Molecular Programming Models

A little history; three models of computing with DNA; Chemical Reaction Networks

Based on notes by Dave Doty

- Feynmann 1959: "There's plenty of room at the bottom" envisioned "manipulating and controlling things on a small scale"
- Adleman 1994: "Computing with DNA" solved simple Hamiltonian path instance in a test tube

"remarkable energy efficiency ... information density of approximately 1 bit per cubic nanometre ... massively parallel..."

History

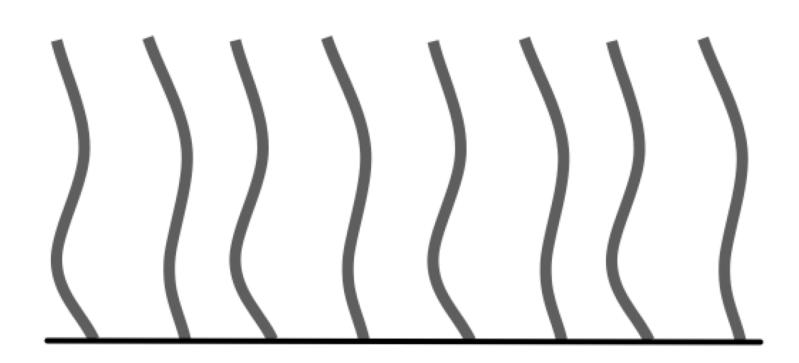
"DNA computing can be put in a form which is very amenable to automation"

Lloyd Smith

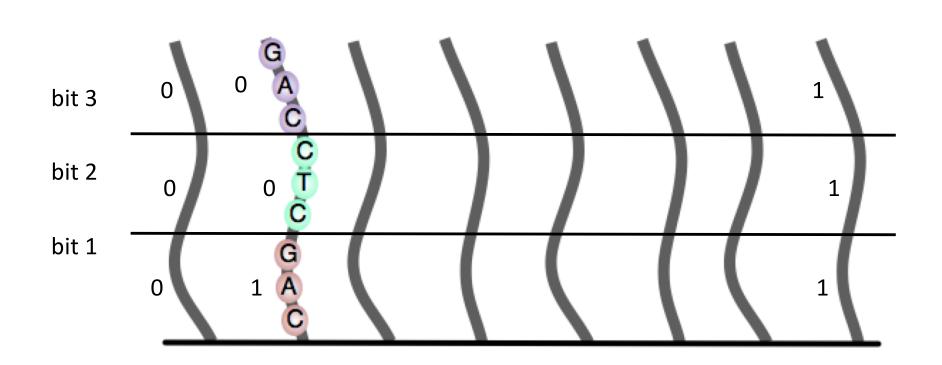
"Surfaces are a great place to keep track of molecules. We are learning to store and manipulate information in DNA"

Rob Corn

DNA strands are placed on a surface



Strands encode binary strings

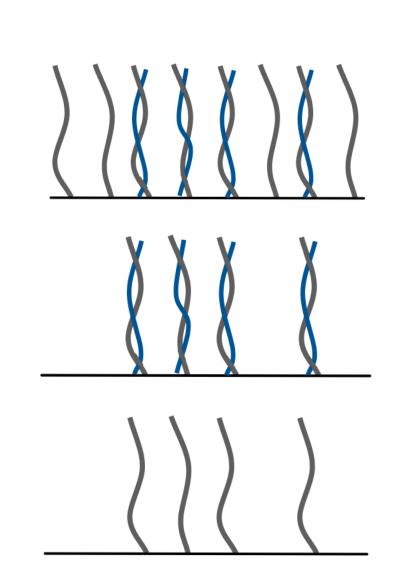


Three "instructions":

mark(i,b): make all strands with bit
 i set to b double-stranded

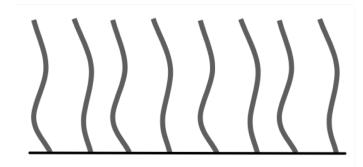
destroy: erase single-stranded molecules

unmark: make all molecules singlestranded

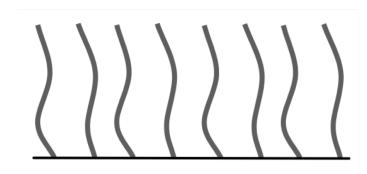


Solving $(x_1 \vee x_2) \wedge (\overline{x}_3)$:

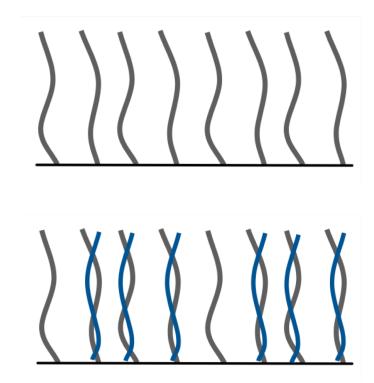
- Initially strands representing all truth assignments are on the surface
- Goal is to erase unsatisfying truth assignments



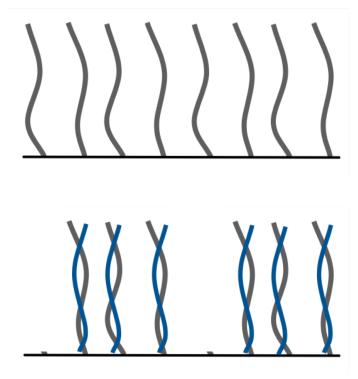
- Clause (x₁ V x₂):
 - mark strands with bits 1 or 2 set to "1"



