Molecular Programming Models

Stable computation in the CRN model Stochastic CRNs

Predicate: *n*¹ is odd? I.e., *n*¹ = 1 mod 2

Predicate: *n*¹ is odd? I.e., *n*¹ = 1 mod 2

Reactions:

 $L_0 + X_1 \rightarrow L_1$ // even so far, then X₁ found, switch to odd

Predicate: *n*¹ is odd? I.e., *n*¹ = 1 mod 2

Reactions:

 $\begin{array}{ccc} L_0 + X_1 & \xrightarrow{} L_1 & // \ \text{even so far, then } X_1 \ \text{found, switch to odd} \\ L_1 + X_1 & \xrightarrow{} L_0 & // \ \text{odd so far, then } X_1 \ \text{found, switch to even} \end{array}$

Predicate: *n*¹ is odd? I.e., *n*¹ = 1 mod 2

Reactions:

 $\begin{array}{ll} L_0 + X_1 & \xrightarrow{} L_1 & // \ \text{even so far, then } X_1 \ \text{found, switch to odd} \\ L_1 + X_1 & \xrightarrow{} L_0 & // \ \text{odd so far, then } X_1 \ \text{found, switch to even} \end{array}$

 L_1 denotes that the answer is "yes", L_0 denotes "no"

Predicate: *n*¹ is odd? I.e., *n*¹ = 1 mod 2

Reactions:

 $\begin{array}{ccc} L_0 + X_1 & \xrightarrow{} L_1 & // \ \text{even so far, then } X_1 \ \text{found, switch to odd} \\ L_1 + X_1 & \xrightarrow{} L_0 & // \ \text{odd so far, then } X_1 \ \text{found, switch to even} \end{array}$

We can make our CRN leaderless (no context)

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: n_1 is odd? I.e., $n_1 = 1 \mod 2$

Reactions:

 $\begin{array}{ccc} L_0 + X_1 & \xrightarrow{} L_1 & // \ \text{even so far, then } X_1 \ \text{found, switch to odd} \\ L_1 + X_1 & \xrightarrow{} L_0 & // \ \text{odd so far, then } X_1 \ \text{found, switch to even} \end{array}$

We can make our CRN leaderless (no context)

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: n_1 is odd? I.e., $n_1 = 1 \mod 2$

Reactions:

We can make our CRN leaderless (no context)

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: n_1 is odd? I.e., $n_1 = 1 \mod 2$

Reactions:

 $\begin{array}{cccc} L_{0} + X_{1} & \xrightarrow{} L_{1} & // \ \text{even so far, then } X_{1} \ \text{found, switch to odd} \\ L_{1} + X_{1} & \xrightarrow{} L_{0} & // \ \text{odd so far, then } X_{1} \ \text{found, switch to even} \\ X_{1} & \xrightarrow{} L_{1} & // \ \text{one } X_{1} \ \text{found, so odd} \\ L_{0} + L_{1} & \xrightarrow{} L_{1} & // \ \text{even plus odd is odd} \\ L_{1} + L_{1} & \xrightarrow{} L_{0} & // \ \text{odd plus odd is even} \end{array}$

Predicate: $n_2 < n_{1-} 2$?

Predicate: $n_2 < n_{1-} 2$?

Reactions:

 $L_0 + X_1 + X_1 + X_1 \rightarrow L_Y$ // base case: 0 (X₂'s) < 3 (X₁'s) -2

Predicate: $n_2 < n_{1-} 2$?

Reactions:

 $\begin{array}{ll} L_0 + X_1 + X_1 + X_1 \xrightarrow{} L_Y & // \text{ base case: } 0 \ (X_2's) < 3 \ (X_1's) - 2 \\ L_Y & + X_2 \end{array}$

Predicate: $n_2 < n_{1-} 2$?

Reactions:

Predicate: $n_2 < n_{1-} 2$?

