
Molecular Programming Models

Stable computation in the CRN model
Stochastic CRNs

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 is odd? I.e., n1 = 1 mod 2

Reactions:
L0 + X1 à L1 // even so far, then X1 found, switch to odd
L1 + X1 → L0 // odd so far, then X1 found, switch to even

L1 denotes that the answer is “yes”, L0 denotes “no”

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 is odd? I.e., n1 = 1 mod 2

Reactions:
L0 + X1 à L1 // even so far, then X1 found, switch to odd
L1 + X1 → L0 // odd so far, then X1 found, switch to even

L1 denotes that the answer is “yes”, L0 denotes “no”

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 is odd? I.e., n1 = 1 mod 2

Reactions:
L0 + X1 à L1 // even so far, then X1 found, switch to odd
L1 + X1 → L0 // odd so far, then X1 found, switch to even

L1 denotes that the answer is “yes”, L0 denotes “no”

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 is odd? I.e., n1 = 1 mod 2

Reactions:
L0 + X1 à L1 // even so far, then X1 found, switch to odd
L1 + X1 → L0 // odd so far, then X1 found, switch to even

L1 denotes that the answer is “yes”, L0 denotes “no”

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 is odd? I.e., n1 = 1 mod 2

Reactions:
L0 + X1 à L1 // even so far, then X1 found, switch to odd
L1 + X1 → L0 // odd so far, then X1 found, switch to even

L1 denotes that the answer is “yes”, L0 denotes “no”

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 is odd? I.e., n1 = 1 mod 2

Reactions:
L0 + X1 à L1 // even so far, then X1 found, switch to odd
L1 + X1 → L0 // odd so far, then X1 found, switch to even

CRNs: Predicate computation
We can make our CRN leaderless (no context)

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 is odd? I.e., n1 = 1 mod 2

Reactions:
L0 + X1 à L1 // even so far, then X1 found, switch to odd
L1 + X1 → L0 // odd so far, then X1 found, switch to even

X1 à L1 // one X1 found, so odd

L0 + L1 à L1 // even plus odd is odd
L1 + L1 à L0 // odd plus odd is even

CRNs: Predicate computation
We can make our CRN leaderless (no context)

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 is odd? I.e., n1 = 1 mod 2

Reactions:
L0 + X1 à L1 // even so far, then X1 found, switch to odd
L1 + X1 → L0 // odd so far, then X1 found, switch to even

X1 à L1 // one X1 found, so odd

L0 + L1 à L1 // even plus odd is odd
L1 + L1 à L0 // odd plus odd is even

CRNs: Predicate computation
We can make our CRN leaderless (no context)

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n2 <n1 - 2?

Reactions:
L0 + X1 + X1 + X1 à LY // base case: 0 (X2’s) < 3 (X1’s) -2
LY + X2 → LN // extra X2, so predicate is false
LN + X1 → LY // extra X1, predicate is true again

LY denotes that the answer is “yes”, LN denotes “no”

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n2 <n1 - 2?

Reactions:
L0 + X1 + X1 + X1 à LY // base case: 0 (X2’s) < 3 (X1’s) -2
LY + X2 → LN // extra X2, so predicate is false
LN + X1 → LY // extra X1, predicate is true again

LY denotes that the answer is “yes”, LN denotes “no”

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n2 <n1 - 2?

Reactions:
L0 + X1 + X1 + X1 à LY // base case: 0 (X2’s) < 3 (X1’s) -2

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n2 <n1 - 2?

Reactions:
L0 + X1 + X1 + X1 à LY // base case: 0 (X2’s) < 3 (X1’s) -2
LY + X2 → LN // extra X2, so predicate is false
LN + X1 → LY // extra X1, predicate is true again

LY denotes “yes”; L0 and LN denote “no”

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n2 <n1 - 2?

Reactions:
L0 + X1 + X1 + X1 à LY // base case: 0 (X2’s) < 3 (X1’s) -2
LY + X2 → LN // extra X2, so predicate is false
LN + X1 → LY // extra X1, predicate is true again

LY denotes “yes”; L0 and LN denote “no”

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n2 <n1 - 2?