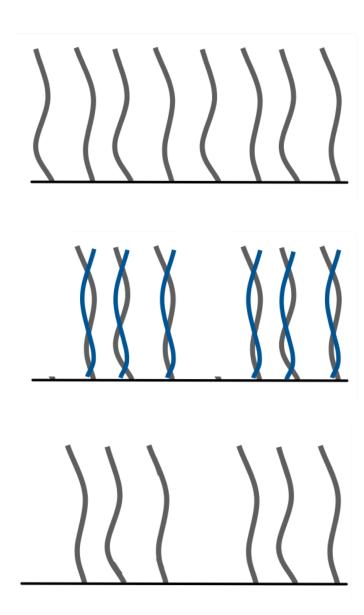
- Clause $(x_1 \vee x_2)$:
 - mark strands with bits 1 or 2 set to "1"



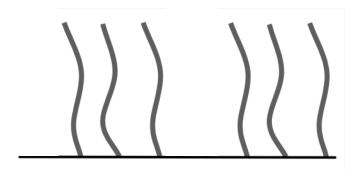
- Clause $(x_1 \vee x_2)$:
 - mark strands with bits 1 or 2 set to "1"
 - destroy



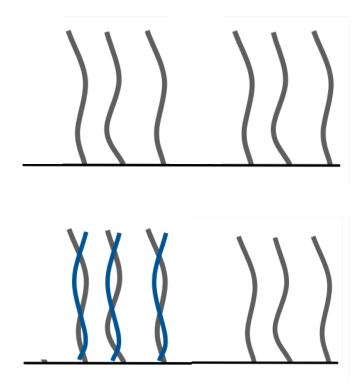
- Clause $(x_1 \vee x_2)$:
 - *mark* strands with bits 1 or 2 set to "1"
 - destroy
 - unmark



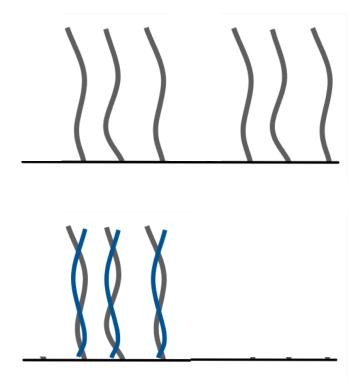
- Clause: (x₃):
 - mark strands with bit 3 set to "0"
 - destroy
 - unmark
- The remaining strands satisfy the formula



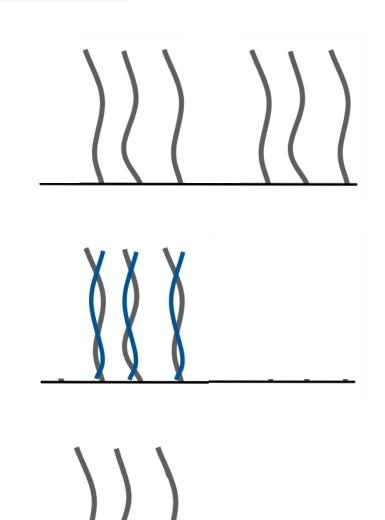
- Clause: (x₃):
 - *mark* strands with bit 3 set to "0"



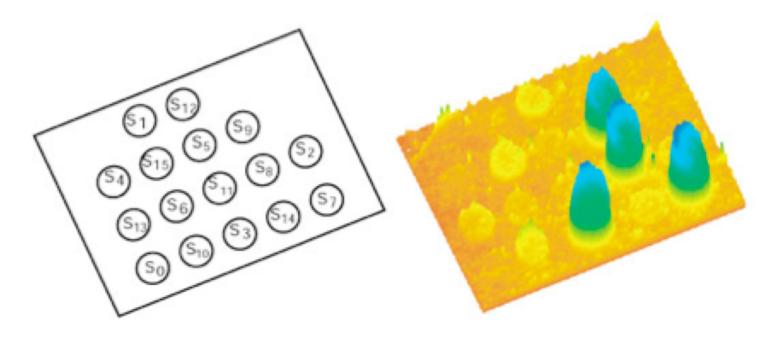
- Clause: (x₃):
 - *mark* strands with bit 3 set to "0"
 - destroy



- Clause: (x₃):
 - mark strands with bit 3 set to "0"
 - destroy
 - unmark
- The remaining strands satisfy the formula: 010, 100, 110

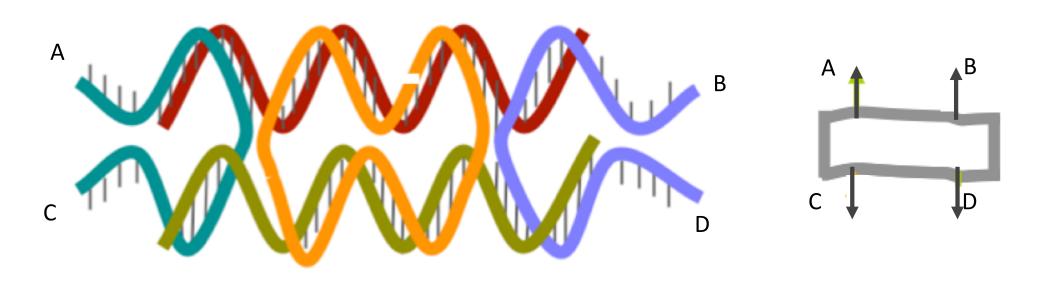


 In our lab experiment, the logic formula was more complex, involving four variables and a "readout" step

