
Molecular Programming Models

A little history; three models of computing with DNA;
Chemical Reaction Networks

Based on notes by Dave Doty

• Feynmann 1959: "There's plenty of room at the

bottom" envisioned "manipulating and controlling

things on a small scale”

• Adleman 1994: “Computing with DNA” solved simple

Hamiltonian path instance in a test tube

“remarkable energy efficiency ...

information density of approximately

1 bit per cubic nanometre ... massively

parallel...”

History

History

“Surfaces are a great place to keep track of
molecules. We are learning to store and
manipulate information in DNA”

Lloyd Smith

Rob Corn

“DNA computing can be put in a form
which is very amenable to automation”

Surface-based DNA computing
DNA strands are placed on a surface

Liu et al., Nature, 2000

Liu et al., Nature, 2000

0

0

1

bit 3

bit 2

bit 1
0

0

0 1

1

1

Strands encode binary strings

Surface-based DNA computing

Liu et al., Nature, 2000

– mark(i,b): make all strands with bit
i set to b double-stranded

– destroy: erase single-stranded
molecules

– unmark: make all molecules single-
stranded

Surface-based DNA computing

Three “instructions”:

Liu et al., Nature, 2000

• Initially strands representing all truth
assignments are on the surface

• Goal is to erase unsatisfying truth
assignments

Surface-based DNA computing
Solving (x1 ⋁ x2) ⋀ (x3):

• Clause (x1 ⋁ x2):
• mark strands with bits 1 or 2 set to “1”

Surface-based DNA computing
Solving (x1 ⋁ x2) ⋀ (x3):

• Clause (x1 ⋁ x2):
• mark strands with bits 1 or 2 set to “1”

Surface-based DNA computing
Solving (x1 ⋁ x2) ⋀ (x3):

• Clause (x1 ⋁ x2):
• mark strands with bits 1 or 2 set to “1”
• destroy

Surface-based DNA computing
Solving (x1 ⋁ x2) ⋀ (x3):

• Clause (x1 ⋁ x2):
• mark strands with bits 1 or 2 set to “1”
• destroy
• unmark

Surface-based DNA computing
Solving (x1 ⋁ x2) ⋀ (x3):

Surface-based DNA computing

• Clause: (x3):
• mark strands with bit 3 set to “0”
• destroy
• unmark

• The remaining strands satisfy the formula

Solving (x1 ⋁ x2) ⋀ (x3):

Surface-based DNA computing

• Clause: (x3):
• mark strands with bit 3 set to “0”

Solving (x1 ⋁ x2) ⋀ (x3):

Surface-based DNA computing

• Clause: (x3):
• mark strands with bit 3 set to “0”
• destroy

Solving (x1 ⋁ x2) ⋀ (x3):

Surface-based DNA computing

• Clause: (x3):
• mark strands with bit 3 set to “0”
• destroy
• unmark

• The remaining strands satisfy the formula:
010, 100, 110

Solving (x1 ⋁ x2) ⋀ (x3):

• In our lab experiment, the logic formula
was more complex, involving four variables
and a “readout” step

Surface-based DNA computing

• “What is not clear is whether such massive numbers of
inexpensive operations can be productively used to solve real
computational problems.” - Len Adleman

• "This is still a science-fiction kind of thing" - Lloyd Smith

• Still, this early work also paved the way for exploring many
other creative ways to program with DNA

Surface-based DNA computing

• A double-crossover structure with four “sticky ends” (regions of
unpaired bases) labeled A, B, C, D, and its tile abstraction

Fu and Seeman, Biochemistry, 1993

B
A

C D

A

C

B

D

Structure-based DNA computing

• Tiles (double-crossover molecules) adhere to a growing
assembly if glue strengths (sticky end lengths) are sufficiently
strong

Fu and Seeman, Biochemistry, 1993

Structure-based DNA computing

Fu and Seeman, Biochemistry, 1993

• Tiles (double-crossover molecules) adhere to a growing
assembly if glue strengths (sticky end lengths) are sufficiently
strong

Structure-based DNA computing

Fu and Seeman, Biochemistry, 1993

• Tiles (double-crossover molecules) adhere to a growing
assembly if glue strengths (sticky end lengths) are sufficiently
strong

Structure-based DNA computing

Winfree et al., Nature, 1998; Rothemund et al., Nature, 2004

Structure-based DNA computing

Douglas et al., Nature, 2000

Structure-based DNA computing

• DNA lattice structures have
been used to arrange other
molecules (proteins) on a
surface, making it easier to
study their structure

• Other potential applications
include miniaturization of
electronics circuits, or
biosensors

Yan et al, Science, 2003

Structure-based DNA computing

• These experiments show how one can “program” spatial
arrangement of matter at the nanoscale

• They take advantage of DNA’s material properties to create
artifacts, rather than just producing an answer

• Still, like earlier experiments on DNA sequence, the process
results in a static outcome

Structure-based DNA computing

DNA strand displacement systems (DSDs)

toehold long domain

Soloveichik, Seelig, Winfree, PNAS 2010

toehold complement long domain complement

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

energy efficient
reversible or irreversible variants

DSDs | DNA strand displacements model

A B A and B⇌

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

DSDs | DNA strand displacements model

transformer molecules

A B A and B
⇌

DSDs | DNA strand displacements model

A B A or B?
⇌

DSDs | DNA strand displacements model
could you design transformer molecules for A or B?

transformer molecules?