Reactions:
L0 + X1 + X1 + X1 à LY // base case: 0 (X2’s) < 3 (X1’s) -2
LY + X2 → LN // extra X2, so predicate is false
LN + X1 → LY // extra X1, predicate is true again

LY denotes “yes”; L0 and LN denote “no”

CRNs: Predicate computation

• Let C = (!,R) be a CRN with input species X1 ,…, Xk

• Some species of ! are yes-voters
• Some species of ! are no-voters
• An input configuration Cinit is one in which the

counts of all but the input species is 0

• We’ll denote Cinit(Xi) by ni (initial count of species
Xi), and let n = n1, + n2 + … + nk

CRNs: Predicate computation

• For a configuration c, let φ(c) be
– 1 if c contains yes-voters but no no-voters
– 0 if c contains no-voters but no yes-voters
– undefined otherwise

• A configuration o is output stable if φ(o) is defined,
and for all c such that o à c, φ(o) = φ(c)

CRNs: Predicate computation

• Let ψ: ℕk à {0,1} be a predicate

• We say that C computes ψ if for all input
configurations Cinit, Cinit à c implies that c à o,
where o is output stable and φ(o) = ψ(n1, n2,…, nk)

• Equivalently, C decides set A where (n1, n2,…, nk) is
in A iff ψ(n1, n2,…, nk) = 1

CRNs: Predicate computation

• Let s be a configuration in which only non-input
species may have counts > 0

• A CRN decider with initial context s is just like a
CRN decider, except that the initial configuration is
Cinit + s, where Cinit is an input configuration

CRNs: Predicate computation

Claim: Mod sets are stably decidable by CRNs

Mod set X: for some constants a1, a2,…, ad ∈ ℤ, b, c ∈ ℕ

CRNs: Predicate computation

Proof by example in the following slides.

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 = 1 mod 2

Reactions:
L0 + X1 à L1
L1 + X1 → L0

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 = 1 mod 2

Reactions:
L0 + X1 à L1
L1 + X1 → L0

CRNs: Predicate computation
More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 = 1 mod 2

Reactions:
L0 + X1 à L1
L1 + X1 → L0

CRNs: Predicate computation
More general mod functions

Predicate: n1 = 2 mod 3

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n1 = 1 mod 2

Reactions:
L0 + X1 à L1
L1 + X1 → L0

CRNs: Predicate computation
More general mod functions

Predicate: n1 = 2 mod 3

Reactions:
L0 + X1 à L1
L1 + X1 → L2
L2 + X1 → L0

L2 means “yes”,
L0 and L1 mean “no”

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

CRNs: Predicate computation
More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

CRNs: Predicate computation
More general mod functions

Predicate: n1 = 2 mod 3

Reactions:
L0 + X1 à L1
L1 + X1 → L2
L2 + X1 → L0

L2 means “yes”,
L0 and L1 mean “no”

Predicate: n1 + 4n2= 2 mod 3

Reactions:
X1 à Z1
X2 + X2 + X2 + X2 → Z1

Replace X1 by Z1 in the CRN for
predicate “n1 = 2 mod 3”

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

CRNs: Predicate computation
More general mod functions

Predicate: n1 = 2 mod 3

Reactions:
L0 + X1 à L1
L1 + X1 → L2
L2 + X1 → L0

L2 means “yes”,
L0 and L1 mean “no”

Predicate: n1 + 4n2= 2 mod 3

Reactions:
X1 à Z1
X2 + X2 + X2 + X2 → Z1

Replace X1 by Z1 in the CRN for
predicate “n1 = 2 mod 3”

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

CRNs: Predicate computation
More general mod functions

Predicate: n1 = 2 mod 3

Reactions:
L0 + X1 à L1
L1 + X1 → L2
L2 + X1 → L0

L2 means “yes”,
L0 and L1 mean “no”

Predicate: n1 + 4n2= 2 mod 3

Reactions:
X1 à Z1
X2 → Z1 + Z1 + Z1 + Z1

Replace X1 by Z1 in the CRN for
predicate “n1 = 2 mod 3”

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

CRNs: Predicate computation
More general mod functions

Predicate: n1 + 4n2= 2 mod 3

Reactions:
X1 à Z1
X2 → Z1 + Z1 + Z1 + Z1

L2 means “yes”,
L0 and L1 mean “no”

L0 + Z1 à L1
L1 + Z1 → L2
L2 + Z1 → L0

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

CRNs: Predicate computation
More general mod functions

Predicate: n1 + 4n2= 2 mod 3

Reactions:
X1 à Z1
X2 → Z1 + Z1 + Z1 + Z1

- substract instead of add?