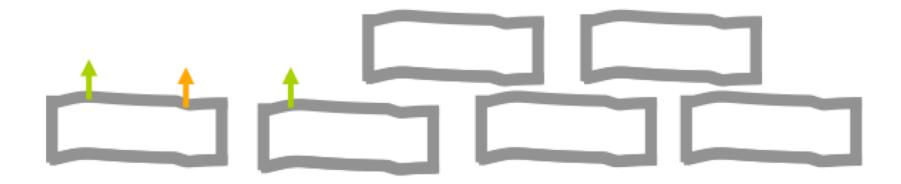


- "What is not clear is whether such massive numbers of inexpensive operations can be productively used to solve real computational problems." - Len Adleman
- "This is still a science-fiction kind of thing" Lloyd Smith
- Still, this early work also paved the way for exploring many other creative ways to program with DNA

• A double-crossover structure with four "sticky ends" (regions of unpaired bases) labeled A, B, C, D, and its tile abstraction



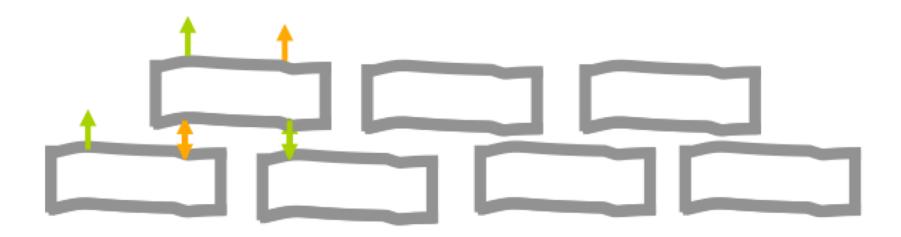
 Tiles (double-crossover molecules) adhere to a growing assembly if glue strengths (sticky end lengths) are sufficiently strong

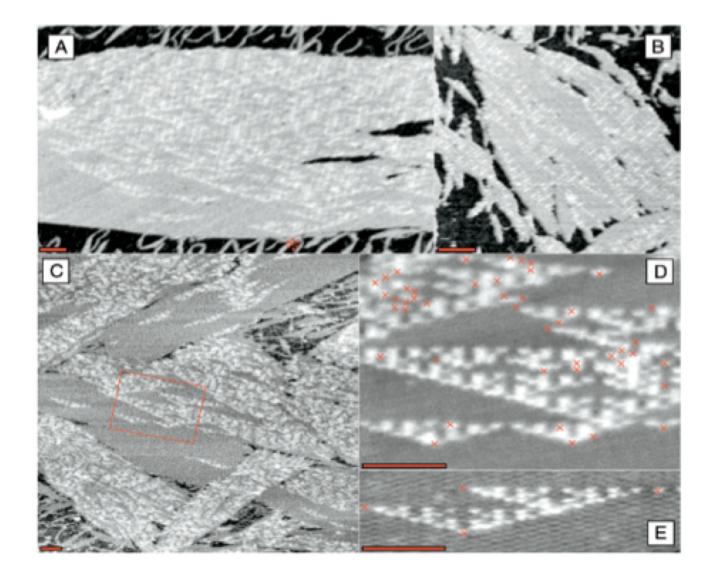


 Tiles (double-crossover molecules) adhere to a growing assembly if glue strengths (sticky end lengths) are sufficiently strong

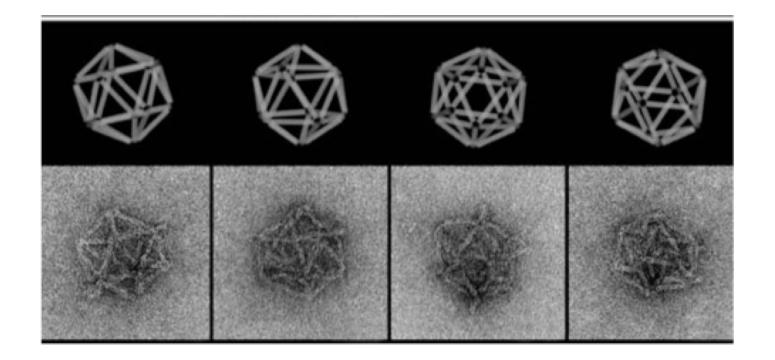


 Tiles (double-crossover molecules) adhere to a growing assembly if glue strengths (sticky end lengths) are sufficiently strong

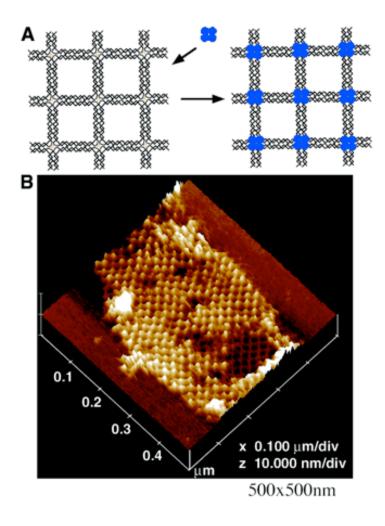




Winfree et al., Nature, 1998; Rothemund et al., Nature, 2004



Douglas et al., Nature, 2000

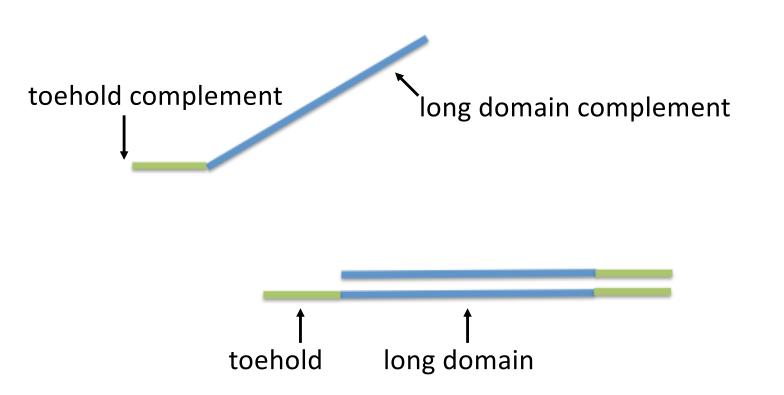


- DNA lattice structures have been used to arrange other molecules (proteins) on a surface, making it easier to study their structure
- Other potential applications include miniaturization of electronics circuits, or biosensors

