Molecular Programming Models

Stable computation in the CRN model
Stochastic CRNs

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1is odd? l.e., n1=1 mod 2

Reactions:

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1is odd? l.e., n1=1 mod 2

Reactions:
Ly + X1 2> Ly //evenso far, then X:found, switch to odd

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1is odd? l.e., n1=1 mod 2

Reactions:

Ly + X1 2> Ly //evenso far, then X:found, switch to odd
Ly +X1 > Ly // oddso far, then Xi found, switch to even

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1is odd? l.e., n1=1 mod 2

Reactions:

Ly + X1 2> Ly //evenso far, then X:found, switch to odd
Ly +X1 > Ly // oddso far, then Xi found, switch to even

L, denotes that the answer is “yes”, L, denotes “no”

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1is odd? l.e., n1=1 mod 2

Reactions:

Ly + X1 2> Ly //evenso far, then X:found, switch to odd
Ly +X1 > Ly // oddso far, then Xi found, switch to even

CRNs: Predicate computation

We can make our CRN leaderless (no context)

Initial state: (n1, n2) (represented by counts of X1, X2)
pluSaeader=nrotecile [,

Predicate: n1is odd? l.e., n1=1 mod 2

Reactions:

Ly + X1 2> Ly //evenso far, then X:found, switch to odd
Ly +X1 > Ly // oddso far, then Xi found, switch to even

CRNs: Predicate computation

We can make our CRN leaderless (no context)

Initial state: (n1, n2) (represented by counts of X1, X2)

="

R

US ateader=muolecule [

Predicate: n1is odd? l.e., n1=1 mod 2

Reactions:
LO + Xl
Ll + Xl
X1

9
9

9

L1 // even so far, then X1 found, switch to odd
Lo // odd so far, then X1 found, switch to even

L4 // one Xifound, so odd

CRNs: Predicate computation

We can make our CRN leaderless (no context)

Initial state: (n1, n2) (represented by counts of X1, X2)
pluSaeader=nrotecile [,

Predicate: n1is odd? l.e., n1=1 mod 2

Reactions:
Ly + X1 2> Ly //evensofar, then X:found, switch to odd
L; +X1 > Ly // odd so far, then X1 found, switch to even
X1 = Ly //one Xifound, so odd
Lo +L; =2 L; //evenplusoddisodd
Ly +L; =2 Ly //oddplusodd is even

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: no<ni-2?

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: no<ni-2?

Reactions:
Ly + X1+ X1+ X1 2> Ly //base case: 0 (X2’s) < 3 (X1's) -2

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: no<ni-2?

Reactions:

Ly + X1+ X1+ X1 2> Ly //base case: 0 (X2’s) < 3 (X1's) -2
LY + X2

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: no<ni-2?

Reactions:
g + X1+ X1+ X1 2> Ly //base case: 0 (X2’s) < 3 (Xi's) -2
v + X2 - Ly // extra Xz, so predicate is false
Ly + X1 - Ly // extra Xy, predicate is true again

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: no<ni-2?

Reactions:
g + X1+ X1+ X1 2> Ly //base case: 0 (X2’s) < 3 (Xi's) -2
v + X2 - Ly // extra Xz, so predicate is false
Ly + X1 - Ly // extra Xy, predicate is true again

Ly denotes “yes”; Lgand Ly denote “no”

CRNs: Predicate computation

* Let C=(A,R) be a CRN with input species X4,..., X,
* Some species of A are yes-voters
* Some species of A are no-voters

* An input configuration C. ;. is one in which the
counts of all but the input species is O

* We’ll denote C,..(Xi) by n, (initial count of species
X;),and letn=n; +n,+ .. +n,

CRNs: Predicate computation

* For a configuration c, let ¢(c) be
— 1 if c contains yes-voters but no no-voters
— 0 if c contains no-voters but no yes-voters
— undefined otherwise

* A configuration o is output stable if d(0) is defined,
and for all c such that o =2 ¢, ¢(0) = P(c)

CRNs: Predicate computation

 Let Y: Nk {0,1} be a predicate

 We say that C computes U if for all input
configurations C..,, C.... =2 ¢ implies that ¢ = o,
where o is output stable and ¢(o) = Y(n4, n,..., Ny

* Equivalently, C decides set A where (nq, n,,..., n,) is
in Aiff ¢(ny, n,,..., n) =1

CRNs: Predicate computation

* Let s be a configuration in which only non-input
species may have counts >0

* A CRN decider with initial context s is just like a
CRN decider, except that the initial configuration is
C..: +S, where C,.. is an input configuration

CRNs: Predicate computation

Claim: Mod sets are stably decidable by CRNs

Mod set X: for some constants a4, a,,..., ay€ Z, b, ce N

d
X = { x € N Z a;x(7) =b mod ¢ }

i=1

Proof by example in the following slides.