Reactions:

 L_Y denotes "yes"; L_0 and L_N denote "no"

- Let C = (Λ ,R) be a CRN with input species X₁,..., X_k
- Some species of Λ are *yes-voters*
- Some species of Λ are *no-voters*
- An *input configuration* C_{init} is one in which the counts of all but the input species is 0
- We'll denote C_{init}(X_i) by n_i (initial count of species X_i), and let n = n₁ + n₂ + ... + n_k

- For a configuration c, let $\phi(c)$ be
 - 1 if c contains yes-voters but no no-voters
 - 0 if c contains no-voters but no yes-voters
 - undefined otherwise
- A *configuration* o is *output stable* if $\phi(o)$ is defined, and for all c such that $o \rightarrow c$, $\phi(o) = \phi(c)$

- Let $\psi \colon \mathbb{N}^k \rightarrow \{0,1\}$ be a predicate
- We say that C computes ψ if for all input configurations C_{init} , $C_{init} \rightarrow c$ implies that $c \rightarrow o$, where o is output stable and $\varphi(o) = \psi(n_1, n_2, ..., n_k)$
- Equivalently, C decides set A where $(n_1, n_2, ..., n_k)$ is in A iff $\psi(n_1, n_2, ..., n_k) = 1$

- Let s be a configuration in which only non-input species may have counts > 0
- A CRN decider with initial context s is just like a CRN decider, except that the initial configuration is C_{init} + s, where C_{init} is an input configuration

Claim: Mod sets are stably decidable by CRNs

Mod set X: for some constants $a_1, a_2, ..., a_d \in \mathbb{Z}$, b, $c \in \mathbb{N}$

$$X = \left\{ \mathbf{x} \in \mathbb{N}^d \ \left| \ \sum_{i=1}^d a_i \mathbf{x}(i) \equiv b \mod c \right. \right\}$$

Proof by example in the following slides.

Predicate: *n*¹ = 1 mod 2

$$L_0 + X_1 \rightarrow L_1$$
$$L_1 + X_1 \rightarrow L_0$$

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: *n*¹ = 1 mod 2

$$L_0 + X_1 \rightarrow L_1$$
$$L_1 + X_1 \rightarrow L_0$$

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: $n_1 = 1 \mod 2$ Predicate: $n_1 = 2 \mod 3$

$$\begin{array}{ccc} L_0 + X_1 & \rightarrow L_1 \\ L_1 + X_1 & \rightarrow L_0 \end{array}$$

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: $n_1 = 1 \mod 2$

Predicate: $n_1 = 2 \mod 3$

Reactions:

$$\begin{array}{ccc} L_0 + X_1 & \rightarrow L_1 \\ L_1 + X_1 & \rightarrow L_0 \end{array}$$

Reactions:

$$\begin{array}{ccc} L_0 + X_1 & \rightarrow L_1 \\ L_1 + X_1 & \rightarrow L_2 \\ L_2 + X_1 & \rightarrow L_0 \end{array}$$

 L_2 means "yes", L_0 and L_1 mean "no"

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: $n_1 = 2 \mod 3$

Reactions:

$$L_0 + X_1 \rightarrow L_1$$

$$L_1 + X_1 \rightarrow L_2$$

$$L_2 + X_1 \rightarrow L_0$$

 L_2 means "yes", L_0 and L_1 mean "no"

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: *n*¹ = 2 mod 3

Predicate: $n_1 + 4n_2 = 2 \mod 3$

Reactions:

$$L_0 + X_1 \rightarrow L_1$$

$$L_1 + X_1 \rightarrow L_2$$

$$L_2 + X_1 \rightarrow L_0$$

 $L_2\,$ means "yes", $L_0\,$ and $L_1\,$ mean "no"

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: *n*¹ = 2 mod 3

Reactions:

$$\begin{array}{ccc} L_0 + X_1 & \xrightarrow{} L_1 \\ L_1 + X_1 & \xrightarrow{} L_2 \\ L_2 + X_1 & \xrightarrow{} L_0 \end{array}$$

 $\rm L_2\,$ means "yes", $\rm L_0\,$ and $\rm L_1\,$ mean "no"

Predicate: *n*₁ + 4*n*₂= 2 mod 3

Reactions:

$$\begin{array}{l} X_1 \xrightarrow{} Z_1 \\ X_2 \xrightarrow{} Z_1 + Z_1 + Z_1 + Z_1 \end{array}$$

Replace X_1 by Z_1 in the CRN for predicate " $n_1 = 2 \mod 3$ "