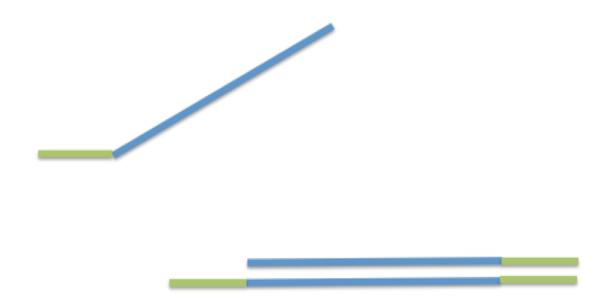
Yan et al, Science, 2003

- These experiments show how one can "program" spatial arrangement of matter at the nanoscale
- They take advantage of DNA's material properties to create artifacts, rather than just producing an answer
- Still, like earlier experiments on DNA sequence, the process results in a static outcome

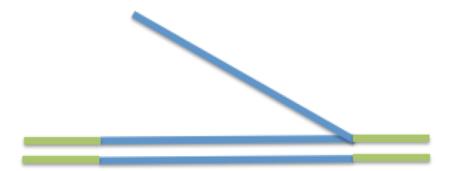
DNA strand displacement systems (DSDs)



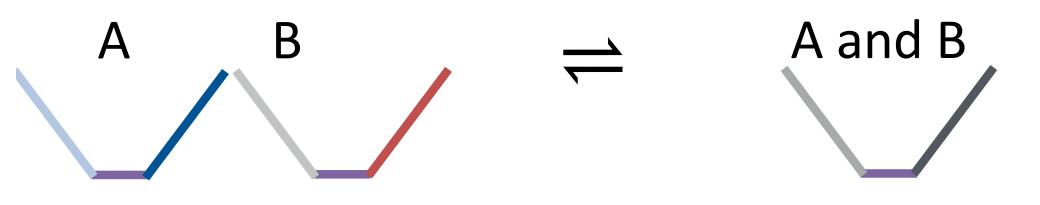
Soloveichik, Seelig, Winfree, PNAS 2010

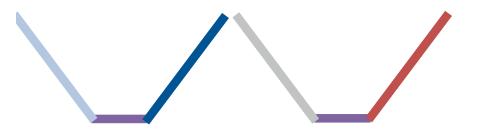


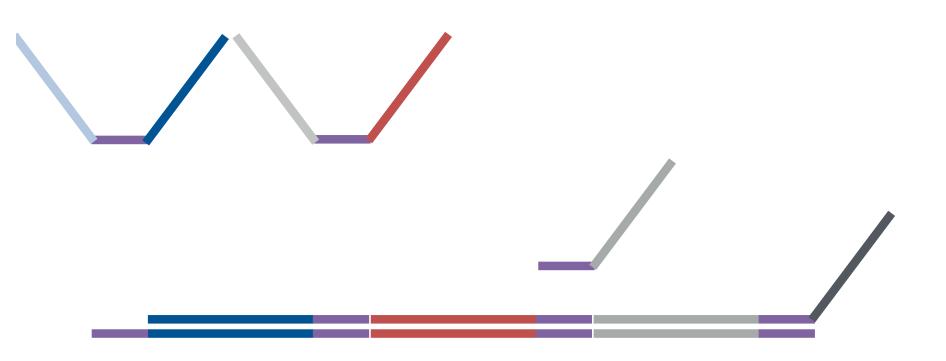


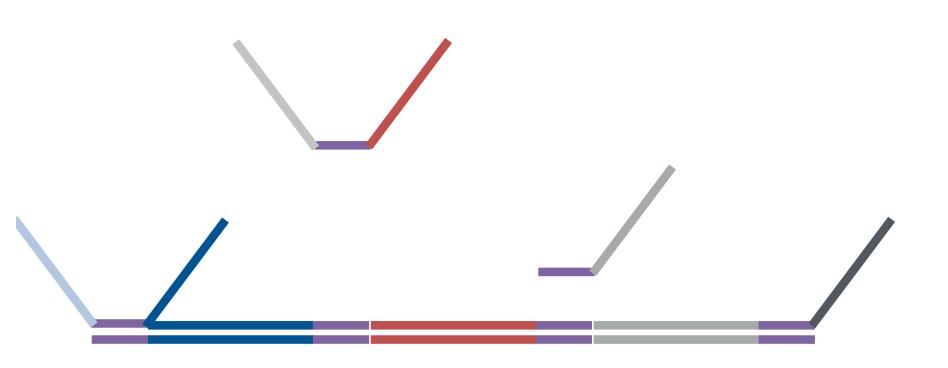


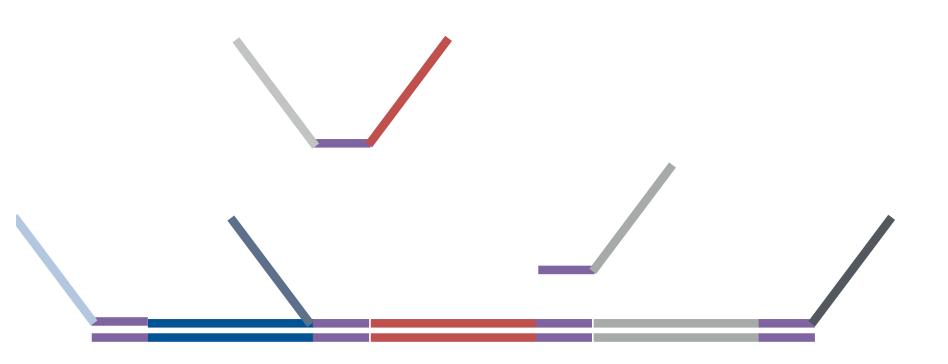
energy efficient reversible or irreversible variants