CRNs: Predicate computation

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 =1 mod 2

Reactions:

LO +X1 el_l
Ll +X1 %LO

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 =1 mod 2

Reactions:

LO +X1 el_l
Ll +X1 %LO

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 =1 mod 2 Predicate: n1 =2 mod 3
Reactions:
LO + Xl 9 Ll

L +X1 L

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 =1 mod 2 Predicate: n1 =2 mod 3
Reactions: Reactions:
LO +X1 9 Ll =0 +X1 9 -1
L, +X1 > L L+ X 2L
-7 + Xl 9 -0

L, means “yes”,
Ly and Ly mean “no”

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 =2 mod 3

Reactions:
-0 + Xl 9 -1
-1 + Xl 9 -2
-7 + Xl 9 -0

L, means “yes”,
Ly and Ly mean “no”

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 =2 mod 3 Predicate: n1 + 4n>=2 mod 3
Reactions:

-0 + Xl 9 -1

-1 + Xl 9 -2

-7 + Xl 9 -0

L, means “yes”,
Ly and Ly mean “no”

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 =2 mod 3 Predicate: n1 + 4n>=2 mod 3
Reactions: Reactions:
-0 + Xl 9 -1 Xl 9 Zl
L+ X1 2L X2 21+ a+ 21+ 71
-) + Xl % -0
L, means “yes”, Replace X1 by Z1in the CRN for

Ly and Ly mean “no” predicate “n1=2 mod 3”

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 + 4n>=2 mod 3

Reactions:
X1 S Z, L, means ”yes”,”)
X2 >Z+Z1+ 21+ 2 Ly and Ly mean “no
o +41 - L1
-1 + /1 -)
) + /1 - L0

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 - 4n>=2 mod 3

Reactions:
X1 =224
X2 21 +La+ 1+ 1n
o +41 -2 L1
-1 +71 =)
) +71 = L0

substract instead of add?

L, means “yes”,
Ly and Ly mean “no”

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 - 4n>=2 mod 3

Reactions:
X1 2> 7
X2 2 Wi+ Wi+ Wi+ Wy
o +41 -2 L1
-1 +71 =)
) +71 = L0

substract instead of add?

L, means “yes”,
Ly and Ly mean “no”

CRNs: Predicate computation

More general mod functions

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: n1 - 4n>=2 mod 3

Reactions:
X1 2> 7
X2 2 Wi+ Wi+ Wi+ Wy
o +41 -2 L1
-1 +71 =)
) +71 = L0

substract instead of add?

L, means “yes”,
Ly and Ly mean “no”

-0 + Wl
-1 + Wl
) + Wl

9

9
9

CRNs: Predicate computation

Claim: Mod sets are stably decidable by CRNs
Mod set X: for some constants a4, a,,..., a,€ Z, b, c € N

X={n e NK | a;.n; +a,.n, +...+ a,.n, =b modc}

CRNs: Predicate computation

Claim: Threshold sets are stably decidable by CRNs
Threshold set X: for some constants b, a,, a,,..., a € Z,

X={neNk|a1.n1+a2.n2 +..+ a..n,<b}

CRNs: Predicate computation

Threshold set example (not too hard to generalize)

Initial state: (n1, n2) (represented by counts of X1, X2)
plus a “leader” molecule L

Predicate: no<ni-2?

Reactions:
g + X1+ X1+ X1 2> Ly //base case: 0 (X2’s) < 3 (Xi's) -2
v + X2 - Ly // extra Xz, so predicate is false
Ly + X1 - Ly // extra Xy, predicate is true again

Ly denotes “yes”; Lgand Ly denote “no”

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
What CRN computes the complement of P,?

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
What CRN computes the complement of P,?

Example: P, is the predicate “n1 =1 mod 2”
Reactions:
LO + Xl 9 Ll

L, +X1 > L
L, denotes “yes”, L, denotes “no”

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
What CRN computes the complement of P,?