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: $n_1 + 4n_2 = 2 \mod 3$

Reactions:

$$X_{1} \rightarrow Z_{1}$$

$$X_{2} \rightarrow Z_{1} + Z_{1} + Z_{1} + Z_{1}$$

$$L_{0} + Z_{1} \rightarrow L_{1}$$

$$L_{1} + Z_{1} \rightarrow L_{2}$$

$$L_{2} + Z_{1} \rightarrow L_{0}$$

 L_2 means "yes", L_0 and L_1 mean "no"

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: *n*¹ - 4*n*²= 2 mod 3

substract instead of add?

Reactions:

$$X_{1} \rightarrow Z_{1}$$

$$X_{2} \rightarrow Z_{1} + Z_{1} + Z_{1} + Z_{1}$$

$$L_{0} + Z_{1} \rightarrow L_{1}$$

$$L_{1} + Z_{1} \rightarrow L_{2}$$

$$L_{2} + Z_{1} \rightarrow L_{0}$$

 L_2 means "yes", L_0 and L_1 mean "no"

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: *n*¹ - 4*n*²= 2 mod 3

substract instead of add?

Reactions:

 $\begin{array}{cccc} X_{1} & \rightarrow Z_{1} & L_{2} \text{ means "yes",} \\ X_{2} & \rightarrow W_{1} + W_{1} + W_{1} + W_{1} & L_{0} \text{ and } L_{1} \text{ mean "no"} \\ L_{0} & + Z_{1} & \rightarrow L_{1} \\ L_{1} & + Z_{1} & \rightarrow L_{2} \\ L_{2} & + Z_{1} & \rightarrow L_{0} \end{array}$

More general mod functions

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: *n*¹ - 4*n*²= 2 mod 3

substract instead of add?

Reactions:

 $\begin{array}{cccc} X_{1} & \rightarrow Z_{1} & L_{2} \text{ means "yes",} \\ X_{2} & \rightarrow W_{1} + W_{1} + W_{1} + W_{1} & L_{0} \text{ and } L_{1} \text{ mean "no"} \\ L_{0} + Z_{1} & \rightarrow L_{1} & L_{0} + W_{1} & \rightarrow L_{2} \\ L_{1} + Z_{1} & \rightarrow L_{2} & L_{1} + W_{1} & \rightarrow L_{0} \\ L_{2} + Z_{1} & \rightarrow L_{0} & L_{2} + W_{1} & \rightarrow L_{1} \end{array}$

Claim: Mod sets are stably decidable by CRNs

Mod set X: for some constants $a_1, a_2, ..., a_k \in \mathbb{Z}$, b, $c \in \mathbb{N}$

$$X = \{ n \in \mathbb{N}^{k} \mid a_{1}.n_{1} + a_{2}.n_{2} + ... + a_{k}.n_{k} = b \mod c \}$$

Claim: Threshold sets are stably decidable by CRNs

Threshold set X: for some constants b, $a_1, a_2, ..., a_k \in \mathbb{Z}$,

$$X = \{ n \in \mathbb{N}^{k} \mid a_{1}.n_{1} + a_{2}.n_{2} + ... + a_{k}.n_{k} < b \}$$

Threshold set example (not too hard to generalize)

Initial state: (n_1, n_2) (represented by counts of X₁, X₂) plus a "leader" molecule L₀

Predicate: $n_2 < n_{1-2}$?

Reactions:

 L_Y denotes "yes"; L_0 and L_N denote "no"

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. What CRN computes the complement of P_1 ?

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. What CRN computes the complement of P_1 ?

Example: P_1 is the predicate " $n_1 = 1 \mod 2$ " Reactions:

$$L_0 + X_1 \rightarrow L_1$$

$$L_1 + X_1 \rightarrow L_0$$

$$L_1 \text{ denotes "yes", } L_0 \text{ denotes "no"}$$

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. What CRN computes the complement of P_1 ?

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. What CRN computes the complement of P_1 ?

The CRN obtained by swapping "yes" and "no" species of CRN stably C_1 computes the complement of P_1

Let C₁ and C₂ compute predicates P₁ and P₂, respectively.