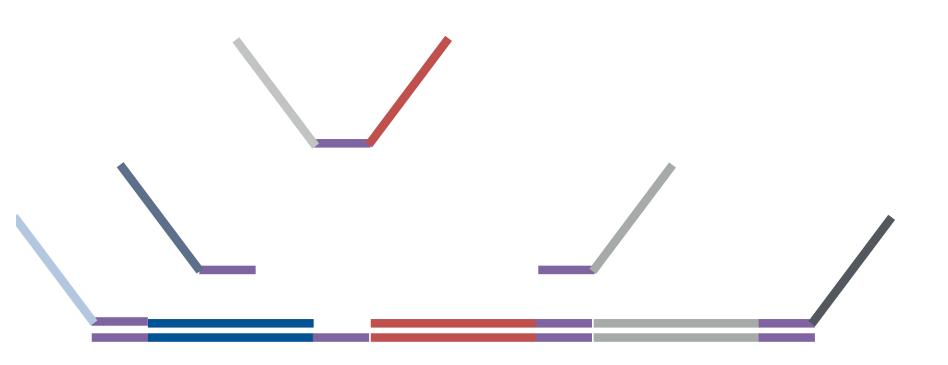


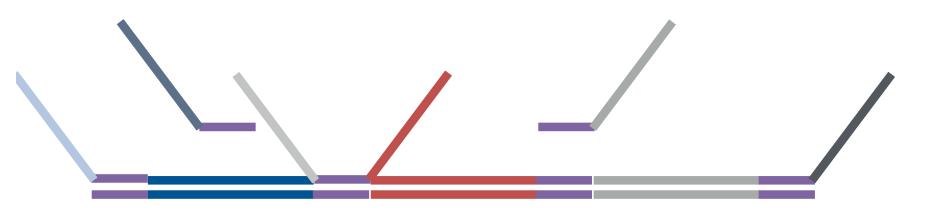


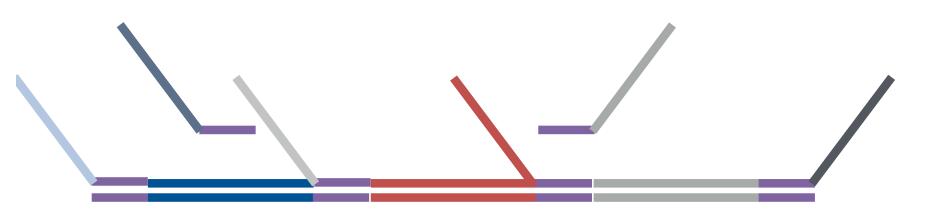


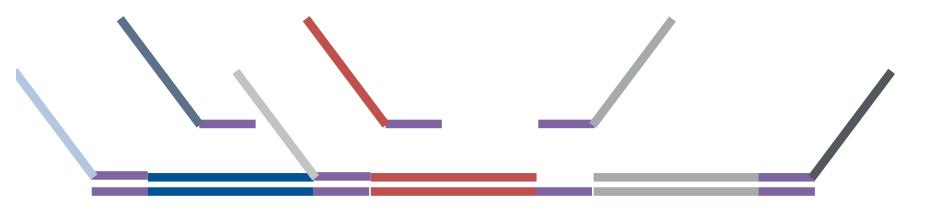


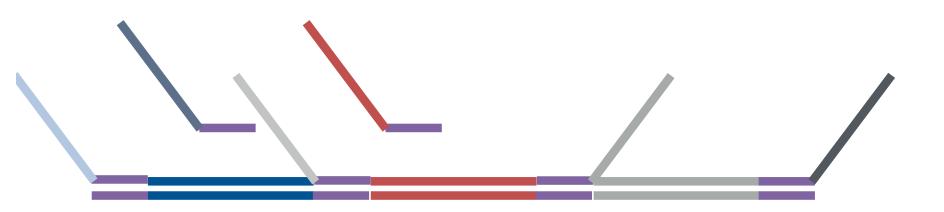


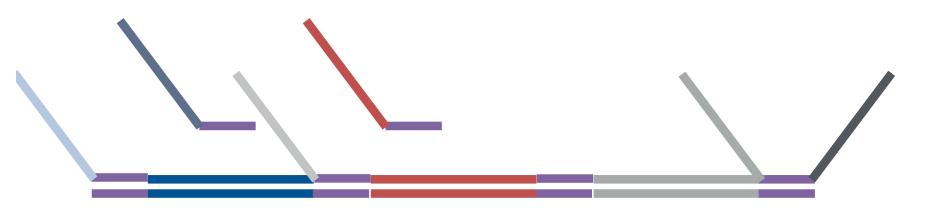


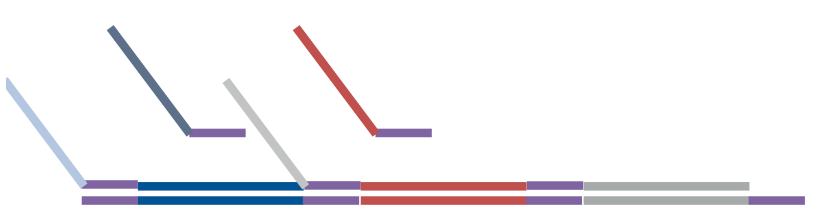


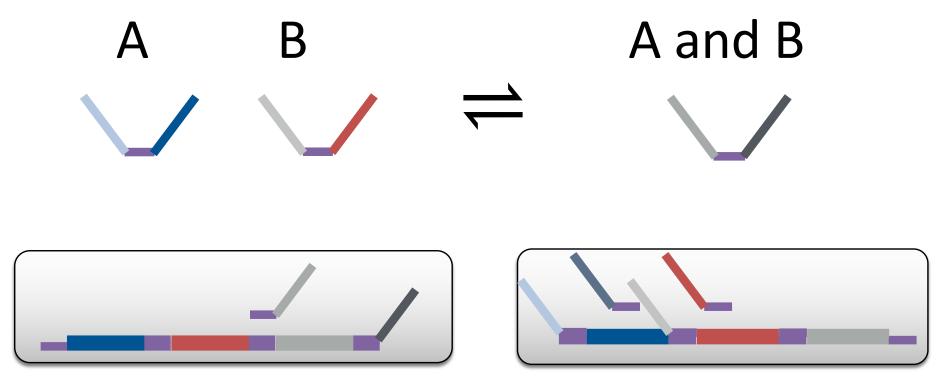