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
What CRN computes the complement of P,?

The CRN obtained by swapping “yes” and “no” species
of CRN stably C, computes the complement of P,

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
We want a CRN that computes the union of P, and P,

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
We want a CRN that computes the union of P, and P,

Introduce four new species: NN, NY, YN, YY
* For each “no” species N, of C;, add reactions:
N, +YN =2 N;+NNand N; +YY 2 N; + NY

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
We want a CRN that computes the union of P, and P,

Introduce four new species: NN, NY, YN, YY

* For each “no” species N, of C;, add reactions:
N, +YN =2 N;+NNand N; +YY 2 N; + NY

* For each “no” species N, of C,, add reactions:

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
We want a CRN that computes the union of P, and P,

Introduce four new species: NN, NY, YN, YY

* For each “no” species N, of C;, add reactions:
N, +YN =2 N;+NNand N; +YY 2 N; + NY

* For each “no” species N, of C,, add reactions:
N, +NY—=> N,+NNand N, +YY 2> N, + YN

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
We want a CRN that computes the union of P, and P,

Introduce four new species: NN, NY, YN, YY
* For each “yes” species Y, of C;, add reactions:

* For each “yes” species Y, of C,, add reactions:

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
We want a CRN that computes the union of P, and P,

Introduce four new species: NN, NY, YN, YY

* For each “yes” species Y, of C;, add reactions:
Y,+NY=2>Y,+YYand Y, + NN - N, + YN

* For each “yes” species Y, of C,, add reactions:

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
We want a CRN that computes the union of P, and P,

Introduce four new species: NN, NY, YN, YY

* For each “yes” species Y, of C;, add reactions:
Y,+NY=2>Y,+YYand Y, + NN - N, + YN

* For each “yes” species Y, of C,, add reactions:
Y,+YN=2>Y,+YYandY,+ NN 2> N, + NY

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
We want a CRN that computes the union of P, and P,

Introduce four new species: NN, NY, YN, YY

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
We want a CRN that computes the union of P, and P,

Introduce four new species: NN, NY, YN, YY
* NN isthe “no” voter
* NY, YN, YY are “yes” voters

CRNs: Predicate computation

Claim: Stably computable predicates are closed under
union, intersection and complement

Let C; and C, compute predicates P, and P,, respectively.
We want a CRN that computes the union of P, and P,

Introduce four new species: NN, NY, YN, YY
* NN isthe “no” voter
* NY, YN, YY are “yes” voters

One of the species, say NN, is in the initial context

CRNs: Predicate computation

Summary so far:

* Mod predicates are stably computable
 Threshold predicates are stably computable

e Stably computable predicates are closed under
union, intersection and complement

CRNs: Predicate computation

Summary so far:

* Mod predicates are stably computable
 Threshold predicates are stably computable

e Stably computable predicates are closed under
union, intersection and complement

Definition: Semilinear predicates are finite unions,
intersections and complements of threshold sets and
mod sets

CRNs: Predicate computation

Summary so far:

* Mod predicates are stably computable
 Threshold predicates are stably computable

e Stably computable predicates are closed under
union, intersection and complement

Definition: Semilinear predicates are finite unions,
intersections and complements of threshold sets and
mod sets

Claim: Predicates stably computable by CRNs are
exactly the semilinear predicates

CRNs: Stochastic (kinetic) model

CRNs: Stochastic (kinetic) model

* So far: we've developed intuition about what's
“stably” decidable (and undecidable)

* Next, we'd like to distinguish between predicates
that can, or cannot, be decided quickly

 For this we’ll use a stochastic model of reaction
rates

CRNs: Stochastic (kinetic) model

* Fix a configuration c, let v be the volume of the system
* The propensity of reaction (r,p) is given by:

reaction type (r,p) propensity(r,p) A
X — ... Xi
Xi+Xj = ... Xi|. |Xi| /v
Xi+Xi > .. Xi|. |Xi-1]/ 2v
/

 The probability that (r,p) occurs next is

prop(r,p)/ 3(p) prop(r’,p’)
* The expected time for a reaction is 1/>(,p) prop(r’,p’)

Summary

 CRNs can stably decide exactly the semilinear
predicates

* A stochastic model is used to model reaction rates
and expected times, which we’ll need to define time
complexity of CRN “algorithms”