L0 + Z1 à L1
L1 + Z1 → L2
L2 + Z1 → L0

L2 means “yes”,
L0 and L1 mean “no”

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

CRNs: Predicate computation
More general mod functions

Predicate: n1 + 4n2= 2 mod 3

Reactions:
X1 à Z1
X2 → W1 + W1 + W1 + W1

- substract instead of add?

L0 + Z1 à L1
L1 + Z1 → L2
L2 + Z1 → L0

L2 means “yes”,
L0 and L1 mean “no”

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

CRNs: Predicate computation
More general mod functions

substract instead of add?

L0 + Z1 à L1
L1 + Z1 → L2
L2 + Z1 → L0

L2 means “yes”,
L0 and L1 mean “no”

L0 + W1 à L2
L1 + W1 → L0
L2 + W1 → L1

Predicate: n1 + 4n2= 2 mod 3

Reactions:
X1 à Z1
X2 → W1 + W1 + W1 + W1

-

Claim: Mod sets are stably decidable by CRNs

Mod set X: for some constants a1, a2,…, ak ∈ ℤ, b, c ∈ ℕ

X = { n ∈ ℕk | a1.n1 + a2.n2 + … + ak .nk = b mod c}

CRNs: Predicate computation

Claim: Threshold sets are stably decidable by CRNs

Threshold set X: for some constants b, a1, a2,…, ak ∈ ℤ,

X = { n ∈ ℕk | a1.n1 + a2.n2 + … + ak .nk < b }

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L0

Predicate: n2 < n1 - 2?

Reactions:
L0 + X1 + X1 + X1 à LY // base case: 0 (X2’s) < 3 (X1’s) -2
LY + X2 → LN // extra X2, so predicate is false
LN + X1 → LY // extra X1, predicate is true again

LY denotes “yes”; L0 and LN denote “no”

CRNs: Predicate computation
Threshold set example (not too hard to generalize)

Claim: Stably computable predicates are closed under
union, intersection and complement

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
What CRN computes the complement of P1?

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
What CRN computes the complement of P1?

CRNs: Predicate computation

Example: P1 is the predicate “n1 = 1 mod 2”
Reactions:

L0 + X1 à L1
L1 + X1 → L0

L1 denotes “yes”, L0 denotes “no”

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
What CRN computes the complement of P1?

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
What CRN computes the complement of P1?

CRNs: Predicate computation

The CRN obtained by swapping “yes” and “no” species
of CRN stably C1 computes the complement of P1

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
We want a CRN that computes the union of P1 and P2

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
We want a CRN that computes the union of P1 and P2

CRNs: Predicate computation

Introduce four new species: NN, NY, YN, YY
• For each “no” species N1 of C1, add reactions:

N1 + YN à N1 + NN and N1 + YY à N1 + NY
• For each “no” species N2 of C2, add reactions:

N2 + NY à N2 + NN and N2 + YY à N2 + YN

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
We want a CRN that computes the union of P1 and P2

CRNs: Predicate computation

Introduce four new species: NN, NY, YN, YY
• For each “no” species N1 of C1, add reactions:

N1 + YN à N1 + NN and N1 + YY à N1 + NY
• For each “no” species N2 of C2, add reactions:

N2 + NY à N2 + NN and N2 + YY à N2 + YN

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
We want a CRN that computes the union of P1 and P2

CRNs: Predicate computation

Introduce four new species: NN, NY, YN, YY
• For each “no” species N1 of C1, add reactions:

N1 + YN à N1 + NN and N1 + YY à N1 + NY
• For each “no” species N2 of C2, add reactions:

N2 + NY à N2 + NN and N2 + YY à N2 + YN

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
We want a CRN that computes the union of P1 and P2

CRNs: Predicate computation

Introduce four new species: NN, NY, YN, YY
• For each “yes” species Y1 of C1, add reactions:

Y1 + NY à Y1 + YY and Y1 + NN à N1 + YN
• For each “yes” species Y2 of C2, add reactions:

Y2 + YN à Y2 + YY and Y2 + NN à N2 + NY

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
We want a CRN that computes the union of P1 and P2

CRNs: Predicate computation

Introduce four new species: NN, NY, YN, YY
• For each “yes” species Y1 of C1, add reactions:

Y1 + NY à Y1 + YY and Y1 + NN à N1 + YN
• For each “yes” species Y2 of C2, add reactions:

Y2 + YN à Y2 + YY and Y2 + NN à N2 + NY

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
We want a CRN that computes the union of P1 and P2

CRNs: Predicate computation

Introduce four new species: NN, NY, YN, YY
• For each “yes” species Y1 of C1, add reactions:

Y1 + NY à Y1 + YY and Y1 + NN à N1 + YN
• For each “yes” species Y2 of C2, add reactions:

Y2 + YN à Y2 + YY and Y2 + NN à N2 + NY

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
We want a CRN that computes the union of P1 and P2

CRNs: Predicate computation

Introduce four new species: NN, NY, YN, YY
• NN is the “no” voter
• NY, YN, YY are “yes” voters

One of the species, say NN, is in the initial context

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
We want a CRN that computes the union of P1 and P2

CRNs: Predicate computation

Introduce four new species: NN, NY, YN, YY
• NN is the “no” voter
• NY, YN, YY are “yes” voters

One of the species, say NN, is in the initial context

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C1 and C2 compute predicates P1 and P2, respectively.
We want a CRN that computes the union of P1 and P2

CRNs: Predicate computation

Introduce four new species: NN, NY, YN, YY
• NN is the “no” voter
• NY, YN, YY are “yes” voters

One of the species, say NN, is in the initial context

• Mod predicates are stably computable
• Threshold predicates are stably computable
• Stably computable predicates are closed under

union, intersection and complement

CRNs: Predicate computation
Summary so far:

• Mod predicates are stably computable
• Threshold predicates are stably computable
• Stably computable predicates are closed under

union, intersection and complement

CRNs: Predicate computation
Summary so far:

Definition: Semilinear predicates are finite unions,
intersections and complements of threshold sets and
mod sets

Claim: Predicates stably computable by CRNs are
exactly the semilinear predicates

• Mod predicates are stably computable
• Threshold predicates are stably computable
• Stably computable predicates are closed under

union, intersection and complement

CRNs: Predicate computation
Summary so far:

Definition: Semilinear predicates are finite unions,
intersections and complements of threshold sets and
mod sets

Claim: Predicates stably computable by CRNs are
exactly the semilinear predicates

CRNs: Stochastic (kinetic) model

• So far: we’ve developed intuition about what's
“stably” decidable (and undecidable)

• Next, we’d like to distinguish between predicates
that can, or cannot, be decided quickly

• For this we’ll use a stochastic model of reaction
rates

CRNs: Stochastic (kinetic) model

• Fix a configuration c, let v be the volume of the system
• The propensity of reaction (r,p) is given by:

reaction type (r,p) propensity(r,p)
Xi → … |Xi|
Xi + Xj → … |Xi|. |Xi| / v
Xi + Xi → … |Xi|. |Xi -1|/ 2v

• The probability that (r,p) occurs next is
prop(r,p)/ ∑(rʹ,pʹ) prop(rʹ,pʹ)

• The expected time for a reaction is 1/∑(rʹ,pʹ) prop(rʹ,pʹ)

CRNs: Stochastic (kinetic) model

• CRNs can stably decide exactly the semilinear
predicates

• A stochastic model is used to model reaction rates
and expected times, which we’ll need to define time
complexity of CRN “algorithms”

Summary