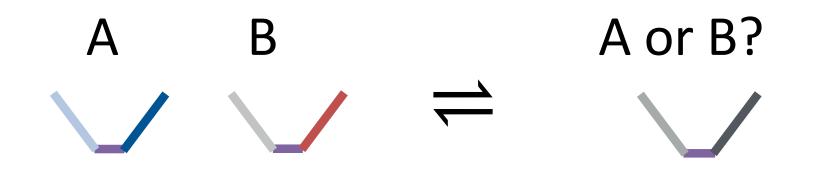






transformer molecules

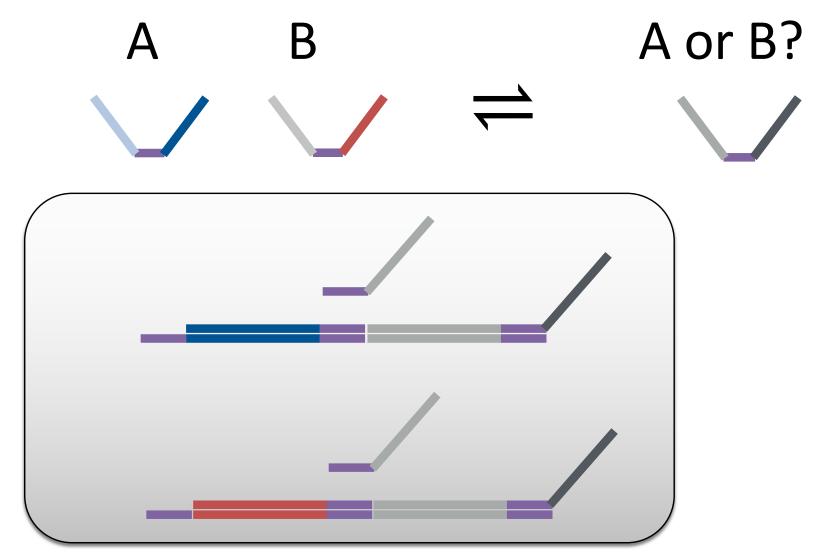
could you design transformer molecules for A or B?



DSDs | DNA strand displacements model could you design transformer molecules for A or B? A or B? B Α

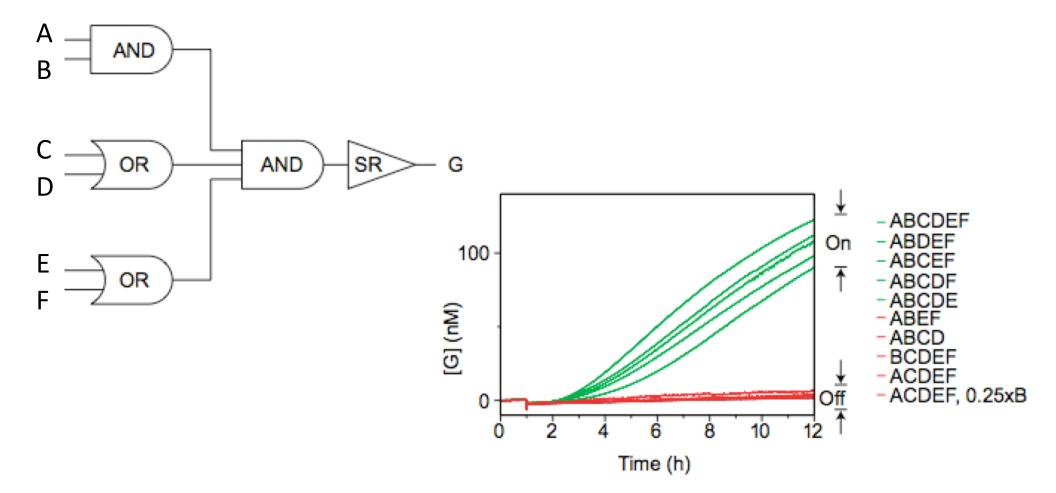
transformer molecules?

could you design transformer molecules for A or B?