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. We want a CRN that computes the union of P_1 and P_2

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. We want a CRN that computes the union of P_1 and P_2

Introduce four new species: NN, NY, YN, YY

• For each "no" species N_1 of C_1 , add reactions: $N_1 + YN \rightarrow N_1 + NN$ and $N_1 + YY \rightarrow N_1 + NY$

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. We want a CRN that computes the union of P_1 and P_2

- For each "no" species N_1 of C_1 , add reactions: $N_1 + YN \rightarrow N_1 + NN$ and $N_1 + YY \rightarrow N_1 + NY$
- For each "no" species N₂ of C₂, add reactions:

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. We want a CRN that computes the union of P_1 and P_2

- For each "no" species N_1 of C_1 , add reactions: $N_1 + YN \rightarrow N_1 + NN$ and $N_1 + YY \rightarrow N_1 + NY$
- For each "no" species N₂ of C₂, add reactions: N₂ + NY \rightarrow N₂ + NN and N₂ + YY \rightarrow N₂ + YN

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. We want a CRN that computes the union of P_1 and P_2

- For each "yes" species Y₁ of C₁, add reactions:
- For each "yes" species Y₂ of C₂, add reactions:

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. We want a CRN that computes the union of P_1 and P_2

- For each "yes" species Y_1 of C_1 , add reactions: $Y_1 + NY \rightarrow Y_1 + YY$ and $Y_1 + NN \rightarrow N_1 + YN$
- For each "yes" species Y₂ of C₂, add reactions:

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. We want a CRN that computes the union of P_1 and P_2

- For each "yes" species Y_1 of C_1 , add reactions: $Y_1 + NY \rightarrow Y_1 + YY$ and $Y_1 + NN \rightarrow N_1 + YN$
- For each "yes" species Y_2 of C_2 , add reactions: $Y_2 + YN \rightarrow Y_2 + YY$ and $Y_2 + NN \rightarrow N_2 + NY$

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. We want a CRN that computes the union of P_1 and P_2

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. We want a CRN that computes the union of P_1 and P_2

- NN is the "no" voter
- NY, YN, YY are "yes" voters

Let C_1 and C_2 compute predicates P_1 and P_2 , respectively. We want a CRN that computes the union of P_1 and P_2

Introduce four new species: NN, NY, YN, YY

- NN is the "no" voter
- NY, YN, YY are "yes" voters

One of the species, say NN, is in the initial context

Summary so far:

- Mod predicates are stably computable
- Threshold predicates are stably computable
- Stably computable predicates are closed under union, intersection and complement

Summary so far:

- Mod predicates are stably computable
- Threshold predicates are stably computable
- Stably computable predicates are closed under union, intersection and complement

Definition: Semilinear predicates are finite unions, intersections and complements of threshold sets and mod sets

Summary so far:

- Mod predicates are stably computable
- Threshold predicates are stably computable
- Stably computable predicates are closed under union, intersection and complement

Definition: Semilinear predicates are finite unions, intersections and complements of threshold sets and mod sets

Claim: Predicates stably computable by CRNs are exactly the semilinear predicates

CRNs: Stochastic (kinetic) model

CRNs: Stochastic (kinetic) model

- So far: we've developed intuition about what's "stably" decidable (and undecidable)
- Next, we'd like to distinguish between predicates that can, or cannot, be decided *quickly*
- For this we'll use a stochastic model of reaction rates

CRNs: Stochastic (kinetic) model

- Fix a configuration c, let v be the volume of the system
- The *propensity* of reaction (r,p) is given by:

reaction type (r,p)propensity(r,p)
$$X_i \rightarrow ...$$
 $|X_i|$ $X_i + X_j \rightarrow ...$ $|X_i| . |X_i| / v$ $X_i + X_i \rightarrow ...$ $|X_i| . |X_i - 1| / 2v$

- The probability that (r,p) occurs next is prop(r,p)/ ∑(r',p') prop(r',p')
- The expected time for a reaction is $1/\sum_{(r',p')} prop(r',p')$

Summary

- CRNs can stably decide exactly the semilinear predicates
- A stochastic model is used to model reaction rates and expected times, which we'll need to define time complexity of CRN "algorithms"