machine:
1. dec n2, 6
2. dec n1, 4
3. goto 1
4. dec n2, 6
5. accept
6. reject

Register machine examples

Predicate: Is n1 < n2?

Register machine:
1. dec n2, 5
2. dec n1, 4
3. goto 1
4. accept
5. reject

Register machine examples

Register machine examples

Predicate: Is n1 = n2?

Register machine:
1. dec n2, 4
2. dec n1, 5
3. goto 1
4. dec n1, 6
5. reject
6. accept

Predicate: Is n1 < n2?

Register machine:
1. dec n2, 5
2. dec n1, 4
3. goto 1
4. accept
5. reject

Predicate: Is n1 < n2?

Register machine:
1. dec n2, 6
2. dec n1, 4
3. goto 1
4. dec n2, 6
5. accept
6. reject

Register machine examples

Predicate: Is n1 = n2?

Register machine:
1. dec n2, 4
2. dec n1, 5
3. goto 1
4. dec n1, 6
5. reject
6. accept

Predicate: Is n1 < n2?

Register machine:
1. dec n2, 6
2. dec n1, 4
3. goto 1
4. dec n2, 6
5. accept
6. reject

Register machine examples

Predicate: Is n1 = n2?

Register machine:
1. dec n2, 4
2. dec n1, 5
3. goto 1
4. dec n1, 6
5. reject
6. accept

Predicate: Is n1 < n2?

Register machine:
1. dec n2, 6
2. dec n1, 4
3. goto 1
4. dec n2, 6
5. accept
6. reject

Register machine examples

Predicate: Is n1 = n2?

Register machine:
1. dec n2, 4
2. dec n1, 5
3. goto 1
4. dec n1, 6
5. reject
6. accept

Predicate: Is n1 < n2?

Register machine:
1. dec n2, 6
2. dec n1, 4
3. goto 1
4. dec n2, 6
5. accept
6. reject

Register machine examples

Predicate: Is n1 = n2?

Register machine:
1. dec n2, 4
2. dec n1, 5
3. goto 1
4. dec n1, 6
5. reject
6. accept

Predicate: Is n1
2 = n2?

Register machine:
copy r1 → r3
r4 ß r1 x r3
r2 = r4 ?

Register machine examples

flush r1 → r2, r3 :
// set r2, r3 to the initial value
// of r1 and set r1 to 0

1. dec r1, 5
2. inc r2
3. inc r3
4. goto 1
5. …

Register machine examples

copy r1 → r2 :
// copy r1 to r2

flush r1 → r2, r3
flush r3 → r2

Handy subroutines

flush r1 → r2: similar, but no r3

flush r1 → r2, r3 :
// set r2, r3 to the initial value
// of r1 and set r1 to 0

1. dec r1, 5
2. inc r2
3. inc r3
4. goto 1
5. …

Register machine examples

copy r1 → r2 :
// copy r1 to r2

flush r1 → r2, r3
flush r3 → r2

Handy subroutines

flush r1 → r2: similar, but no r3

flush r1 → r2, r3 :
// set r2, r3 to the initial value
// of r1 and set r1 to 0

1. dec r1, 5
2. inc r2
3. inc r3
4. goto 1
5. …

Register machine examples

copy r1 → r2 :
// copy r1 to r2

flush r1 → r2, r3
flush r3 → r1

Handy subroutines

flush r1 → r2: similar, but no r3

r1 ß r2 x r3 : // add r2 times r3 to r1

1. dec r2, 7
2. copy r3 → r4
3. dec r4, 6
4. inc r1
5. goto 3
6. goto 1
7. …

Register machine examples

While r2 > 0

While r3 > 0

inc r1

Handy subroutines

r1 ß r2 x r3 : // add r2 times r3 to r1

1. dec r2, 7
2. copy r3 → r4
3. dec r4, 6
4. inc r1
5. goto 3
6. goto 1
7. …

Register machine examples

While r2 > 0
dec r2
While r3 > 0

dec r3

inc r1

Handy subroutines

Register machines can simulate Turing machines

• A stack machine can simulate a Turing machine
• Store left part of TM tape, including tape head,

on one stack
• Store rest of TM tape on another stack
• Simulate a TM transition via pops and pushes

• A register machine can simulate a stack machine
• Represent binary stack using a unary counter
• Push “0” : double the counter
• Push“1” : double plus increment
• Pop: divide counter by 2; test whether even or

odd to determine value at top of stack

Register machines can simulate Turing machines

• A stack machine can simulate a Turing machine
• Store left part of TM tape, including tape head,

on one stack
• Store rest of TM tape on another stack
• Simulate a TM transition via pops and pushes

• A register machine can simulate a stack machine
• Represent binary stack using a unary counter
• Push “0” : double the counter
• Push“1” : double plus increment
• Pop: divide counter by 2; test whether even or

odd to determine value at top of stack

Register machines can simulate Turing machines

• A stack machine can simulate a Turing machine
• Store left part of TM tape, including tape head,

on one stack
• Store rest of TM tape on another stack
• Simulate a TM transition via pops and pushes

• A register machine can simulate a stack machine
• Represent binary stack using a unary counter
• Push “0” : double the counter
• Push“1” : double plus increment
• Pop: divide counter by 2; test whether even or

odd to determine value at top of stack

CRNs can simulate register machines

• One species Ri per register
• Initial count of Ri is ni if Ri is an input register, and

is 0 otherwise
• One species Li for each instruction number i

• Initial context is L1
• Instructions:

???

CRNs can simulate register machines

• One species Ri per register
• Initial count of Ri is ni if Ri is an input register, and

is 0 otherwise
• One species Li for each instruction number i

• Initial context is L1
• Instructions:

CRNs can simulate register machines

Propensity is rj/v

Propensity is 1

Probability of error at each decrement is
1/(1 + rj/v) = v/(v + rj)

We need to reduce the error!