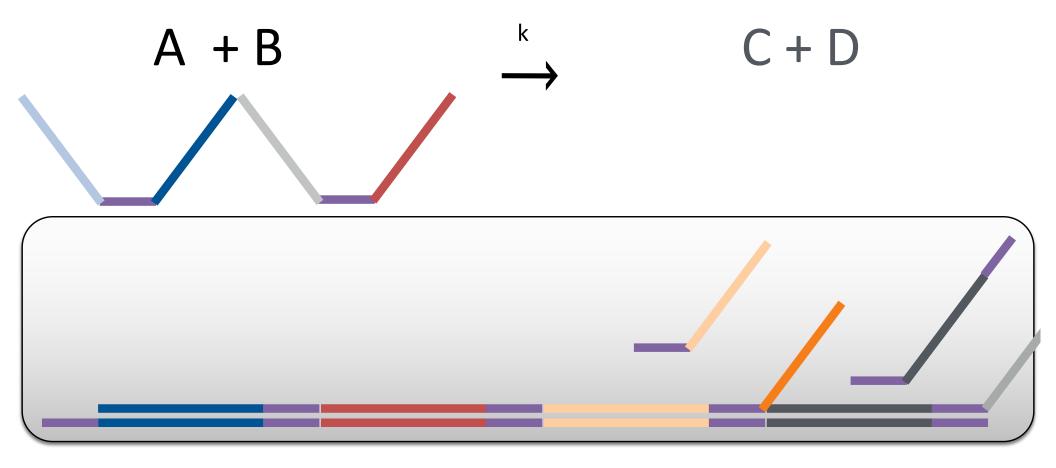
transformer molecules?

experimental demonstration



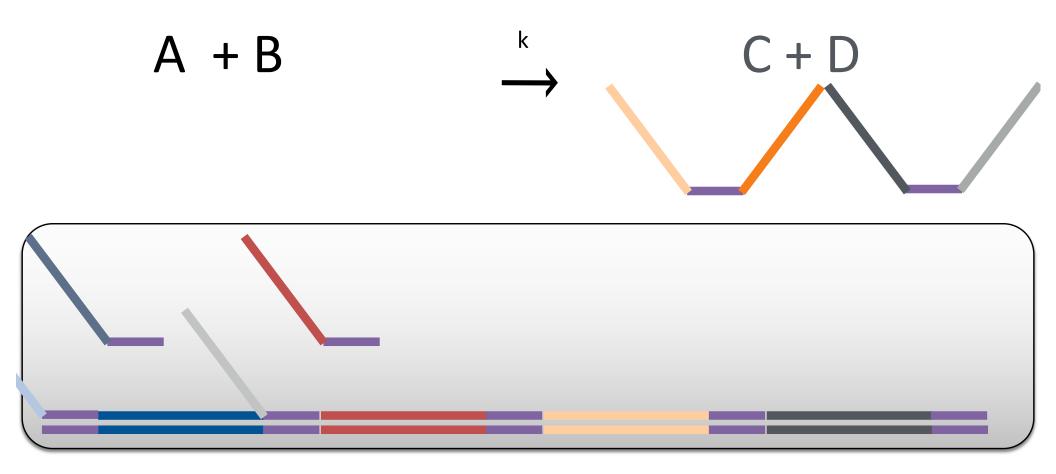
Zhang and Seelig, Nature Chemistry, 2011

strand displacement implementation of a chemical reaction



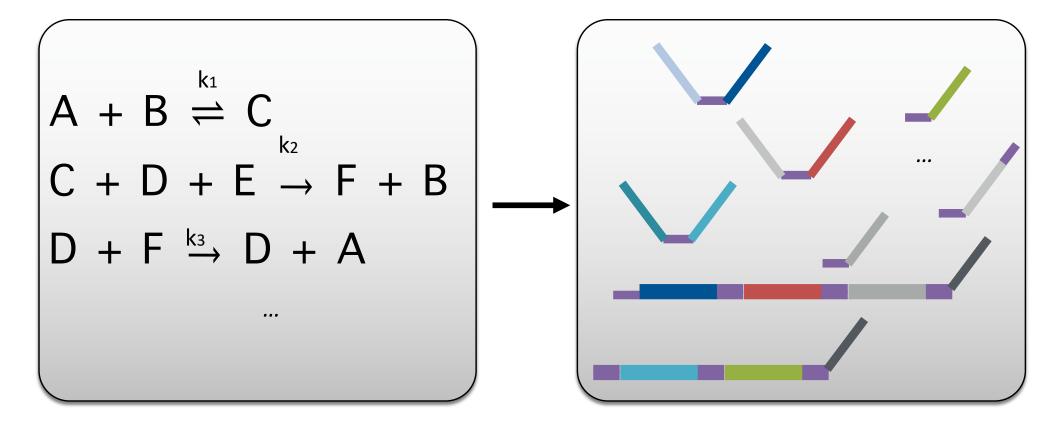
Soloveichik, Seelig, Winfree PNAS 2010

strand displacement implementation of a chemical reaction



Soloveichik, Seelig, Winfree PNAS 2010

DSDs can implement Chemical Reaction Networks (CRNs)



Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig

CRNs: A molecular programming model

• CRNs : Chemical Reaction Networks

CRNs: A molecular programming model

• CRN to compute $f(n_1, n_2) = n_1 + n_2$

$$\begin{array}{rccc} X_1 & \to & Y \\ X_2 & \to & Y \end{array}$$

(Ignore reaction rate constants for now)

CRNs: A molecular programming model

- We'll consider a model in which data is stored in the integer counts of molecules in a well-mixed solution, and reactions are operations
- Inputs are represented by counts n_i of molecular species X_i, and outputs are represented by counts of species Y_i

• f(n) = 2n: $X \rightarrow 2Y$

- f(n) = 2n: $X \to 2Y$
- What about conservation of mass?