A B A or B?
⇌

DSDs | DNA strand displacements model
could you design transformer molecules for A or B?

transformer molecules?

A B A or B?
⇌

DSDs | DNA strand displacements model
could you design transformer molecules for A or B?

A
B

C
D

E
F

Zhang and Seelig, Nature Chemistry, 2011

DSDs | DNA strand displacements model
experimental demonstration

A + B C + D→k

Soloveichik, Seelig, Winfree PNAS 2010

DSDs | DNA strand displacements model
strand displacement implementation of a chemical reaction

Soloveichik, Seelig, Winfree PNAS 2010

→A + B C + Dk

DSDs | DNA strand displacements model
strand displacement implementation of a chemical reaction

…
A + B ⇌ C
C + D + E → F + B
D + F → D + A

…

k1

k2

k3

Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig

DSDs | DNA strand displacements model
DSDs can implement Chemical Reaction Networks (CRNs)

• CRNs : Chemical Reaction Networks

CRNs: A molecular programming model

• CRN to compute f(n1,n2) = n1 + n2

(Ignore reaction rate constants for now)

CRNs: A molecular programming model

• We’ll consider a model in which data is stored in the
integer counts of molecules in a well-mixed solution,
and reactions are operations

• Inputs are represented by counts ni of molecular
species Xi, and outputs are represented by counts of
species Yi

CRNs: A molecular programming model

• f(n) = 2n:

CRN examples and model justification

• f(n) = 2n:

• What about conservation of mass?
Molecules that preserve mass need not be
described explicitly (but participate in reactions
nevertheless)
(E.g., assume a large supply of a neutral molecule W
and replace the above reaction with W + X à 2Y)

• Assume that volume scales over time, in proportion
with the total count of molecular species

CRN examples and model justification

• f(n) = n/3:

CRN examples and model justification

• f(n) = n/3:

CRN examples and model justification

• f(n) = n/3:

• Aren’t reactions with three or more reactants
unrealistic?
Higher order reactions can rewritten as bimolecular
reactions given additional context, say a copy of L0:

CRN examples and model justification

• f(n) = n/3:

• Can this be done with bimolecular reactions, without
additional context?

CRN examples and model justification

• f(n) = n/3:

• Can this be done with bimolecular reactions, without
additional context?

CRN examples and model justification

X + X à X'
X' + X’ à Y + X
X' + X à Y

• min(n1,n2)

• n1 – n2 (assume that n1 ≥ n2)

• max(n1,n2)

CRNs: More examples

• min(n1,n2)

• n1 – n2 (assume that n1 ≥ n2)

• max(n1,n2)

CRNs: More examples

• min(n1,n2)

• n1 – n2 (assume that n1 ≥ n2)

• max(n1,n2)

CRNs: More examples

• min(n1,n2)

• n1 – n2 (assume that n1 ≥ n2)

• max(n1,n2)

CRNs: More examples

• A CRN is a pair (!,R) where
! is an ordered set of species
R is a set of reactions (r,p,k), where
– r and p are vectors of length |!| that describe the

reactants and products respectively
– k is the rate constant (omitted if 1)

CRNs: Formal model

• A CRN is a pair (!,R) where
! is an ordered set of species
R is a set of reactions (r,p,k), where
– r and p are vectors of length |!| that describe the

reactants and products respectively
– k is the rate constant (omitted if 1)

• Example: ({X1, X2, Y}, {((1,1,0),(0,0,1))})

CRNs: Formal model

• A CRN is a pair (!,R) where
! is an ordered set of species
R is a set of reactions (r,p,k), where
– r and p are vectors of length |!| that describe the

reactants and products respectively
– k is the rate constant (omitted if 1)

• Example: ({X1, X2, Y}, {((1,1,0),(0,0,1))})

CRNs: Formal model

(denotes X1 + X2 à Y)

• A configuration c is a vector of non-negative integers
of length |!| where c(X) denotes the count of
species X

• A reaction (r,p) is applicable to c if r ≤ c and the result
of the reaction is c – r + p

• Example: reaction X1 + X2 à Y
– is applicable to configuration c = (2,3,0)
– is not applicable to configuration c’ = (3,0,1)

CRNs: Formal model

• A configuration c is a vector of non-negative integers
of length |!| where c(X) denotes the count of
species X

• A reaction (r,p) is applicable to c if r ≤ c and the result
of the reaction is c – r + p

• An execution is a sequence of configurations, such
that for each consecutive pair c, c', some reaction
applicable to c results in c'

• If (c1, c2, …, ck) is an execution sequence then we say
that ck is reachable from c1 (c1 à ck)

CRNs: Formal model

• Let C be a CRN with input species X1, X2, …, Xk,
output species Y (and possibly other species)

• A valid initial configuration Cinit is one in which the
counts of all but the input species is 0

• We’ll denote Cinit(Xi) by ni (initial count of input
species Xi), and let n = n1, + n2 + … + nk

• A configuration o is output stable if for all c such
that o è c, o(Y) = c(Y)

CRNs: Function computation

• Let f: ℕk à ℕ

• We say that C computes f if for all valid initial
configurations Cinit and configurations c, if Cinit à c
then c à o where o is output stable and o(Y) =
f(n1, n2,…, nk).

CRNs: Function computation

• Formal model of stable function computation with
chemical reaction networks

• Next time: define stochastic behaviour of CRNs,
and time complexity

Summary