Molecules that preserve mass need not be described explicitly (but participate in reactions nevertheless)

(E.g., assume a large supply of a neutral molecule W and replace the above reaction with W + X \rightarrow 2Y)

• Assume that volume scales over time, in proportion with the total count of molecular species

• f(n) = n/3:

• $f(n) = n/3: \quad 3X \rightarrow Y$

- f(n) = n/3: $3X \rightarrow Y$
- Aren't reactions with three or more reactants unrealistic?
 - Higher order reactions can rewritten as bimolecular reactions given additional *context*, say a copy of L_0 :

$$L_0 + X \rightarrow L_1$$

$$L_1 + X \rightarrow L_2$$

$$L_2 + X \rightarrow L_0 + Y$$

- f(n) = n/3: $3X \rightarrow Y$
- Can this be done with bimolecular reactions, without additional context?

- f(n) = n/3: $3X \rightarrow Y$
- Can this be done with bimolecular reactions, without additional context?

$$\begin{array}{l} X + X \rightarrow X' \\ X' + X' \rightarrow Y + X \\ X' + X \rightarrow Y \end{array}$$

- $min(n_1, n_2)$
- $n_1 n_2$ (assume that $n_1 \ge n_2$)
- $max(n_1, n_2)$

- min(n₁,n₂) $X_1 + X_2 \rightarrow Y$
- $n_1 n_2$ (assume that $n_1 \ge n_2$)
- $max(n_1, n_2)$

- min(n₁,n₂) $X_1 + X_2 \rightarrow Y$
- $n_1 n_2$ (assume that $n_1 \ge n_2$)
- $\begin{array}{rrrr} X_1 & \to & Y \\ X_2 + Y & \to & \emptyset \end{array}$

• max(n₁,n₂)

- min(n₁,n₂) $X_1 + X_2 \rightarrow Y$
- $n_1 n_2$ (assume that $n_1 \ge n_2$) $X_1 \rightarrow Y$ $X_2 + Y \rightarrow \emptyset$
- max(n₁,n₂)

$$\begin{array}{rccc} X_1 & \to & Y + Z_1 \\ X_2 & \to & Y + Z_2 \\ Z_1 + Z_2 & \to & K \\ K + Y & \to & \emptyset \end{array}$$

• A CRN is a pair (Λ ,R) where

 $\boldsymbol{\Lambda}$ is an ordered set of species

R is a set of reactions (r,p,k), where

- r and p are vectors of length $|\Lambda|$ that describe the reactants and products respectively
- k is the rate constant (omitted if 1)

• A CRN is a pair (Λ ,R) where

 $\boldsymbol{\Lambda}$ is an ordered set of species

R is a set of reactions (r,p,k), where

- r and p are vectors of length $|\Lambda|$ that describe the reactants and products respectively
- k is the rate constant (omitted if 1)
- *Example*: ({X1, X2, Y}, {((1,1,0),(0,0,1))})

• A CRN is a pair (Λ ,R) where

 $\boldsymbol{\Lambda}$ is an ordered set of species

R is a set of reactions (r,p,k), where

- r and p are vectors of length $|\Lambda|$ that describe the reactants and products respectively
- k is the rate constant (omitted if 1)
- *Example*: ({X1, X2, Y}, {((1,1,0),(0,0,1))})

(denotes $X1 + X2 \rightarrow Y$)

CRNs: Formal model

- A configuration c is a vector of non-negative integers of length |Λ| where c(X) denotes the count of species X
- A reaction (r,p) is *applicable* to c if r ≤ c and the result of the reaction is c - r + p
- *Example*: reaction $X1 + X2 \rightarrow Y$
 - is applicable to configuration c = (2,3,0)
 - is not applicable to configuration c' = (3,0,1)

CRNs: Formal model

- A configuration c is a vector of non-negative integers of length |Λ| where c(X) denotes the count of species X
- A reaction (r,p) is *applicable* to c if r ≤ c and the result of the reaction is c - r + p
- An *execution* is a sequence of configurations, such that for each consecutive pair c, c', some reaction applicable to c results in c'
- If (c1, c2, ..., ck) is an execution sequence then we say that ck *is reachable from* c1 (c1 → ck)

CRNs: Function computation

- Let C be a CRN with *input species* X₁, X₂, ..., X_k, *output species* Y (and possibly other species)
- A valid initial configuration C_{init} is one in which the counts of all but the input species is 0
- We'll denote C_{init}(X_i) by n_i (initial count of input species X_i), and let n = n₁, + n₂ + ... + n_k
- A configuration o is output stable if for all c such that o → c, o(Y) = c(Y)

CRNs: Function computation

- Let $f: \mathbb{N}^k \rightarrow \mathbb{N}$
- We say that *C* computes *f* if for all valid initial configurations C_{init} and configurations *c*, if $C_{init} \rightarrow c$ then $c \rightarrow o$ where o is output stable and $o(Y) = f(n_1, n_2, ..., n_k)$.

Summary

- Formal model of stable function computation with chemical reaction networks
- Next time: define stochastic behaviour of CRNs, and time complexity